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We use the canonical transform realization of SL(2, R ) in order to find all matrix elements and
integral kernels for the unitary irreducible representations of this group. Explicit results are given
for all mixed bases and subgroup reductions. These provide the full multiparameter set of integral
transforms and series expansions associated to SL(2, R ).
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1. INTRODUCTION

The complete classification of the Unitary Irreducible
representations (UIRs) of the three-dimensional Lorentz
group SO(2, 1) and of its twofold covering group SL{2, R )
were given by Bargmann in his classic 1947 article,' where
one can find the UIR matrix elements—rows and columns
classified by the UIRs of the compact subgroup SO{2)—in

1:2

explicit form. This group, its covering groups SO{2, 1)~

1ioo ————mmee
SU(1,1)~Sp(2, R )=SL(2,R )~ SL(2, R} andits represen-

tations were further studied by Barut and Fronsdal,? Pu-
kanski,* Sally, Jr.,* and in a book by Lang.’

The study of group representations in different bases is
of interest both from the mathematical and the physical
point of view. The intimate connections between the repre-
sentations of Lie groups and the special functions of math-
ematical physics have long been recognized and treated in
textbooks.® In physics, subgroup reductions corresponding
to different bases of the Lorentz and other groups lead to
various ways to correlate or interpret data, as in the descrip-
tion of the high-energy scattering dynamics,” which requires
the reduction SO(2, 1) DSO(1, 1) among others. This interest
coincided with the investigations of Mukunda,*'" Barut,”'?
Lindblad and Nagel,'* and others, who analyzed this chain
in some detail and computed the generalized representation
matrices (or integral kernels) of one-parameter subgroups
and found the coupling coefficients.

In the study of the role of canonical transformations in
quantum mechanics, the work of Moshinsky and
Quesne'*'® started from linear transformations between co-
ordinate and momentum observables and lead to the oscilla-
tor (metaplectic) representation of Sp(2, R }. In contrast to the
realizations given by Bargmann' and by Gel’fand et a/.,'® in
which the group acts as a Lie transformation group on func-
tions of a coset manifold, the group actions in the construc-
tions of Moshinsky,'*'>!” Seligman, Wolf,'*-2* Burdet, Per-
rin and Perroud,?* and present in the work of others,?>?7 is
an integral transform realization of SL(2, R ) on .¥"*(R ) Hil-
bert spaces. This group of integral transforms has been
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called canonical transforms.'®* It is unique in that the asso-
ciated Lie algebra is an algebra of second-order differential
operators on a dense common domain in these Hilbert
spaces. The action is thus distinct from—although unitarily
equivalent®”?'to—the SL(2, R ) action as a Lie transforma-
tion group on coset spaces, of the Lie-Bargmann multiplier
representations®” on the unit circle or disk.

The canonical transform realization has provided a de-
gree of uniformity in the treatment of the discrete series'® of
UIRs on the one hand and the continuous series’! of UIRs
on the other. In this article it has enabled us to evaluate, in a
straightforward and unified way, the UIR matrix elements
and integral kernels of finite SL{2, R j elements. In contrast
with some of the previous investigations, this approach deals
with the general SL(2, R ) group element, rather than with
specific one-parameter subgroups. Although Bargmann’s
results on UIRs of SL(2, R ) in the compact subgroup basis*
are well known, it is also true that other continuous noncom-
pact and mixed-basis reductions have so far not received
uniform consideration?®'%'%3'=3 and are scattered in the
literature. The discrete series of UIRs in all subgroup reduc-
tions was undertaken by Boyer and Wolf** using canonical
transforms. We repeat their results here since the journal is
not generally available and the article contains some errata.
The mixed-basis matrix elements of the continuous series
were treated by Kalnins,’' who gave expressions for one-
parameter subgroups in terms of Whittaker and Laguerre
functions of the second kind.** All our expressions are given
in terms of confluent and Gauss hypergeometric functions,
and have uniformity of notation, normalization, and phase
conventions. The purpose of this paper is to give a compre-
hensive derivation and listing of all subgroup reductions.

The plan of the article is as follows. In Sec. 2 we display
the needed formulas from the theory of canonical transforms
for the general method of construction and, since we want to
describe all UIR matrix elements and integral kernels, we
organize the notation properly in due accordance with Barg-
mann’s conventions. In Sec. 3 and 4 we give the results for
the discrete and continuous {nonexceptional and exception-
al) representation series. The first subsection of each lists the
subgroup-adapted basis functions, the second treats the
mixed-basis expressions, while the third subsection treats
the subgroup reductions, i.e., the cases when the row and
column variables refer to the same subgroup. These are ex-
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pressed as Gauss or confluent hypergeometric functions
and, alternatively, as cylinder and Whittaker functions®**’
of the three independent SL(2, R ) parameters. Certain cases
of interest are pointed out in a further subsection. Compari-
son with alternative derivations available in the literature is
pointed out whenever we are aware of such results.

The representation matrix elements for the compact
subgroup chain were obtained by Bargmann as solutions to
differential equations*® with boundary conditions imposed
by the group identity. We come to the evaluation of an inte-
gral as the last step to the same end. We make use of a meth-
od by Majumdar and Basu®” on hypergeometric series Mel-
lin expansions to solve three of the six chains in each series.
In the special case of the continuous series in the compact
subgroup reduction, such an integral (a Gaussian of imagi-
nary width times two Whittaker functions, one with a res-
caled argument) is not available in the literature. Through
Bargmann’s result this is evaluated.

In Sec. 5 we point out that the six different mixed-basis
and subgroup-reduced representation matrix elements con-
stitute six families of SL(2, R } integral and discrete trans-
forms, as well as series expansions, of which the set of ca-
nonical transforms is but one. The Appendix summarizes
some information about the groups SU(1, 1), SL(2, R ), and
their UIRs as classified by Bargmann. Throughout this arti-
cle Z and R stand for the set of integers and real numbers.
Boldfaced symbols indicate vectors or matrices. For brevity,
we shall speak of UIR matrix elements encompassing both
the ordinary and generalized (i.e., integral transform kernel)
cases.

As a general observation, we should remark that the
canonical transform realization of SL(2, R ) can be regarded
as a complementary alternative to Bargmann’s treatment of
the same group. The latter is simpler in certain respects,
particularly when dealing with the compact subgroup chain,
while the former seems to be most appropriate for noncom-
pact subgroup chains.

2. CANONICAL TRANSFORMS
A. The construction of SL(2, A) representations

The determination of representation matrices (or inte-
gral kernels) for group elements geG may proceed as follows:
Provided (i) one has a Hilbert space 77 of functions f (7},  in
some carrier space X, endowed with a sesquilinear positive
definite inner product (-,-), where the action of G is well de-
fined and onto,

FIN £ =[£I, £ f,e¥ 2.1)

(ii) one has a complete orthonormal, or generalized Dirac-
orthonormal basis for 57, {#, (r)} ;4 (A being the range of
the label specifying the basis vectors uniquely), one can build
a representation D: G—HomA as

D(g) = [1Dz4-(8)ll> (2-2a)

D; ;(8) = (Wa, Cey)- (2.2b)
The completeness of the (possibly generalized) basis function
set will then guarantee the representation property
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/EA D, (8)Ds1-(82) =Dy ;- (818 (2.2c)

where the symbol S, .. stands for summation in the case of
proper, and integration in the case of generalized, bases. The
unitarity and irreducibility properties of D follow from simi-
lar requirements for the action (2.1) on 5.

The reasons for which this straightforward program of-
ten fails to provide a definite result have to do more with
knowing the *‘best” choice of basis functions {, (r}},., and
the problem of explicit computation of the integral in (2.2b),
than with matters of principle. The bases are usually chosen
as the eigenvectors of one or more operators in the Lie alge-
bra—so that subgroup reductions result—while the space
& is an .¥"*X ) space on a coset manifold X = G /H (or
H \ G ) with some convenient subgroup HCG. A closely re-
lated approach to part (ii) of evaluation of (2.2b) calls for
(i") finding these functions for various one-parameter
subgroups of G as solutions of differential equations ob-
tained from the subgroup generators, subject to the bound-
ary conditions D(e} = 1 at the group identity eeG.

The group G which we consider here is SL(2, R ):

b
[g=(" )|a,b,c,deR, detg=1!. (2.3)
cd

Starting with Bargmann' a number of authors have imple-
mented the program (i)—(ii} or (i)—(ii’), using for the support-
ing space X the coset space provided by the Iwasawa decom-
position NA \NAK = S (i.e., the circle) and Bargmann’s
multiplier action.?® This is unitary in .%"*(S,) for the continu-
ous nonexceptional representation series*®; for the continu-
ous exceptional and discrete series it is %%, .(S,) and

£? ,»(S,) with nonlocal measures®®*° £2 ©and 2 °. The lat-
ter is equivalent?’ to a space of analytic functions on the unit
disk?® or on the complex half-plane.'® These realizations are
very appropriate for finding the SL(2, R ) representation ma-
trices reduced with respect to the compact SO(2) subgroup,
since, the ensuing analysis makes use of Fourier series on
£2(S,) for UIRs belonging to the continuous class, or Hardy
spaces for those belonging to the discrete series.’® When one
makes use of the same action and spaces for the reduction
under a noncompact subgroup, calculations become
awkward.

The Hilbert spaces and SL{2, R ) action we use in this
article have been developed in Refs. 9, 15, 19, 21, and 22 for
Sp(2, R )=~SL(2, R), as well as the oscillator representa-
tion'*'* of Sp(2N, R ) on an N-dimensional carrier space R V.
As we shall see in implementing part (ii) of the program out-
lined above, these techniques are best suited for noncompact
subgroup reduction.

B. The discrete series U

The oscillator representation of the subgroup
SO(2} X SL{2, R Jof Sp{4, R ), restricted to a given one-dimen-
sional UIR M of SO(2), MeZ, generates the conjugate SL(2,
R) representation'®'*?>?7 belonging to the discrete series
D [ with k = (1 4+ |M |)/2. When the two-dimensional car-
rier space R ?is parametrized in polar coordinates, this repre-
sentation is realized as an integral transform group on the
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radial variable rcR * and defines the k-radial canonical
transform on the Hilbert space .#*(R *). The inner product
is thus the standard one,

(fih)= f " drfirh ) 2.4

and the action of the group element g is given by

« ab
(€0 = [ arcinrven g=(05)  es
o cd
where the integral kernel C 5(r, 7') is given by an imaginary
Gaussian times a Bessel function:
Ckir,r)
= ™p ~rr)V? expli[dr? + ar®]/2b W, (rr'/b),
(2.5b)
2k—-1=0,1,2,.., {2.5¢)

When g is a lower-triangular matrix (6 = 0) one finds from
the asymptotic properties of the Bessel function®*' that Eq.
{2.5a) becomes the multiplier action

e, k=14132, ..

L1

O 2
[C*’ G ) ]m = (sgn & ja| ="/ explicr/2a) f(r/|a)
(2.5d)

We shall write C*(g) for C; whenever g is displayed as a
matrix. The k-canonical transform (2.5) is unitary under the
inner product (2.4) and a Parseval relation ( f, /)
= (Ck £, Ckh ) holds.

The Lie generators of Cf are second-order differential
operators*? given by

e
=L (,i+ 1> (2.6b)
2\ dr -~
nei(-Geted s
on a space dense in .¥"*(R T), and y is related to k through
y=02k—17—4 (2.7)
sothat y = — 1, 3,135, .. These generators close into a Lie

algebra sl(2, R ) under commutation. We shall also come to
use

1 d> vy
Jr =Jr_+__]7=_(_ 7+_), 2.8a
' o +JIT =7 FER (2.8a)
Jr =J5—Jr =42 (2.8b)
The Casimir invariant of sl(2, R ) is a multiple of the identity:
Q=P +VUIP—Uir=q1, (2.9a)
g= — Wy+i=k(1—k), (2.9b)

ie,g=50, —3, —2,...
The association of (2.6)—(2.8) with the one-parameter sub-
groups of SL(2, R ) is as follows

expliaJ, ) —M,(a)

_ ( cosh a/2 — sinh a/2) SO(1. 1 210
—sinha/2  cosha/2 €SO(L, 1)y, (2.10a)
191 J. Math. Phys., Vol. 23, No. 2, February 1982

) _ (exp( —B/2) 0
exp(iBJ)-M,(B) = ( 0 expl 8 /2))esou, 1),,
(2.10b)
. _(cos(¥/2)  —sin(y/2)
explirdoMor) = (S 7)ot eSOk
(2.10¢)
explibJ  p>M_ (b) = ((1) —lb )eE(1)+, (2.10d)
explicJ _y->M_(c) = (i ?)GE(I)_. (2.10e)

All nonequivalent one-parameter subgroups of SL(2, R ) are
present in (2.10): the compact rotation elliptic subgroup
SO(2), the noncompact Euclidean parabolic subgroup E(1),
and the boost hyperbolic subgroup SO(1, 1). For the latter
two we have the following equivalence relations between the
equivalent pairs {2.10a)—(2.10b) and (2.10d)—(2.10e):

1

SM({)S™!=M,({), S= 2‘”2(1

"1 1), (2.11a)

0
-1
The spectrum of J ¢ in (2.6c) for y>3in £*R *)has alower
bound given by its corresponding k> 1. (For k = § or
y = — } this is also the case for the self-adjoint extension
specified in Sec. 3) The k-radial canonical transforms (2.5)
thus belong to the lower-bound UIRs D ;" of SL(2, R ).

The UIRs D~ are obtained from the D ./ ones through
the sl(2, R ) outer automorphism*?

Ty =05, Jie—J1, JioJi,

FM_(2F' =M, (z), F=( (1)) =S~2(2.11b)

TV e —J7,.

(2.12a)

This exchanges the raising and lowering operators with a

change of sign:
JVer —=J7, JT =J] + Y. (2.12b)

The automorphism acts on the SL(2, R ) group elements** as

o= D), J)=e

The D, matrix elements can be thus expressed in terms of
the corresponding D ;" ones, as will be detailed for the var-
ious subgroup reductions, at the end of the next section.

(2.12¢)

C. The continuous nonexceptional series C;

The oscillator representation of Sp(4, R ) can also be re-
duced with respect to an O(1, 1) X SL(2, R ) subgroup''?"*2
by making use of hyperbolic coordinates on the plane. The
resulting reduction, on being restricted to a definite
UIR (p, 25)of O(1, 1), p = + 1, seR, yields a conjugate re-
duction of SL(2, R ) to one of the continuous series of UIRs
C ;. The case of vector (¢ = 0) and spinor (€ = }) representa-
tions correspond to even (p = + 1)and odd(p = — 1) par-
ity representations of O(1, 1) withg = § + s?>1. Since hyper-
bolic coordinates require two coordinate patches to cover
the plane, the “hyperbolic radial” carrier space will be
X =R ™ + R " andtheHilbertspace correspondingly a two-
component .¥ space of functions
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= (7" V=150l j=1 -1 fiesir )

S_ulr)
(2.13)
The inner product in this Hilbert space .#'}, (R )
=L} R ")+ L3R *) will be
(fh)j= dr f(r)*h;(r). (2.14)

j=+1J0
Calling k = | + is, this reduction leads to the (¢, & )-hyper-
bolic canonical transform

[CF fliin= %

J=+170

w ar [Cek1, in) £ (7). (2.158)

The 2 X 2 matrix integral kernel C5¥(r, r') is given by a Gaus-
sian times Hankel and Macdonald functions of imaginary
index. For 2k — 1 = 2is, seR, p, =1, p,;a= — 1, wecan
write*
[C*) (r )y =G, (r, FIH S — rr'/b), (2.15b)
G, (r, r) = (2m|b )~ (rr') Zexpli[djr* + aj'r*1/2b),
(2.15¢)
HiC) =pH () =pH(=C)=H7 1" ()
=imle "HY(§ +i0%) — p.e"H$(C — i07)]
= 2im( — sgng V<[ ~ 812 — lk WaisIS )
+ig (k)Y (IS 1] (2.15d)
Hi* (§)=pH" (§)=pHS (&) =p H )

= 4 — sgnd )*g(k )K, (IS ), (2.15¢)
k—1Li=is, 530 X h
e=0 RTS8 , Glk)=sin7k = 08 175)
k—l=0 0O<o<! cos To
(2.15f)
e=Lk—-1=is, s>0, g,,,k)=icosmk = sinhws.
{2.15g)

In the last two equations we are defining the function g (k)
for values of k which will make it applicable to the exception-
al continuous series discussed in the next subsection. Note
that for £ <0, arg({ + i0*) = + 7, so (2.15d) valuates H !
above the branch cut of the function (placed along the nega-
tive real half-axis), and H ! is valuated below the cut.

When gin Eq. (2.3} is lower-triangular (b = 0), as for the
oscillator radial case (2.5), one finds from the asymptotic
properties of the cylinder functions that Eq. (2.15a) becomes
the multiplier action

[a:fk (:{ﬁ .) f] () = (sgn a)*|a| ~ "explijer’/2a) £/ al).
’ (2.15)

The (€, & )-hyperbolic canonical transform is unitary under
(2.14), and a corresponding Parseval relation holds.

Here too, the Lie generators of the integral transform
action are second-order differential operators, but arranged
in 2 X2 matrix form. In terms of the formal operators (2.6)
they are'"?'

, (J’{
J% =
0 —J7

(/1o )
5=y )=tk

192 J. Math. Phys., Vol. 23, No. 2, February 1982

): “J.‘S;‘;'J)l/“’ (2.16a)

(2.16b)

g oy
Y=\o —Jy =178 751, (2.16c)

7,
J :( (; —J, )2 ”]5/,,"in I

Again y is related to k through (2.7), but now as & is in the
range (2.15f) and (2.15g) [instead of {2.5¢)], we have y< — .
As the subgroup assignments (2.10) are representation-inde-
pendent statements, they continue to hold here as well. The
Casimir invariant of SL(2, R ) is now ¢3»}, corresponding to
the continuous nonexceptional series of UIRs. The one point
we must clarify in this regard (See the Appendix) is that for
spinor representations (¢ = }) the hyperbolic canonical
transforms (2.15) do notinclude the point k = | (i.e.,s =0or
g = 1}. Indeed, from (2.15¢} we can verify that for k = § + is,
s—07 the off-diagonal kernel elements { j;') vanish and
hence the two j-component spaces uncouple. The diagonal
elements are now ~Jy({ ), that is, they are the D %, (k = 1)-
radial canonical transform kernel for the upper component,
and the D [, one for the lower component, as is clearly sug-
gested by (2.12a)—(2.16).

(2.16d)

D.The continuous exceptional series C?

The oscillator representation of Sp(4, R ) does not con-
tain the exceptional continuous representation series of any
of its SL{2, R ) subgroups. However, there exist unique self-
adjoint extensions*® of the generators (2.16) in .} (R ™),
which enable us to reach this series by analytic continuation
in the variable & in {2.15f) to values off k = J, in the range

l<k<l(ie,0<2k—1=20<1),fore=0 (p, = 1)
(2.17)
For these UIRs — <y <} ie,0<qg <}

The features one must check are that the integral ker-
nels corresponding to these values of k& continue to map
4 (R *) functions into functions in the same space, and
that the representation property (2.2¢) holds. That this is the
case follows from the integrability properties of cylinder
functions in the range ( — 1, 1) of the index, in particular
their behavior at zero and infinity, and from the complete-
ness relations for the similarly extended basis functions, to
be seen in Sec. 4.

Again, as forthee =, k =1 + is, s—07 case seen
above, when € = 0 and k— 1" the integral kernel matrix
(2.13) becomes diagonal and the two j components uncouple.
In the limit, the upper and lower-diagonal components be-
come proportional to J,(¢ ), and belong to the D [* and D |~
representations.

We have assembled in the last subsections the tools for
the calculation of the matrix elements of SL(2, R ) in point (i)
of our program. In the next two sections we shall implement
point (ii) for the discrete and continuous UIRs.

E. Notation
A word about notation: we shall use the eigenbases of
Ji,a=0,1,2, +, —, generating the discrete UIRs D' .

We denote their eigenfunctions by “® 4 (r), A being a function
of the eigenvalue. When J , is in the elliptic orbit (@ = 0) the
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eigenvalue set of J is discrete and we shall denote its eigen-
values A by m. The range will be understood by the context.
When J 7, is in the hyperbolic orbit (¢ = 1, 2) or in the para-
bolic orbit (¢ = +, — ), its eigenvalue set is continuous. In
the first case A will be denoted by u€eR, the eigenvalue under
J7, being . In the second case A will be called peR *, the
eigenvalues of J7_ being p’/2. Eigenbases for the D ,~ UIRs
will not be needed separately. In the continuous series C
the eigenbases of J !, will be similarly denoted by “¥¢*(r),
these are two-component functions with elements “¥ ¢,
j=1, — 1. We use m again for 4, the eigenvalue under J .
The multiplicity of the eigenvalues of the generators in the
hyperbolic and parabolic orbits is now doubled, however.
For the former we use for A the pair («, ), « = + 1, ueR,
and for the latter (sgn p, |p|} = p, peR, the eigenvalues being
again u and p°/2 under the respective J ’s.

The representations D(g) constructed in (2.2) have their
matrix elements

“PDl;i @) =P, CPPL) =D} 7]
(2.18a)
D5k (g) = ("WE, C5* AWt = [*D 5k, (g7 )],
(2.18b)
in the appropriate inner product. When ¢ = 8 we write “D
for **D . The cases @ # /5 and ¢ = 3 in (2.18) will be called
mixed-basis and subgroup-reduced UIR matrix elements.
We shall work mostly with the D . UIRs and use (2.18a). In
Sec. 3D, when we express the D, UIRs in terms of the D
ones, we shall write "D *‘~'and ~D*'*) to distinguish be-
tween them.

3. THE DISCRETE SERIES D2

In this section we present the evaluation of the matrix
elements (or integral kernels) of finite SL(2, R ) transforma-
tions for the UIRs belonging to the discrete series D ;. The
first subsection gives the E(1), SO(1, 1), and SO(2) subgroup-
adapted eigenfunctions, while the second and third subsec-
tions provide the explicit evaluation of D/ mixed-basis and
subgroup-reduced cases respectively. The last subsection re-
lates these results to those of the D [~ representations.

A. The subgroup-adapted eigenfunctions

. E(1)CSL (2, R). The two operators generating conjugate

E(1) subgroups [c.f. Egs. (2.10d) and (2.10e)] are, as given by

(2.8a),and (2.8b),J 7. andJ” . They are unitarily equivalent

through the Hankel transform (2.11b).

The eigenfunctions of J7, in .Z*R ™) are, for

y=@2k—17? -}

+¢/,;(r) = emk(pr)l/ZJZkf 1 (P"), PER +’ k= %’ l) %’ Mt
(3.1)

with eigenvaluep?/2€R *. The phase has been chosen so that

the phase of the ~ @ ;j functions, below, be as simple as

possible.

A more convenient operator in the E(1) orbitis J7_, as
its eigenfunctions are simply

“P,N=8p—r=[Ck TP, reR*, (3.2a)
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with eigenvalue p?/2. These are Dirac-orthonormal and
complete:

(_¢p’ _¢p') = 5(/7 _Pl)!
JW dp~ @, (r)* ~D,(r)=6(r—r),

and independent of k.

(3.2b)

ii. SO (1, 1)CSL (2, R). Here again we have two operators
generating conjugate SO(1, 1) subgroups [c.f. Egs. (2.10a)
and (2.10b) and (2.11a)): J} and J 1, as given by (2.5a) and
(2.5b). The latter is the simpler one, and its eigenfunctions
are

2¢#(r)=7r*l/2r71/2+2iy’ /JER,

with eigenvalue . They are Dirac-orthonormal and
complete:

(0, 0, =0k~ | du?d,0170,(r) =8 = 1)

o (3.3b)
and independent of k. The expansion in terms of them is—up
to a factor—the positive Mellin transformation,*” so an ap-
propriate phase choice has been made.

The J 7 Dirac-normalized eigenfunctions may be found
from (3.3a) and (2.11a) to be

'@ k() = [Cs 2, ](r)
= Cﬁem/z"_ I/ZMi,u,k e ir')

— CZer_ I/Zeif‘/Z lFl[

(3.3a)

k—iu
2k
Ch =em™ kg™ V2™ 2 (k 4 ju)/T" (2k ). (3.4b)
and where M_(-) is one of the Whittaker functions.*® They
correspond to eigenvalue u under J {, and are Dirac-orthon-
ormal and complete as in (3.3b).
ii1.50 (2)CSL (2,R ). Thecompact SO(2) subgroupis generat-
ed by J} as given in Eq. (2.6¢). Its normalized eigenfunctions
are given by
0Dk (F) = [2n1/(2k + n — 1)1] "2 = V2= r/2L 2k—1)p2)
= [22k 4+ n — )/n2k — 121 2M (P
= [202k + n — 1)/n!)"2[(2k — 1)1] 7' P* V22

D — irz], (3.4a)

m=k+nn=012,.. (3.5a)

with eigenvalue m =k, k + 1, .. The phase of these func-
tions has been chosen following Bargmann’s convention,*®
namely, such that the raising and lowering operators

J1 + iJ ] havereal, positive, matrix elements. They are orth-
onormal and complete (dense) in %R *):

CPL,OPE) =8, S CPE(ODE () = — 1)
m=k
(3.5b)

B. The mixed-basis matrix elements

i.E(1)CSL (2,R)DS0 (2).ForallgeSL(2,R jwemayperform
the Iwasawa decomposition
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_(a b)_(ﬁ 0 )(0056/2 —-sint9/2)
8=\cd/T\c 72/ \sin62 cos2
(3.6a)
where
e’ =(a—ib)/la+ib), G=(a*+b?"?% ac=ac+bd.
(3.6b)

Application of C; decomposed as above, multiplies the J J
eigenfunction by e, followed subsequently by a multiplier
Lie transformation, Eq. (2.5d}. Thus

[CL o %, )(r) = [(a — ib)/la + ib)]™(a® + b7)~'/*
xexplir*{ac 4+ bd 1/2[a* + b*])
@k (r/[a* + 52", (3.7)

Since the J7_ eigenfunctions are simple Dirac deltas, we
immediately obtain

it )-(ene( e
=[C"(3 d)0¢ﬁ'](p’=+'ol):"'(fa —db)
= O‘_Df"”(jc ~ab)]*

___(a—ib)’"[21"‘(/’<—f—m)]‘/2(a2
a+ib (m—k)
1d—ic
X 2k~1/2ex( P )
P p b

(m — k) p ]
><iF‘[2k @+ b2 B

+b3~
(k)

The overlap coefficient between the E(1)_ and SO(2),
subgroup chains is obtained by settingg = 1,i.e.,a = 1 = d,
b =0=cinEq. (3.8). This is °®* ( p), i.e., this change of
basis is basically the Laguerre series expansion of functions
of peR .

ii. SO (1, 1)CSL (2, R)DSO (2). This mixed basis element is
essentially the Mellin transform of Eq. (3.8), and is given by*°

b
20Dk a )
’“"(c d

b

— 2¢ Ck a 0(pk

( ® (cg) '") /2
. 27V —¢) 27YHp—d)
=D, (2~'/2(a+c) 2‘”2(b+d))
I'k+m) ]1/2 'k —iu)
2m(m — k) I (2k)
X(@a+ib)~™a—ib)y"—*+md—

—(m—k)k—iu 2
x 2F‘[ 2k "la—ib)d— ic)]
=(— 1" —*2" ¥ 2q(m — kW (k + m)] "2 (m — i)

=2k~i,u

ic) Kkt

Xla+ib)~™a—ib)yHd —ic)~"+™"
—(m—k),l—k—m.r ) .
2F.[ L= m+ i ,i(a—-lb)(d—lC)].

(3.9)

In all power-function factors, the principal branch of this
function is to be taken in an obvious way. The hypergeome-
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tric function is a polynomial of degree m — k = nsono mul-
tivaluation problems occur on its account.

The overlap coefficient between these two chains in the
discrete series is obtained by setting g = 1. Using an identity
for the hypergeometric function®’ we find

( ;1’0¢k) 20D,ﬁm(l)
=(__ 1)m7k2k—riy r(m—llu')
[2m(m — kWM (k + m)]'/?
—m—k),k+i
X zF[[ m = k) K+ —1}. (3.10a)
l—m+iu
Correspondingly
(I¢A ()¢k)
us
20D/Ijm<2_”2( : ;))zermn/2(2¢l”0¢l\)

(3.10b)
which may be compared with prior results.>?

iii. E (1)CSL (2,R ) 2SO0 (1,1). Theapplication of C; to’®, in
Eq. (3.3a} is up to a factor the Mellin transform of the &-
canonical transform kernel (2.5b) with respect to the second
argument . Although integrals of this type appear in the
standard tables,*® if we want to have expressions valid for all
group parameters, positive as well as negative, care must be
taken to choose the appropriate parameter products and ra-
tios so that the ensuing complex power function be evaluated
in a definite way: We choose here the principal sheet (with
the branch cut along the negative real axis). Following the
general method of finding the Mellin transforms of hyper-
geometric functions due to Majumdar and Basu,?® which
will be explained in some detail in the next section, we find
the value of the integral to be

—apk [0\ _(_ wfab ab
D"“(c d)-( ?,, C (c d)qu“):[c (c d) ? }( )
— ik Kt iu =112 I (k + i)
T(2k)
Xb ~*(—ia/b) =k~
Xp** = V* explidp?/2b )
X |F|[k+i’u. __1;02}.

: (3.11)
2k 2ab

The complex-power function argument — ia/b lies, for all
signs of ¢ and b on the imaginary axis.* Valuation on the
principal sheet means that the phase of — ia/bis — 7/2 for
sgnab = 1 and /2 for sgnab = — 1.

The overlap coefficient between these two chains may
be obtained as the limit g—1 in Eq. (3.11), or directly, as

(7@, 2®,)=""DE ) =7""p 2T (3.12)

which is*” 2!/? times the positive Mellin transform kernel, of
argument 2u, between a function of peR * and its transform
function of ueR.

C. The matrix elements in the subgroup bases
i.E(1)CSL (2,R ). Inthis generalized basistheintegral kernel
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is the simplest to obtain, as no integrations need be
performed:

gk [0 «fa b _~ifa b ,

Do (c d) ( ® C( d) ‘p*")_c (c d)(p”’)
=e~ b ~!( pp')!explildp® + ap'1/2b Vi \(pp'/b)
=2(2ib)—2k[r(2k)]—l(ppl}zk—l/z

X explildo® — 200" + ap1/2b) IFI[

2k —14  2ipp’ ]
4k—1" b |
(3.13)
For geE(1), the subgroup generated by J 7 [c.f. Eq. (2.10e)],
the kernel becomes diagonal. In fact, it is diagonal for the
two-parameter subgroup generated by the first-order differ-
ential operators, for which (2.13) converges weakly to

_D::p' (: a(—)l) — (sgn a)* |a] =72

X explicp®/2a)8( p' — p/lal). (3.14)
From this form it is manifest that D (1) =8(p — p'), the
unit operator in .Z’*R *), while "D " -1
=(—1*8(p — p'). The composition property is satisfied,
i.e.,, Eq. (2.2c) under f; , dp.., as under this measure the
eigenbasis is Dirac-orthonormal and complete.

The matrix elements between the J 7, eigenfunctions
can now be immediately computed:

ab a b
+D;"'(C d) = (+¢S'Ck(_c d) +¢:')

_ d —C
- Dﬁ”'(—b a )

The matrix elements (3.14) and (3.15) are manifestly unitary.
This is a direct consequence of the unitarity of the canonical
transforms.

The E(1) reduction shows in particular that the Bessel
functions in *@ ’;(r) are self-reciprocating® under the k-ra-
dial canonical transforms, i.e., the C;-transform of * &5
may be written as a multiplier function times a function of
the transformed argument:

o(.3-o:)
Lot .

= |a|~""%exp( —

(3.15)

)exp( iba='JY ) tDk|(r)

ibp*/2a)explicr’/2a) * P k(r/|al).
(3.16)

Here we have made use of the decomposition of g as a lower-
triangular matrix times M _ {b /a) [c f. Egs. (2.10d) and

1 _
on () -[armi (o

e "2~ W[ (k — ju)/T (k + iu)] *D*

— !

—imk Q2 [ 1 (k + i/ (k—iu)] 2pk

)
(-
G

(2.10e)]; the latter factor gives rise to the phase

exp( — ibp®/2a) while the former is the point transformation
as given by Eq. (2.5¢). Similar self-reciprocation formulas
hold for other subgroup-reduced matrix elements through-
out this article.

ii.S0O(1,1)CSL (2,R ). Thismatrixelement®is essentially the
Mellin transform of Eq. (3.11) with respect to the argument
p- Again, as the general method for evaluating Mellin trans-
forms of hypergeometric functions® is presented in the next
section, we simply quote here the result:

ab ab
0i(; ) = (2 (] 5)7or)

. l@—b—c+d)/2 (a+b—c—d)/2
- “"'((a-—b+c—d)/2 @+b+c+d)/2
— o~ imkouw —w Lk — )" (k + i)
27T (2k)
Xb-Zk(—_"")"k"""(—id)"‘”‘
b b
X zFl[k '”2’,]:+'” ;ﬁ : (3.17)

As in (3.11), we give this expression in terms of complex
power functions, taking care that these variables be evaluat-
ed for points along the imaginary axis, in the principal sheet
of the power functions, where the cut is chosen along the
negative real half-axis.>’ An alternative expression in terms
of the absolute values of a, b, and d may be written through

b= *(—ia/b)=*~¥(—id/b)"k+¥
= (sgnb )**exp(im [k + iu']sgnab)
Xexplidr[k — ip]sgnbd )|a| ~ <~ ¥
X |b | Mg |k, (3.18)
One can obtain from these expressions the diagonal and anti-
diagonal cases

0 ‘ ,
Dy (g _.) = (sgna)**|a| = 8 — '), (3.19)
0 1
2D1’i#'( -1 0
= e~ ™2 ~2s[ [ ( — ju)/T"{k + i) s + 1)
=exp i — mk — 2uln2 + 2arg[k — iu])du +u').  (3.20)

From (3.19) we verify that 2D*( 4 1) = ( + 1)**1, while
(3.20) is the Fourier—Hankel transform in the Mellin basis.
The representations are unitary in all cases. The direct evalu-
ation of (3.20) allows us to give alternative forms for (3.17)
through

)
%)

(3.21)

iii.SO (2)C SL (2, R ). This matrix element is the inner product of Eq. (3.7) with °® ¥ . Theresulting integral in available from the

tables.’® It is
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b ab
ODk ’(a )=<O¢k,ck( )0 k')
mm cd m cd ¢m

= 2 (m + m)[T (k + m)I" (1 — k + m)["(k + m\[(1 = k + m')] =2
X[d—a)—ib+c))" *[l@a—d)—ib+c)]" *[la+d)+ib—c)] "

9 F[~(m—k), —(m' —k) a2+b2+c2+d2+2}
1 l—m—m' @4+ b 4+ +dr—2
=(=1)""* "(m+m)Tk+ml(—k+m[k+m)(1—k+m)]'?
e mam kg —k o [ =M=k}, = (m' —k) |a|2]
X a m—mpm-—k m k F . . ]
B" "B ) l—m—m BE (3.22)
. . ;
In the last expression we have given the SL(2, R ) representa- , a=2 +, —
tion matrix elements in terms of the complex SU(1, 1) param- O = [ —1, a=0,1 ’

eters of Bargmann through (A3). The hypergeometric func-
tion appearing above is actually a polynomial of degree
min(m — k, m’ — k). One also checks easily that

°D*( + 1) = ( 4 1)**1 and that the representation matrix is
unitary.

The expression (3.22) for the UIR matrix elements gives
the value of the group unit at the point at infinity of the
hypergeometric function. We can bring®® (3.22) to coincide
with the form given by Bargmann,* which values the group
unit at the zero of the hypergeometric function, taking care
to distinguish the cases m>m’ from m<m’.

D. The O, representations

The discrete representation series D -~ is obtained from

the D series through the group automorphism (2.12¢), i.e.,
D*(~)g) = D*(+)(g"). The basis functions “® % (7) are now to
be taken as eigenfunctions of the algebra generators 6,J %,
whered, = — 1fora=0,1, +, — andG, = lfora =2,
with eigenvalue &, times the eigenvalue of the J !, represen-
tation generator. In addition, for the SO(2) subgroup chain, if
we are to follow Bargmann’s phase convention*® of having
the raising and lowering operators represented by matrices
with positive elements, (2.12b) implies that the phase of the
basis functions °® ¥ () must be multiplied by a sign factor
77" = ( — 1)™ ~ ¥ [recall (3.5b)). For convenience we set 7-

= 1 for all other @ #0. We can then write all D . mixed-
basis and subgroup-reduced matrix elements in terms of the
D I expressions given above in this section as

b . a — b
aspki-if? YY) _ a Bpki+)
D,u' (c d) Tﬁfg Da“,{,aﬂ,a (—c d >,
(3.23a)

|

(¥, W) =8p=p) [ dp ¥, 00, 0= 8,80 )

A [ 1, a = 1’ 2; + y
Tag = .
(— 1, a=0
4. THE CONTINUOUS SERIES C;,

In this section we follow the same general strategy in
finding the unitary irreducible matrix elements (or integral
kernels) corresponding to the continuous series C'; . The dif-
ference is that here we use the hyperbolic canonical trans-
forms of Sec. 2C, rather than the radial ones employed
above. The function space has now two components, the in-
ner product is given by Eq. (2.14), the group action by (2.15),
and the subgroup generators by Egs. (2.16). The noncompact
subgroup generators J _ and J, of E(1)_ and SO(1, 1), are
just as simple as those in the last section—although their
spectra are doubly degenerate. The eigenfunctions of J, and
J are in general less simple: linear combinations of the first
and second solutions of the confluent hypergeometric differ-
ential equation. Although the J, eigenfunctions sum up to a
Whittaker function,®' the J, eigenfunctions do not.

(3.23b)

A. The subgroup-adapted eigenfunctions
1. E(1)CSL (2, R ). The simplest operator in the parabolic or-

bit, as for its discrete counterpart, is J _, given by (2.16c). Its
generalized eigenfunctions are

(o0, )

Qﬂpﬂ—ﬁ)z(? é)owVL p <0,

(4.1a)

with eigenvalue (sgn p) p>/2. The spectrum of J _ in the con-
tinuous series UIRs thus ranges over R, rather than over R *
as in the discrete ones. In (4.1a) a definite choice of phase has
been made. The set of functions (4.1aj is Dirac-orthonormal
and complete in .#% (R *):

p>0
Y, (=

(4.1b)

From Egs. (4.1a) and the hyperbolic inverse Fourier canonical transform [Eqs. (2.15) for F~' as given in (2.11b}] we find

the J¥, generalized eigenfunctions to be

vz ( H{ (—pr 2m) V2 e ™ T4 Wy gn 1 (2ipr) + p €™ Wi i _ 1 ( — 2ipr
+\I’;k(r) _lpn) (Hd:,l( pr) )= (( ) ol [ o2k —1(2ipr) +p o2k —1( p )])’ 050, (4.2a)
27 Zal—pn) (2/7)" P8 (K ) Wou — {207}
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+\I,Ek( ) (|plr)1/2(ffll

where the H 5} ({ ) are given in (2.15d)~(2.15¢). We have ex-
pressed the Hankel and Macdonald functions in terms of
Whittaker functions®' of argument phase 0 and + 7/2. As
in (4.1a), (4.2) correspond to the eigenvalue (sgn p) p*/2€R.
Recall that for the continuous nonexceptional series

2k — 1 = 2is, s3>0 for € = 0 and 5 > O for € = }, while for the
exceptional interval e = 0, 2k — 1 =20, 0<o <.
ii.SO(1,1)CSL (2,R ). Thesimplest operatorin the hyperbol-
ic orbit is J,, as given by (2.16b). Notice that the signs of the
entries are the same. The spectrum of J, covers R once in
Z£*R *), while that of J, does so twice in % (R *). The
normalized eigenfunctions Z\IIW (r) thus require an extra di-
chotomic index k = + 1, and are

1 )
W, ()= (27)“‘/2(K)r‘ V2+2u = 4 1, ueR,
(4.3a)

belonging to the eigenvalue g under J,. The dichotomic in-
dex « has been introduced by Mukunda and Radhakrish-
nan''; it can be seen as the eigenvalue of 2\1’”‘ {r) under a
transformation in .}, (R *) given by A4: f;(r)—f _ ;(r), which
may be represented® as

a=(1 o)

The statement of Dirac orthonormality and completeness is
(W, W, ) =80l —u),

f dlu' K;u(r)* 2 PATR (r) - a(r - r,)‘
A (4.3b)

The eigenfunctions "Wk () of J7 [Eq. (2.16a)], on the
other hand, using (2.11a) are given by®
IWE ok I(r)
= [C&* ¥, , | = (— 1)2m) /2% * g (k)
X [e I+ 20, G i) + G LA}
+ kelmk+ w2 {Gk ,(r ey "‘(r)}] (4.4a)

b
1)
amN\e d

pr 01
l(pr)_p‘<1 0) Wi (r), p<O,

(4.2b)

[
GL (N =T(1—=2k)(k + iu)r**— e/
X Fylk — iu; 2k; — ijr).
They are obtained from Eqs. (4.17)-(4.18), below.
iii. SO (2)CSL (2, R ). For the continuous series C ¢ of UIRs
belonging to the nonexceptional or exceptional series, the

eigenfunctions of the compact generator
J? are given by

(4.4b)

k
()‘I’ek( )_ ge( )

1/2

((— l)m“[ZF(k—m)F(l—k—m)]'”Wm.k_m(rz))
2Ck+mC(1~k+m))'"?W_, . nA )
(4.52)

These eigenfunctions belong to the eigenvalue m under J3.
We have chosen the phase in accordance with Bargmann’s
convention,* i.e., such that the raising and lowering opera-
tors have positive matrix elements. They are orthonormal
and complete in .¥3, (R *):

(wal\ O‘Pek) — mm”

3 W s

meZ

(r') =86, ,6(r—7). (4.5b)

B. The mixed-basis matrix elements

i.E(1)CSL (2,R )D S0 (2). Application of Cg* decomposed as
in (3.6) gives

Cek Oypek ] =(a—ib)'" 2 2—1/4
[Ce* owek(n) Tt ib (@ +6%)

X ex (yrz[ac +bd ] )
2[a®> +b?]
XOW ek (r/[a* + b2]"3). (4.6)
This formula displays the Whittaker functions (4.5a) as self-
reciprocating under the corresponding hyperbolic canonical
transforms.® Since the J _ eigenfunctions are simple Dirac
deltas, we obtain®®

0o )= (oo o] = (5, )

=(—sgnp)'"‘f(a_ib)m g(k) ex (pZ[a—ibsgnp][d—icsgnp])
a+ib/ wlpl'? 2(a*+b?
k —
AERNETSEY
rit—k—m, a*+b?
k—mp p2
X lFl[ 2%k ;m”-i-{k«—»l—k}],
m, = m sgnp. (4.7)
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The overlap coefficient between the E(1)_ and SO(2), sub-
group chains is easily found from (4.7) for g =1 and is

' f,;’fsw(| pl). This change of basis thus represents basically
the Whittaker series expansion (me Z ) of a function of peR.

ii.S0(1,1)CSL (2,R )OS0 (2). Theevaluation of this mixed-
basis matrix element will be given in some detail because the
method presented here has been used to obtain all the matrix
elements carrying SO(1, 1) reductions, both in the continu-
ous and in the discrete series in the last section, where its
discussion was postponed. The method>? essentially consists
of a Taylor expansion of [Cf “W&*](r) followed by a Mellin—
Barnes transformation.

The Taylor expansion of the Gaussian and ,F, func-
tions appearing in (4.7) [for | p|—>r and sgn p—/] yields, after
an exchange of summations which allows us to recognize one
of them as a ,F| series,

[C w5 1;(r)
— 7 m ek
= (= (22Y" S ar s — =
X [X% + X i1 (4.8)
where

. q 1/2 — jm r 172
(477G
* t al

& (_l)nr(l'—Zk—n)(_quz)k—l/2+n
xnz’o nlr(l—k—jm—n)

(4.9a)

k—jm, 1 —k —j ;
T

l—k—jm—n ~’

and where we are using the abbreviations from (3.6b) for @
and ¢, and

g, = —(1—i@aeya, t—1/a j=+1. (49b)

The terms in the sum over n are now recognized as the resi-
dues,atz=z,= —k—n, —1+k—n,(n=0,1,2,..)of
the following meromorphic function:

20pek (@ b) (2 ek (a b) o\l,e.k>

— l,OD €k (2_1/2(0 - C)
Kopm 2—1/2(0 + C)

2—1/2(b_d))
27"%b +d)

dle= (= L) (L) =gy

1al

t
o Tlk+ar (1 —k+2)
r(1+z—jm)
k—jm 1 ~k—j .
szl[ jlm _ Jm;1+q_f}.
+z—jm t

(4.10)

Since for fixed &, I" (¢}~ ,F\(a, b; ¢; £ ) is an entire function of
the parameters, y /(z) is a meromorphic function falling to
zero rapidly as |z|-— oo in the region Re z < 0. The singulari-
ties of y/(z) are simple poles arising from the Gamma func-
tions in the factor I'" (k + 2)I" (1 — k + 2) and are located at
the pointsz =z,,.

For the nonexceptional UIRs, k — 1 is pure imaginary
and the poles lie symmetrically with respect to the real axis.
For the exceptional UIRs  is real, but no two pole points z,,
are coincident.

If we now choose a closed contour ¢ consisting of the
infinite semicircle .% on the left, and the imaginary axis, we
obtain

1 o
L§ dexia= $ Resiyill..

n=0
+ > Resly(a)]. _ 1 kn- (411)
n=20
The first and second terms on the right-hand side, by our
previous analysis, are respectively equal to X/, and X*
and hence the integral in {4.11) vanishes on ., as can be
easily verified. We obtain

f'k+Xf;_k=LJ Ay —id)
2 J_ »

This expression, replaced in (4.8), represents the solution of
the problem of finding the integral of W, , (r) with it, since
the latter integral is essentially the Mellin transform of (4.8),
integrated over r for the value — u; we note that (4.12) is
expressed as an inverse Mellin transform of the coefficient
(function of A ) of the » ~ /2 + 2 factor in (4.10). The value of
this coefficient forz = — u and summed over the twoj com-
ponents will be the inner product of Z\Ilw with (4.8). We thus
obtain®’

(4.12)

=g (k)T (k — )l (1 — k — ju)la +ib) ="~ *{a — ib)" "

X ¥

_j)m.feKU—])/Z [F(k _—jm)r(l_k'jm)]l/z
T —iu—jm)

j=z1
k—iu, 1 —k—j .
sz.[ ol TE T e — b ) — uc)]. (4.13)
1—iu—jm
The overlap coefficient between these two chains®® in the continuous series is obtained by setting g = 1:
, e Dk —jmC (1 —k —jm)]'?

2, WK =g (k)2 (k — )M (1 — k — e L — =
(W, W) =g (k) (k — i) ﬂ)j:%I( J T =i —jm)

k—iu, 1 —k—4§

><2F1[ o P T, 5]‘ (4.14)
1 —ip—jm
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iii. E(1)CSL (2, R)DS0(1, 1). As in all cases involving E(1), the calculation here consists in applying C¢* on *¥, ,, that is,

performing the integral in

[ *¥.. L= %

J==x1

“ar [CE L (r 7) 20 (7),

(4.15)

of the kernel [C5*];;(r, 7 ) with the Mellin basis function. We resort to the expansion of the hyperbolic canonical transform
kernel in Taylor series and to the Mellin—Barnes contour deformation presented above. We obtain

[C* "W, LN =45k, () + KBk 07, (4.16)
where
a b\ek 3 —a b\sk _(sgnb)z‘ k) —ia\-12- (idrz)
A(c d)x’#_.(’)_"""‘ (c —d),w'_l TRy ( 2 ) AT
[ [F(l—Zk)F(k+z )( ir? )k”ﬂ F[k—H”- — i }+{k<—>1—k}] (4.17)
. #\2ab Fil 2k P Toan ’ '
a b\er —a b _ (sgnb)g.lk) (i \-12-w 1 /2gyp( 247
B(c d)w,,(’) _"”‘B( ¢ —d)x,, =T (Zb) XP( 2 )
[[r(l—zk)r(k+zp)( ’:)k_m,z«“,[k“", — k}]

{Sgnb )25 * lge(k ) ia\—# _ 1/2
=———p— 5] e\ —
(27r) 2b 4a

which come, respectively, from the Mellin transforms of the
on- and off-diagonal integral kernel elements. We remind
the reader again that the complex power functions are to be
evaluated inthe principal sheet.

Since the E(1) _ basis has simple Dirac deltas, we imme-
diately obtain®

—apek [0 _ i fab
ZD”":“(C d) =( W”'C'k(c d) 21"‘"‘)
a b)f»k (a b)ﬂk
=A
o qan+s(®?

K,11,88Np [ATRY T

(| o).

(4.19)
The overlap coefficient between these two chains may
be obtained upon letting g—1, or directly as

(_\I’p 4 Z‘I’K,;A ) = zwx,y,sgnp(l p|)
C. The matrix elements in the subgroup bases

i. E(1)CSL (2, R). The integral kernel representations of
SL(2, R ) in this chain are given by the hyperbolic canonical
transform integral kernel, which we may rewrite in terms of
the confluent hypergeometric function as follows:

ab ab
——Dsk ( €,k — )
(¢ a) = (o) e
b
e )
¢ A/ sgnpsgnp

= (sgnb Jp. ! =¥V (r|b |) g, (k)

(4.20)

(el oD

111/2

X | pp'|'*explildjp® — 2npp’ + ap*1/2b)

><“1“(1—
2%k—1/2, 2t;op'”
x 'F‘[ -1’ "pp

+{k<—>1—k]],

(4.21)
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[ad + bc])r(k bl (L —k+ i)W _ 1o — iP/2ab),

(4.18)

r
wheren = 1forsgnp = sgnp’,andp = — iforsgnp#sgnp’.
In particular, for the b = 0 subgroup we have, as from Egs.
(2.15h),

e @ 0
DF::("(C a—l)

= (sgna)™ |a| ~explilsgnplcp’/2a)8lp’ — p/al).

(4.22)
In the E(2) . reduction, as in (3.17),
€, a b €, €, a b €,
+Dp-:,,(c d) = (+\rp"‘,c "‘(c d) +w,;.k)
e d —c
= Dp;’;,.( b ) (4.23)

ii.SO(1,1)CSL (2, R). These matrix elements are essentially
the Mellin transforms of (4.16)—(4.18), and can be obtained
by the same technique*? of Taylor expansion and Mellin—
Barnes contour deformation. The Taylor expansnon of, for
example, the function (4.17) yields
€k
y (a b) "
cd/

_ (—sgnb)g.(k) ( —ir’)-’”
T eP?s| 2ab

—m"ln[Yk +p. Y i)
(4.24)
with
Y, = exp(im[2k — 1][a + B 1/4)
XI(1 =2k (k + iu)|ad |~ *

(_l)n (_id’J)—l/2+k+n [—-n,k+ip.L]
x $ =1 (=k A g

(4.25)
where we denote for brevity a = sgn{ab ), B = sgn(bd ). The
terms in this series can be identified as the residues of the
meromorphic function
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vil2)
—idP\-12-z _[k+zk+iu 1
Ik i ) F [ —
et z)< 2b G BT S
(4.26)
at the simple poles at z =z, = — k — n. Through the same

argument as in (4.9)-4.12), we may express
Y, =explir[2k — 1][la+ B 1/4) (1 — 2k)

XI“(k+z',u)|ad|”2"‘?1—J- dA v, (—id). (4.27)
7T J -

As before, the function v, (z) on the integration contour in
(4.27) contains the kernel r ~ 2+ 2% 50 (4.27) is the inverse
Mellin transform of the coefficient of that term in (4.26). The
corresponding Mellin transform of B term (4.18) follows
(4.24)—(4.27) with the same meromorphic function (4.26), but
with different linear combination coefficients which origi-
nate from the corresponding coefficients in the two sum-
mands of (4.17) vs (4.18). We consequently find™

ab
e \e d

2D£,k
sfab
()

= ( — sgnb }**(27) g, (k)
X [(re +xe'p i '+ &6, +xp 0, )T,

+ P _x H KT+ KO +kp 07 0T ],
(4.28a)

T, = (1 — 2k (k — iu)T(k + iw')|a] =%~ |2 [~

k—ip k+ig 1
2% ;‘E s

7, = explidmw[ {k + ju}sgnab + {k — ju}sgnbd ]), (4.28¢)

0, =exp(idm[ — {k + iu'|sgnab + {k — ju}sgnbd ]).
(4.28d)

Whereas in the discrete series we are able to express the
2D function as a meromorphic function in b, — ia/b, and

ab ab
()D €,k , — (()‘I’E’k, €,k 0‘1’6,’,{)
mm (c d) m € (c d) ”

|d| %+ % ,F, (4.28b)

=ll@—ib)la+ib)]"a*+b637""* ¥

j= +1J0

—id /b [c f. Eq. (3.19)] the corresponding continuous series
functions do not have this property, and must be written in
terms of powers of |a|, |6 |, and |d |, with phase factors (4.28¢)
and (4.28d). This stems from the corresponding lack of mero-
morphicity of the hyperbolic canonical transform kernel
{2.15d) and (2.15¢), where the two Hankel functions are to be
evaluated in the upper and lower half-planes, vis-a-vis the
radial canonical transform kernel (2.5b), which is meromor-
phic in the group parameters. It has been pointed out be-
fore*! that the continuous series UIRs cannot be subject to
analytic continuation to a unitarizable representation of a
subsemigroup of SL(2, C), such as may be done for the dis-
crete series. '’

Finally, it is easy to verify that our result is consistent
with the expected behavior near the identity, namely

2n ek a 0 € - 24 ’
Dy o) = lsenala] 6B =
(4.29)

which acts as a reproducing kernel when we sum over x and
integrate over u as in (4.3b). The Fourier transform case is

w 0 1
ZD K{‘,u;x',u'( _ 1 O)

—p 8elin) + kg (k) 52 Lk —in)
“sin{mlk + iu]) I (k + iu)

6K.p‘k" 5(/1’ + #')’
(4.30)

Remarks similar to those made on Eq. (4.28) apply here.

1. SO (2)C SL (2, R ). This matrix element should be obtained
in the same way as the discrete series case given in Eq.
(3.25a), with the basis functions which are now *W<(r) as
given in (4.5a) [instead of the simpler ones *@ % (r} in (3.52}],
and the inner product which is now the .£’3; (R *) given in
(2.14) [in place of the .¥"*(R *) inner product (2.4]]. The ap-
plication of the hyperbolic canonical transform C¢* to
“Wek(r) is the exact analog of (3.6)—(3.7), namely, these func-
tions are self-reciprocating®® under Cg*. We can thus write

dr Wk (r)*

Xexplir[ac + bd 1/2[a* + b2]) W sk (r/[a* + 571"

(= 22" (m") "' [T (k+mI(1 —k+m)/T(k+m)(1=k+m)]'"? A
Xla+d)+ib—c] """ "lla—d)+ib+e)]™ ™
X Fk—m',1—k—m';14+m—m’; —a>+b>++d?—-2]),

m>m'

—

(4.31)

=(— 1" 722" m) "' [L(k +m)\C(1 —k+m')/T(k+m(1 —k+m)]"?
Xla+d)+ib—c)]~ " "lla—d)—ib+c)]™ "
L XoFik—m l—k—ml4+m —m; —i[a+b2+c+d>=2]), m<m' }

The right-hand term has been taken from Bargmann’s work,”" rewriting his phases and normalization constants, and using
(A3) for the parameters. We have not been able to solve the integral in (4.31) directly: When we replace Op<k(r) from (4.5a), we
are confronted with a solution of a sum of two integrals whose integrands are each a product of two Whittaker functions, one
of them with a rescaled argument, times an oscillating Gaussian function. This type of integral does not appear in the standard
tables nor, apparently, does it yield easily to reduction to simpler forms. Bargmann’s method of evaluation®® of (4.31) does not
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make use of any explicit form of the basis functions W&". Instead, the function °D &%, (g) is shown to factorize into two
exponentials of the first and third Euler angles, and the Bargmann-d function of the second Euler angle. The latter is subject to
the differential relation stemming from (2.9) with J,, expressed as operators on the group manifold. The condition °D &, .(1)

=4, provides the normalization and boundary conditions. This line of reasoning applies to any operator realization of the
group belonging to that representation and subgroup reduction. The result provided by Bargmann’' thus evaluates (4.31) and
gives the solution for the integral. We can set b =0, a > 0, and #* = x in thus writing’>

i==x1
I'(+is+ m)

' +is+n) fa+a”

r=(g:(rk))22n_2:

I'} +is+n)

Thtistm@Te

N (g:(rk ) )2 2:1_""

where € = 0(}) for m, n integer (odd-half-integer), g ( (s)) is
given by (2.15f) and (2.15g) and the range of s is, as above,
s>0ands= —io,0<o<}ifore=0.

D. The limits of continuous to discrete representations

i.C/*— D,,2 + D ;,. At the end of Sec. 2C we noted that

the contmuous series integral kernel [C}/>*],; (r, ¥'), for

k =} + is, s—0™, uncoupled in the sense of having its off-
diagonal (j#/') terms vanish. The hyperbolic canonical
transform kernel becomes the direct sum of the D ;, radial
canonical transform for the j = 1 component, and the D ;,
one for the j = — 1 component. In terms of the E(1) repre-
sentation integral kernels,

~D|/melg), (4.33)

— 172,172 + s
D, (g)x__’g* -

as can be verified using (4.21) for the C;”? representation,
(2.5b) for the D ;},, and (3.23) for the D ;,, representations.
The SO(2) CSL(2, R ) UIR matrices found by Bargmann fol-
low (4.33) (replacing p, p' by m, m’, and — by 0). Indeed,
after (4.7) we remarked that the E(1) CSL(2, R ) DSO(2) over-
lap coefficient in the continuous seriesis *¥ &% (| p|). From
its functional form (4.5a) we can see that

O 2124y = V20 L2 (4.34a)
e

Owjl'ﬁ2‘152+¢s(r) — 0, m=}+n n=0,1,2,...(434b)
5—0~

The continuous series UIR in the SO(2) basis thus also
separates in block-diagonal form into the D [}, and D [,
representations:

D [7eig) (4.35)

sgnm,sgnm

OD '1"/3',1’1/2 + iS(g) — 6
s—0"
The SO(1,1) subgroup-reduced integral kernels do sepa-
rate, although not in block-diagonal form as in the former
cases. The E(1)CSL(2, R )D8S0(1,1) overlap coefficient in the

continuous series {4.20) for g = 1 are, in terms of those of the
discrete series (3.14),
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—ic)™""

| X Fh+is—ny—is—ml+m—n —ia+a *+"=2])

ic)~" " Ma —

L X F(+is—mi—is—ml—m+n —i[a*+a"?+*-2))

> IF+is—jmI{+is —jn)lj dx x~'explicx/2a)W,,, (X)W, .. (x/a®)
0

n(a _a—l +ic)m——n

man (4.32)

a—l +l-c)—m+n

m<n

r
(_\l’ ’ zwx,u) = zwk,y,sgnp(l pl)

_ [2—1/2(—<p|p| V2P,),  p>0 4.36)
K2—-l/2(—¢|p|’2¢”), P<0, .
and hence we obtain a sum of the D %, and D |,
representations:
2D ’1‘/[2‘ xl/fz+ lS(g) s_—’oi _;_ 2 ] (KK’)“ —T7/2 2D ,tlt,/ﬂﬂ(g) (437)
T=

From this and the remark following (4.18) on the bilateral
Mellin transform, it may appear more convenient to use J,
eigenfunctions whose dichotomic index label functions with
upper or lower components only, instead of those used in
(4.3a). This may be a useful alternative in some contexts,
such as matching the two components of the bilateral Mellin
transform kernel.*” In some other cases, as in the study of an
{uncoupled) hyperbolic Fourier transform class,” still an-
other linear combination of the two ~W, rows proves to be
useful, as it diagonalizes the 2 X 2 kernel matrix.

ii. CO — D[ + D . Wealso remarked at the end of Sec.
—+0

q
2D that the exceptional continuous series integral kernel
[Co),; (7, P) for k =} + &, 0—(})~ also uncoupled into the

D" and D [ radial canonical transform kernels:
-0, 1/2 + g
D e * (g)a—;ljz)‘ 5ssn psgnp Il(fflgtll:)l (8)- (4.38)

The significance of this limit is the same as for (4.33), and
equations parallel to (4.34)—(4.37) follow for all other overlap
coefficients and subgroup reductions. In particular,
OW!12* °(r) vanishes as 0—{})~

5. SL (2, A7) TRANSFORMS AND SERIES

In Sec. 2 we introduced the SL(2, R ) group of unitary k-
canonical integral transforms for all UIR series of this
group. The ensuing developments in Secs. 3 and 4 have de-
tailed three families of bases for these spaces, associated with
the E(1), SO(1, 1), and SO(2) families of subgroup reductions,
and have given their overlap coefficients. These define as
many families of integral transforms and series expansions.
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A. The discrete series

i.E(1)CSL(2,R)DE (1).Forthediscreteseries, we can write
in terms of the .¥"%(R *) inner product and E(1) basis func-
tions (3.2)

(TP, f)=f(r, reR™. (5.1a)
The k-radial canonical transform may be thus implemented
as a change of coordinates

Fir = £l = [C £l =~ @,, C- 1)

= (G5, /)= f “dr-p,@f1r) (5.10)

from the Dirac-orthonormal E(1) eigenbasis { “®,},.z - toa
similar family of bases {Cs + ~ @, } .z - of generalized eigen-
functions of C£ .. J_C}, for every fixed geSL(2, R ). The UIR
matrix elements are the radial canonical transform kernels,
as has been noted before. The transform inverse to (5.1b) has
akernel “D* (g7')= [D%,(g)]* The unitarity of the
transform implies the Parseval identity (£, /)

= (f;» ). In particular, it contains the Hankel transform
of g = F [Eq. (2.11b}}.

ii. E(1)CSL (2,R)DS0 (1, 1). In the point of view we are de-
veloping in this section, the coordinates of fin the SO(1,1),
eigenbasis {°®, } ., are

flw) =(,.f)
=£ @, @, ,./)

- fw dr m—V/3p—172- Zi,ttf(r)
(¢]

=2'2f (2u), (5.2a)
where f* is the positive Mellin transform*’ of /. The family
of SL(2, R )-similar Dirac bases {C}- *®, } .. defines a cor-
responding SL(2, R )-parametrized family of integral trans-
forms between .#%(R *)and .¥}R),

(M k 2 k
[y — fow) =(P,, G f)
~ (€0, f)= " dr* DL s,
0
(5.2b)

whose kernel (3.11) contains in general a confluent hyper-
geometric function, with ¢ in one index and 7 in the argu-
ment. In particular, it contains the positive Mellin transform
(5.2a) for g = 1. The transform inverse to (5.2b) has a kernel
—2D% (g7 ") = [*"D},(g)]* and the integration is per-
formed over z€R. An obvious Parseval identity holds be-
tween (f, & ) and f ( u)*h ¥( 12) integrated over p.
ii. E(1)CSL (2, R )OS0 (2). The coordinates of fin the
SO(2)CSL(2, R )-similar eigenbases {Ck-. °@ % | = _ , define
a mapping between .¥’}(R *) and /%, (lower-bound square-
summable sequences):
(L.
fh=fim = (@8 Cf)
=G @k, )= | dr® Dk @)
(¢}
(5.3)
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which contains, essentially, the normalized Laguerre series
analysis [in L 2% =,(#?)] of f (r) for g = 1. The series synthesis
is provided by the functions ~°D%, (g~ ")= [>"D% ,(g)]*
and a corresponding Parseval identity holds.

iv.S0O (1, 1)CSL (2, R )D SO0 (2). We may also use the overlap
coefficients between the SO(1, 1) and SO(2) bases to define
the expansion of an .#"*(R ) function f ( 4)inaseries of hyper-
geometric functions of argument 4, as given by (3.10a), or its
generalization for any fixed argument as given by (3.9),
through the analysis

N (H g 24

Flu) = 7%, f du D%, (@ () (5.4)

and the corresponding synthesis with [*2D
appropriate Parseval identity.

v.SO (1, 1)CSL (2,R)DS0O(1, 1). The SO(1, 1) subgroup de-
composition of the discrete UIR series provides an SL(2, R )-
parametrized family of unitary integral transforms between
73R ) and itself,

n (Fl.g , ® ~
Fla) = () = f du' *D* (@ ('), (5.5)

with a kernel involving hypergeometric functions of fixed
argument, as given by (3.17). This is basically the Mellin
transform of the k-radial canonical transform family (5.1).
vi. SO (2)CSL (2, R )2S50(2). The SO(2) subgroup decom-
position, finally, provides an SL(2, R )-parametrized family
of mappings of discrete unitary transforms between /%, and
{2, which repesents the well-known action of the group—
for a fixed element g and k—on the space of sequences
(ol

The SL(2, R ) D/ UIR matrix elements of the discrete
series thus provide six different SL(2, R }-parametrized fam-
ilies of integral or discrete transforms, or series expansions
between .Y*(R *), LR ),and!?,_, of which the k-canonical
radial transforms given in Sec. 2 are but one family.

*..(@]* withan

B. The continuous series

The same pattern of six families of transforms hold for
the continuous series of SL(2, R ) UIRs, between spaces
N f, *) [extendable to .¥"*(R ) through £ ( p) = fign, (| pI)
£ %(R ) and /2. These families include the k-hyperbolic ca-
nonical transforms given in Sec. 2, bilateral Mellin trans-
forms, Whittaker and hypergeometric series and transforms.

C. Further extensions

Since these six families of transforms have a group-
theoretical origin and parametrization, pairs of transforms
belonging to one or two families (with the same k ) may be
applied in succession, respecting the mixed-basis transitivity
properties, to give another transform of the same or of a
different family. These are transforms which are all associat-
ed with the SL(2, R ) group and its representations, so we
would like to close our account of these with some comments
on further extensions to this set, which have been published
in the literature, and to other sets as yet not fully explored.

The first extension pertains consideration of the coverg-

ing group SL(2, R) . Indeed, the oscillator (metaplectic) re-
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presentation is the two-fold covering of SL(2, R ) [four-fald
covering of SO(2, 1)] provided by D ;5, + D ;,. The case

D /', forreal k > 0, has been described in Refs. 19, 20, and 34,
but as yet it has not been as thoroughly analyzed as would be

desirable. The continuous series of SL(2, R ) have not been
treated, although partial results exist. The subject of com-
plex extensions of SL(2, R ) to a semigroup of integral trans-
forms,'”1%?8 possible for the discrete series—which includes
the bilateral Laplace, Gauss—Weierstrass (heat diffusion),
Bargmann’® and Barut-Girardello’ transforms—and the
extension of SL(2, R ) to W ASL(2, R ) (W being the Heisen-
berg~Weyl group), has not been touched upon in this work,
as it falls outside the scope of the title. Parts of it have ap-
peared in various articles by one of the authors,”® but the
description of this last extension in various subgroup—and
mixed bases is still wanting. Finally, the subject of nonsub-
group decompositions’’ in this context is still open.

ACKNOWLEDGMENTS

We would like to thank Dr. Alberto Alonso y Coria and
Dr. Antonmaria Minzoni for several useful conversations.
One of us (D. B.) gratefully acknowledges the hospitality
extended by IIMAS.

APPENDIX: THE UNITARY IRREDUCIBLE
REPRESENTATIONS OF SL(2, A)

Bargmann' classified all UIRs of SU(1, 1)
1:2
~SL(2, R )=Sp(2, R )=8S0(2, 1). We give here a summary of
the results, nomenclature, and notation followed in this
article.
We denote by SL(2, R ) the special linear group in two

dimensions over the real field, i.e., the group of 2 X2
matrices

b
g=(‘C’ d),a, b,c,deR, detg=ad —bc=1. (A1)

Due to the unimodularity condition, (A1) also satisfy go,g"
= @, g" being the transpose of g, with the symplectic met-
ric matrix

0 1
%=\_1 of

The elements of the real symplectic group Sp(2, R } are thus
also given by g as in (A 1). The “1 + 1 unimodular pseu-
dounitary group SU(1, 1), on the other hand, is the set of
unimodular 2 X 2 complex matrices u satisfying uo,u ' = o,
u' being the adjoint (transpose, complex conjugate) of u, with
the metric matrix

b 2)
oy = .
TV -1
It is easy to show that the most general form of u is
a B
u=(3‘r a*)’ a,BeC, detu= |a|>’—|B|*=1. (A2
The link between SL(2, R ) and SU(1, 1) matrices which
relates the results of this article with those of Bargmann is

given by the similarity transformation

203 J. Math. Phys., Vol. 23, No. 2, February 1982

Ca =" wh

_(Rea+Reﬂ —Ima+Imﬂ) (A3a)
"\Ime+ImB Rea—Ref /
—1 —1
w:z—”z(“’ @ ) o= e, (A3b)
—w w

Other isomorphisms found in the literature are determined
by W’s such as

2_1,2(1 —i)z_l/z(l —1)
—i 1/ —i =i/

and
1
ol )
i1

The latter yields the complex conjugate of (A3a). The 2:1
homomo rphism between SU(1, 1) and the Lorentz group
S0O(2, 1) is often exploited through parametrizing the former
in terms of Euler angles,

b o)
-, )

Our favored set of parameters are those in (A1), and in terms
of those we express the UIR matrix elements. Of particular
interest to many authors are the representations of the hy-
perbolic rotation (boost) subgroup in the middle factor of
(A4). This is given by M,( — 2£ ) in (2.10b).

Out of the matrix realization (A 1}-{A2) Bargmann'
finds the sl(2, R ) Lie algebra. Without having to realize the
algebra elements through differential operators, but only un-
der the assumption of the existence of a Hilbert space en-
dowed with a sesquilinear positive-definite inner product,
one can find the self-adjoint irreducible representations of
the algebra classified through the eigenvalues ¢ of the Casi-
mir operator (2.9), and through the usual raising- and lower-
ing-operator techniques, the SO(2) representations m con-
tained in any one SL(2, R ) UIR are found.

The following are all nonequivalent single-valued re-
presentations of SL(2, R ).

cone) (o o) 189

Discrete series g = k(1 — k) for k =, 1,3, 2, ... containing:
D" positive discrete UIRs, m=k, k+1,k+2, ...
D [ negative discrete UIRs, m = — k,—k—1—k—2,...

Continuous series

Cs the vector nonexceptional continuous UIRs
g=k(1 — k> k=1+1is5>0,

cy the (vector) exceptional continuous UIRs
O<g=k(1 —k)<hk=}+0,0<0<l,

C.? the spinor (nonexceptional) continuous UIRs
g=k(1—k)>Lk=1+i55>0.
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Values of k other than these give rise to nonunitary
and/or multivalued representations of SL(2, R ).
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I. INTRODUCTION

Ever since the advent of relativistic symmetries in parti-
cle physics, the utility of noncompact groups has been in-
creasingly felt. The spin (2,1) group was the attack of physi-
cists and mathematicians as well since it provided a
prototype building block of a hierchy of symmetries.' The
remarkable success of Auslander~Kostant work?™ on sim-
ply connected solvable Lie groups, and equally astounding
success of the work of Harish-Chandra and Schmid and oth-
ers on semisimple Lie groups,’” sufficiently warrants an in
depth study of the links between the two. In recent times, the
representation theory of some of the semisimple Lie groups
have been studied in the light of the Auslander—Kostant pro-
gram with encouraging success. In the present paper we
make a systematic study of two physically relevant noncom-
pact groups: spin(2,1) and spin(2,2). It is interesting to note
that both these groups possess discrete series representations
and provide a basis for generalization to the case of arbitrary
semisimple Lie groups. We hope to report on the latter in a
forthcoming paper.

QOur paper is arranged as follows: In Sec. II, we give a
brief resumé of (a) the Auslander—Kostant induction
scheme, (b) the theory of nondiscrete UIR’s as semisimple
Lie groups, and (c) Harish-Chandra and Schmid’s work on
discrete series representaions.

In Sec. III we compute the orbits and polarizations for
the afore said groups.

The identification of polarizations associated with non-
compact orbits with parabolic subalgebras in displayed in
Sec. IV. Further, we show that the representations obtained
for these polarizations coincide with the principal and de-
generate series representations.

In Sec. V, we construct the representations associated
with compact orbits and show their equivalence with dis-
crete series representations of Harish-Chandra and Schmid.

We shall use the following notations throughout the
paper. Lie groups will be denoted by capital Roman letters,
the corresponding Lie algebra being denoted by lower case
Roman letters. For a group G, G, will denote the set of equiv-
alence classes of UIR’s. Finally, all direct sums are to be
taken as vector space direct sums and not necessarily Lie
algebra direct sums.

Il. RESUME OF THE AUSLANDER-KOSTANT THEORY
AND THE CONVENTIONAL THEORY OF SEMISIMPLE
LIE GROUPS

A. The Auslander-Kostant theory

Let G be a semisimple Lie group with g asits Lie algebra
and let g* be the real dual of g. We use the Cartan-Killing
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isomorphism to identify g* with g. Let O, represent the orbit
of a point Xeg under the adjoint transformation

Ad X =s5Xs~", seG. (IL.1)
Let G be the isotropy group at X such that
Gy ={5eG:sXs~ ' =X} (11.2)

and let g, be the corresponding Lie algebra. An element Xeg
defines a mapping

27miX: gy—iR, Ye>2miB(X,Y)VYeg,, (IL3)

where B is the canonical Cartan—-Killing form. We call X, or
equivalently O,, quantizable if the mapping 27X is the dif-
ferential of some character,

(IL4)

A polarization at X is defined to be a Lie subalgebrasof g, =
g + g which satisfies

(i) {B,[s,s ]) = O, where Bisextended tog_ X g. by com-
plex linearity, and s is maximal with respect to (w.r.t.) this
condition,

(ii) dim¢s = }(dimg g + dimg, ),

(iii} s -+ § is a Lie subalgebra of g, where the bar indi-
cates complex conjugation,

(ivig, Cs and s is ad;_-stable:
ad, sCs V seG . s is said to be positive if iB (x,{Z,2]) >0 Vzes.
Let O, be a quantizable orbit with y being the corresponding
character and let s be a positive polarization at X. Let us
define

dS=sng e=(s+8)ng, (IL.5a)
D=D,G,, E=EG,, (IL.5b)

where D, and E, are the analytic subgroups corresponding
to 8, e respectively. We extend y form Gy to D. The Aus-
lander—Kostant induction scheme can be written as

)(:Gx—ng 1

(IL6)

where ind? denotes induction from 4 to B where ind}, is
holomorphic induction. For semisimple groups, our prob-
lems can be stated as follows:

(i) Is o a UIR of G?

(ii) Does every UIR of G arise in the above manner?

o = ind&(ind% y),

B. Nondiscrete UIR’s of semisimple Lie groups

Let g = k + p be the Cartan decomposition of g; let abe
a maximal abelian subalgebra of p. Let n be the set of root
vecotrs of a.

n = {Xeg: [4,X] = A (4 )X VAea and for some 4:a—C,

ker A #a}. (IL.7)
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Let n™, n~ be the set of positive and negative root vectors
relative to some ordering. Let m be normalizer of a in k:

m = {Mek:[M,a]Caj}. (IL.8)

then, p, = m + a + n™ is known as a minimal parabolic sub-
algebra of g. A parabolic subalgebra of g is then defined to be
any subalgebra of g containing p,. The set of all parabolic
subalgebras of g can be explicitly constructed as follows®: Let
2 be a set of roots for n and let ¥ be the set of positive simple
roots in 3. Let € be a subset of ¥. Let (6 ) denote the set of
roots in 3 which arises as linear combinations of roots in 6.
We define

0), =3.08), (8)_=3_n(8), (IL9)

where T, 2 _ denote positive and negative roots in 2. Let
n,(6),n_(0), n, denote the subspaces of n corresponding to
(0),,(0)_and {Z, —(0),].

Define
a, = {dea: 1 (4)=0VYAeb } (IL.10)

and let a(@ ) be the orthogonal complement of a, in a w.r.t.
the Cartan—Killing form. Thenp, =m, +a, + nyisa
parabolic subalgebra of g where

m,=m+n,(0)+n_(8)+ af). (IL.11)

A Cartan subalgebra h of g is said to be invariant w.r.t the
cartan decomposition if

h = (hrk) + (hp). (IL12)

A parabolic subalgebra p,, is said to be cuspidal if there exists
an invariant Cartan subalgebra h such that

a, = hrp. (IL13)

Let M,, A,, N, be the Lie groups corresponding to p, = my,
+ 84 + ngy. Py is called a parabolic subgroup. These sub-
groups define the following series of representations.

(i)p = indf (o0X7), oeEMy, r€dq, Py = M A,N,, a
cuspidal parabolic subgroup, defines the principal P, series
of representation. If P, is minimal parabolic and ¢ is the
trivial representation then p Is irreducible.

(ii) p = ind§, (X 7), 0€M,, 7:4g—C¥ = C — [0}), a
nonunitary character; Py = M,4,N, cuspidal parabolic de-
fines the complementary P, s/gries of\ representations.

(iii) p = ind§ (0 X 7), 0EMy, T€A 4, Py = MyA,N,, a
noncuspidal parabolic, defines the degenerate P, series of
representations.

C. Discrete UIR’s of semisimple Lie groups

A UIR of G is said to belong to the discrete series if it is
square integrable. Let H be a maximal compact abelian sub-
group of G.

Theorem: G has discrete series representation iff it is
also a Cartan subgroup, or equivalently, if rank G = rank K,
G = K-P being the Cartan decomposition. Let G satisfy the
condition of the above theorem and let H be a compact Car-

tan subalgebra. As usual, every yeH determines a linear map
A:h—iR through

(y-exph) = exp[4 (h)]. (I1.14)
We emphasize this relation by writing y as e*. The set of all A
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which arise in this manner defines a lattice L. Let
g=h+(® 48 )+ (®sca 8) (IL.15)

be the triangular decomposition of g w.r.t. h, where A * isthe
set of positive roots relative to some ordering. We define a
map i:L—h_, A—H; by

B(H,,H)=A(H)VHeh,. (I1.16)
This induces a scalar product in L by
(A,A) =B(H, ,H,). (I1.17)

Letw(d )= [] (4.@)and L' = {AeL: w4 )#0}.

LetD = G /H. D has a complex structure inherited from G,
/B, where B is a Borel (i.e., maximally solvable) subgroup of
G,. Then

H—>G—D (IL.18)

defines a principal bundle. Every A€L ' defines an associated
linebundle L ; —D through the character y = e*. Let4 §(L,)
be the space of C =, L, valued forms of degree i with com-
pact support. Explicitly, these forms can be written as

o =3f,.  dz, NdZ, - NdZ,, (I1.19)

where the Z [’s are suitable local complex coordinates for D
and the f’s are sections of the line bundle L ; —D. We know
that

ALy )~ {fec=p~ ' Ulf(gh) = e*(h ~"/(g)
X Vgep~'U, heH, U open in D}, (I1.20)

where p:G—D is the canonical projection. Define J:
AG(Ly)—>A 5" L,) by

S — zaj;|iz“‘i,- Adz, NdzZ, - Adz,, (IL.21)
where
af -
If=>—=dz.
f =3 3z
Define a scalar product onn~T7, (G /H ),
(X,y) = - B (XS’) (xay ComPaCt)
=B (x,y) (x,y noncompact)
=0 (otherwise). (I1.22)

Thisinducesascalar producton T (G /H ) (by left translation)
and hence, by duality on 4 {(L; ). Let 3* be the adjoint of 3
w.r.t. this scalar product, denote the closure of 4 (L) by
CL{A4{(L,)}, and define

HI(L,)= {wecl{A}(L,)}, w is square integrable,

dw =0, d*w = 0] (I1.23)

H'(L,)isknown as the ith L 2-cohomology groupofL,.
Define

k({A) = card{aed *rk|(4,a) <0}
+ card{aed *np|(d,a)>0}.
Then one has

Theorem: 3b: if AcL ' and |(1,a)| > b YaeD, then
() HLy)=0Viztk (L),

(IL.24)
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(i)H (L,)bearsa UIR of Gifi = k(4 ).

Corollary: If k (A ) = 0, H %L, ) bears a UIR whichis
equivalent to ind$ ¢, the induction being in spaces of totally
holomorphic functions on G /H, i.e., df /3z; =0 V.

lll. ISOTROPY ALGEBRAS AND POLARIZATIONS FOR
SPIN(2,1) AND SPIN (2,2)

A. Spin (2,1)
We describe the spin {2,1) Lie algebra by
[Jij’ Jul= gudy + 8l — il — &udu»

Jy= —J ijki=1234 (IIL.1)
and

g; =diag{ + 1, +1, —1}.
The Cartan-Killing form is defined as

— B 1) = B3 13) = Baanlya) = 1. (II1.2)

There exists one Casimir invariant

C=Jf2 _1%3 —J§3.
There exist four classes of orbits:

Class I: generated by AJ,, each 4 generating a distinct
orbit.

Class II: generated by uJ 5, each 1 > 0 generating a dis-
tinct orbit.

Class I11: two orbits generated by J,; + /.

Class I'V: the origin {0}.
Let X = AJ,,. Then, [y,x] = 0=y = yx, i.e,, g, = {J;.}. To
compute s, , we write the isotropicity condition: If y, = a-
Ji2 + @13+ a3dos, Yo = b1J 1y + bod i3 + bsJys, then
B(X,[Y,,Y,]) = 0=a,b; — a;b, =0, i.e,a,/a; = b,/by =«
{say). The condition [.*",,S,]Csy then implies that
a = + i; finally the positivity condition yields
a = —isgnA. Thus,

= {J12J 13 — i(sgnd W3], (II1.3)
This yields 8 = g, e = g. One can also see that X is quanti-
zable iff 27A€Z, the corresponding character being given by

ylexpalJ,,) = exp2mida). (IT1.4)
Similarly, one gets the following results:

Class IL: g, = [J13], 85y = {13/ 12 £ J23},0 = e =s,.
All orbits are quantizable.

Class I1I:
g = (Ji3 £ 12}, sy = {Vozd 13 + J12) = 8 = e. Since 27ix:
gy—iR is the trivial map, X is quantizable.

B. Spin (2,2)
We describe the spin (2,2) Lie algebra by
[Jij»Jkl V=8gudy + 8l — gl — 8w

Jy = —Ju ikl =1234, (IIL.5)
where

g; =diag{1,1, -1, — 1}.
We define the Cartan—Kiiling form by

B ) =8u8 — 8- (I11.6)
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The two Casimir invariants are
CI =J%2 +J§4 _J%3 —J§3 —J%ﬂt "‘124’
Cn =Jy a4 —113' Jos + Jis s

The orbits can be written down as:

Class I: generated by AJ,, -+ uJ,,, each pair (A,u) gener-
ating a distinct orbit.

Class II: generated by AJ,; + uJ,,; the pairs (4,u) and
( — A, — u) generate the same orbit.

Class III: generated by AJ,, + uJss + /3,
v* =A% 4 u’. v, — v generates the same orbit while (4,1,
and ( — A, — u, — v) generate distinct orbits.

Class IV: two orbits generated by J,; + J,..

Class V: the origin {0].

Let X = AJ,, + uJs,, and let h = {J,,,J5,].
Let

80 =3t i+ idiy— T},
8o =Tzt iy Fidya+ 0}

(I11.7)

(ITL8)
(I11.9)

The two-dimensional space spanned by A,u can be conve-
niently divided into six subspaces:
(h +4>0,4 —u>0:gy =h,
sX = gX +g—a| + g—al’
(il +p<0,4 —pu<0:gy =h,
sX :gX + ga| + gaz‘
(iid +p <0,4A —pu>0:g, =h,
SX = gX + gfa, + gaz'
gX:h’sngX +g—a| +g7a:‘ (III]O)
For the above four subspaces, 8 = g, e = g. The characters
are given by
y lexplad, + B0 = expilAa + ufB), 2mAe€l, 2aucl.
(v)A = u, and
(Vi) A = —pgy = [J13F V24 J1a 23} +h. (IIL11)
SX=h+g—a,+ga3 +g-a2 (/l:#)
and
sy=h+g, +g ., +tg ., U= —p).
For both cases 8 = gy, e = g. The characters are

x lexpla /i, + axlsy + a3l 3 F o) + asl i + J25)1)
= expid (@, + a,), 2mA€Z. (IT1.12)
Similarly, for the other classes, we have the following
results:
Class I1: Let a = {J,3,/54};
gia, =J,+Jut ia — J23)
Eio =J—Jsa £t Via—Ja3)
We divide Class II into two subclasses:
{i) |4 | ||, gx = a. There are four polarizations:

(I11.13)

$;=a+8, +Ba,>

$; =8+ 8, +8_a,
(II1.14)

S;=a+8_, + &,
s4=a+g~~a| +gAa3'

All the four polarizations are positiveand 8 = e = s, wheres
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can be any of the four polarizations given above.
(A= +tpegr=a+|[JpFlwduzt J23} respec-
tively. There exist two polarizations for each sign:
s;=at+g, +8, T8 .
$;=a+8 _, +8, +8_qa,
s,=a+g, +8_ o, 18,
s,=a+8, +8_ o +8 q
Once again 8 = e = s, where s is either of the two polariza-
tions given for each case. The Kostant integrality condition

imposes no conditions on 4.
Class I1I: Define

Z.’:/l(/{2+p2)'/2/(/12—/,¢2),

], A=p, (IIL15a)

], A= —p. (IILI15b)

po=pd?+p?) A —p?). (IIL.16)
Then,
gy = (Jo + 1T — A oy Jas — A i3 + 124},
(IIL17)
and

sy ={Jo— A"+ Vo Jis + Joa J1a + 23, T34
+ A+ u'Waal; (I11.18)
8 = e = s;. The Kostant integrality condition imposes no
conditions on A,u.
Class IV: We have,
gx = (Jin—Ji3aa —Js
sy = [Siadasd 12 = Jialsa — Joa}s

8 = s, = e. The Kostant integrality condition is vacuous.

IV. PARABOLIC SUBALGEBRAS AND POLARIZATIONS

In this section, we show the connection between para-
bolic subalgebras and some of the polarizations given above.
A. Spin (2,1)

We choose the Cartan decomposition as

k= {J,}, p= {33} (IV.1)

Choose a = {J,,}. Trivially, m = 0. n can be easily calculat-
ed and shown to be

n={J;+Jp, Ji3— Dol (IV.2)
One concludes that the polarization given in Class IT is a
minimal parabolic subalgebra. The Kostant induction
scheme reduces to ind§ (y) where P, is the corresponding
minimal parabolic subgroup of spin(2,1). Note that ye4 and
hence the Kostant induction corresponds to the convention-
al induction scheme with o~ 1,,. The representations, by
Kostant’s theorem, are UIR’s. In identical fashion, we see
that the polarizations for Class III are also minimally para-
bolic with Langland’s decomposition

a=[J,+Jul, m={0}, n*t={J,] (IV.3)
Once again y ~ 1,, X, re4 and hence, the representations
are UIR’s. These sets of polarizations give rise to the princi-
pal series of UIR’s of spin(2,1).

B. Spin (2,2)
The Cartan decomposition is
k= {J12J34}, p= [J]3,J14,J23,J24}.

(I11.19)

(IV.4)
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Choose a = {J}3,J,,}; we have m = {0} and
n=g¢g, +8, +8_, +8_ ., (IV.5)

using the notation of Sec. IIIB. Then, all the polarizations
given in Class II (i) are minimal parabolic with

X ~ 1y X 7,7€4 . These polarizations yield the principal se-
ries of UIR’s of spin (2,2). For Class 111, we choose

a={J,+puJ3—A Notss— AV +ud

m = {0},

n={J,;+Du+ U +pWs

— A +u' N tpilVas + 714

Jizs+ o+ A+ 'V

— A"+ u'Vy £ ool + T
where p, = |[1"+u') —1}'7,

pa= — A" —p P —11"3.

s, can then be shown to be equal tom + a + n™, hence

it is minimal parabolic.

Once again, we get the principal series of UIR’s. For
class IV, the Langland decomposition of the polarization is

a={J, —Jy3,Jog — 54}, m = [0},
nt = [Jia}. (Iv.7)

This class of orbits yield the principal series of UIR’s. Final-
ly, in class II (ii), it is possible to show that the polarizations
are parabolic, with Langland’s decomposition

(IV.6)

m, = {Ji; + S i —Jo3 Ji3 + Joals (IV.8a)
8y = (V13 —Ju}s
n, = {Jo~ Ly +Jiu+Jn} A=p)
and
my = {J; —Jap Jis + J23, I3 — J2a), (I'V.8b)

ay = {Jy3 + o},
ng = {Jp, =Dy +J—Jul A= —yj

corresponding to the choices 6 = {a,}, {@,}, respectively.
These subalgebras are noncuspidal, and hence, generate the
degenerate series of representations.

V. DISCRETE SERIES
A. Spin (2,1)

We have a compact Cartan subalgebra
h=k={/,}

The corresponding root is a(/,,) = i, with
Eia™= (JasxioiCp, H,= — i/},

The characters of H, as noted in Sec. I1I, are given by

(V.1)

y (expaJy,) = explina), neZ. (V.2)
Hence,

L = {1:h—C, A = na,neZ}, (v.3)
with

H, = —inJ,,.

Since (A,@)=B (H, ,H,)=n,L’' = {ieL: A = na, n#0}.

We note that there exist an isomorphism between the
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set of Kostant integrable elements of h, denoted h,., and L.
Let Xch and let A, be the element of h* associated with X by
the Cartan—Killing map. Then

Ay e Le=X /2w ehy. (V.4)
We choose a canonical complex structure on G /H by
Te(G/H)czga)A+C={ —-(Z}, (VS)

and choose a corresponding complex coordinate z. Note that
(A,a) = n.

(i) n > 0: It follows from Eq. (I1.24) that k (4 ) = 0 with
respecttoA [ . Hence, the Schmidt theory yields us UIR’s in
terms of functions of G which are holomorphic in Z. The
Kostant induction scheme can be written as ind$e*.

Choose a complex structure and a positive subspace of n in
the following way:

n'={g,:g_,Csx}, (V.6)
where s is the corresponding positive polarization and de-
fine,

T.G/H)x =n". (V.7)

It is obvious that in this case, the complex structure defined
by 7,(G/H ), and T,(G /H ), areidentical, and hence, so are
the corresponding representations.

(ii} n < O: Once again, it is easy to see that k(1 ) = 1 and
hence the Schmid theory yield UIR’s in spaces of 1-forms.
Note, however, that the prescription yields T, (G /H),

=g_, 47 = {a} withrespecttowhichk (1) = 0. Hence,
the Kostant induction yields representations in spaces of
functions which are holomorphic w.r.t. T,(G /H) or equiv-
alently, antiholomorphic w.r.t. T,(G /H),.

B. Spin (2,2)
The calculations for spin (2,2) are entirely analogous
and yield the following:
h=k={J;;, J5},
L = {Aeh*, A = n,a,, n,a,, n,neL},
L' = {AeL: |n\|#|n,|},
where a,,a, are the roots associated with g, ,g,, introduced

in Sec. II. We once again have an isomorphism between L
and the set of Kostant-integral elements of h. Define

T,G/H), =g, + &, (V.9)
and denote the corresponding complex coordinates by Z,,Z,
respectively. Let, as aboveT, (G /H ), be the complex struc-

ture defined by th_ corresponding polarization. Then, one
has for Class I,

i)n,+n,>0,n, —n,>0,
Te(G/H)K :ga, +ga1’

(V.8)

AT ={—a,—a,l.
(V.10)

Kostant-induced representation is in the space functions ho-
lorrorphic in both Z, and Z,.

(ityn, +n,<0,n, —n,>0,

TAG/H)x =8a +8 o AF =[—aya). (V.11)
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Representation is in the space of functions holomorphic in
Z, and antiholomorphic in Z,.

(i) n; + n,<0n, —n,<0,
TG/H)k =8 o +8_o: AF =lana). (V.12)

A space of functions antiholomorphic in both Z, and Z, is to
be used.

(iv)ny + ny>0,n, — n, <0,
T..G/H)x =8, +8_.; 45 ={—a,a,}. (V.13

Representation space is the space of functions antiholomor-
phic in Z, and holomorphic in Z,. In all the above cases

K (4)=0w.r.t. the corresponding. 4 ¢ and hence, the Kos-
tant representation and the Schmid representation coincide.
Note, however, that case (v} and (vi) of Class I are outside the
purview of Schmid theory (they belong to Kerw).

VI. CONCLUSION

Our results can be summarized as follows:

(1) The Auslander~Kostant theory yields representa-
tion which coincide with those given by the conventional
theory of principal and degenerate series.

{2) Further, the Auslander—Kostant theory, through
the concept of a complex polarization provides a natural
complex structure w.r.t. which X (4 ) = 0, and hence, yields
UIR’s in the space of functions which are holomorphic w.r.t.
this complex structure.

{3) However, the present investigation does not throw
any light on the complementary series of representation.
This could possibly be done by considering orbits in g* rath-
er than g’, and inducing from nonunitary characters.
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The involutive system of functionals associated by Gel’fand and Dikii to a nth-order scalar
differential operator is obtained from a set of solutions of a generalized Riccati equation. These
solutions allow us to explain the involutive character of the system of functionals in terms of the

Riccati equation properties only.

PACS numbers: 02.30. + g

INTRODUCTION

In this paper we discuss some well-known facts con-
cerning the Hamiltonian systems constructed by Gel’fand
and Dikii. In a series of papers '~* devoted to the construction
of infinite-dimensional examples of completely integrable
Hamiltonian systems, these authors stressed the important
role played by the resolvent of differential operators to ob-
tain an infinite set of functionals in involution.

In the last years much work has been done in the pre-
sent subject of Lax equations, constants of motion, and invo-
luteness. One can cite as representatives the papers of
Manin*, Wilson,®> and Adler.®

In Ref. 3 the Riccati equation is presented in connection
with the theory of the resolvent of a scalar differential opera-
tor of order n. We shall prove here that the set of first inte-
grals mentioned above are the coefficients of the power series
solutions of this Riccati equation. Such a Riccati equation is
associated directly to the differential operator of order ».

Section I is concerned with preliminary aspects. In Sec.
II we introduce the Riccati equation for the scalar nth-order
operator (2.1). Some formulas involving determinants are
used to get the necessary collection of functionals for the
construction of the integrable systems. The variational de-
rivatives of the solutions of the Riccati equation character-
ized in Sec. II are calculated in Sec. III. Finally, in Sec. IV it
is proved that the Lax-type equations admit as constants of
motion the functionals related to the Riccati equation men-
tioned above. That is all that one needs to prove that the
system of functionals so constructed is in involution.

I. THE RING OF DIFFERENTIAL POLYNOMIALS

We shall summarize here some aspects of the algebra of
differential polynomials which will be used later on. For
more information see Refs. 1-3.

Let A4 () denote the ring of polynomials in the letters u,
Usy ooy Uy Ul Uy U, UYL UY,..., where the u, are func-
tions on the real variable x and u{ = d’u,.. By d we denote
the total derivative with respect to x; 3 f = Zu* "9 f/dul,
f€A (u) and also_we shall put f**' = 3* f

The space 4 (u) of functionals is defined as the set of the
equivalence classes f = | f,, fo,....€A4: f; — /€04 (u)}, where
d A4 (u) is the set of elements of 4 (1) which can be written as
total derivatives. Then A (u) = 4 (u)/d4 (u) and the notation
F= dx fwill be used for the class f which contains f.

“Partially supported by the J. E. N, Instituto de Estudios Nucleares,
Madrid.
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F= sdx fwill be used for the class £ which contains f;
The variational derivative operator 6/6u, ,k = 1,..,.N
acts on A4 (u) by the formula

8f oy
” =S(-9 k=12,.,N. (1.1)

7 Aul’
With the variational derivative one characterizes dA4 (u) in
the following manner:

fadwe 3L o, k=12..N (1.2)
Su,

and this result tells us that § f/8u, = 8f/8u, and allows us
to obtain, by means of integration by parts, the formula

df _ 5f
dr J-dxz&zk “

3

(1.3)

when the u, are left to depend on some parameter 2, u,
=du,/dt.

Differential 1-forms are introduced as finite sums
o = 2w,0u), where o, ;€4 (u) and the 5 are new indepen-
dent variables.

We define 6 fby 8 f = 26uY'd £ /du. By using the rela-
tion® 36uy) = Sul* Y, § fmay be writtenas 6 f = 2, d, fu,,
where d, f= 2,8 f/du{d’ is the Gateaux differential® of f
with respect to u, ,

d
dy fa= Ze

€le=0

Sty + €a,..uy). (1.4)

Here a is some arbitrary function.

One can prove that § f can be written uniquely in the
form

8f=Ygdu, + dw (1.5)

with g, €4 (u), w is an appropriate 1-form,and g, = 8 f/bu, .
Let now zbe a complex variable. We construct 4 {1,z ")
as the set of formal power series £ = 2a, f,/z’. The first
coeflicient /., is constant and the @, are complex numbers,
the other terms f,€4 (u). We shall use the notation & = £,/z"
+ Oz~ ™~ '). The set 4 (u, z~ ') inherits the operations J,
6 /bu, , and & introduced for 4 (1). In the same way as we did
for 4 (u) one gets A (u,z ') from A (u). To £ =&, /2"
+ Oz~ "~ ') we make correspond

o)
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to remove the constant term &, in &.

{l. THE RICCATI EQUATION

Let us consider a differential operator

L= ud* (2.1)
k=0

for whichu, = 1,4, = 0. We assume that u,,
k =0,1...,n — 2 are free generators of the ring A4 (u). In order
to obtain the system of functionals mentioned above, we ex-
amine the differential equation (L — z")¢ = O for the solu-
tions ¢ which can be represented in the form ¢(x,z)
= expf “v{x,z)dx. We shall denote the primitive of y (x,z) by

xlx.2) = Ty(x,z)dx.

It is easy to see that

(L — 2"e¥ = 0. (2.2)
is equivalent to the Riccati equation

Z uPy) = 2", (2.3)

k=0
where

P (y) = e Y(d*eY) (2.4)

is a differential polynomial in y. Thus P, =1, P, = v,

=y’ + x°.... One can prove by induction that P, admits
also the expression P, (y) = (@ + y)*1 and that P, (y)
=y* Y+ ..+ x'k =2.3,... The following proposition
holds for Eq. (2.3).

Proposition 2. I: Equation (2.3} has # solutions
x''eduz™l i=0,1,.n — 1 withy'' = €2+ 0z ).
The€;, i =0,...,n — 1 are the nth roots of unity.

Proof: We define 0! = y'"! —€,z=3,  y!'"/z". For
o' we have the differential equation

no- 1 n k .
> lez) > (1>ukPk ') =0
=0 K=1

since from (2.4)

. k :
P (x") = l\z (1)(542)1})/\ o).

I=0

The equation for ¢'"! can be written in the form

; 1 €l a sk _
o= — o Z PrE— Z(,)uk& (')

=0 & k=1

in which we introduce the power series

Po") = 3

r>t

and P, =1, to get the relation

U zawz()wwumﬂﬂ_wuﬂ

n r=o

Lipm,,

By virtue of the polynomial character of P (o'"),(P}}), is a
dlfferentlal polynomial on the first r coefficients y!,y}7,...
y!. Then, (2.5) is a recurrence formula which allows us to

calculate the coefficients y!! as differential polynomials on
(tgresty _ 5).
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Corollary 2.1: If we take €, = ¢*™*/" k = 0,1
we have the relations y!'* ~ V(x,z)
k=0,1,.,n—2.y

Proof: If y {x,2) is a solution of (2.3) so is y(x,€, z),
k=0,1,.,n— 1L But y*!(x,e2) =¢,, ,z+ Oz ")is just
x'“ " 'l(x,z). At this point we observe that all the solutions
x'*! are equivalent with respect to their dependence in (u,,
U,...4, -} in fact one has

et — 1
= y'*I(x,€,2), for
= ix,€,2) = y'x,2).

[k 1] [k

X )(r

l
Corollary 2.2:
Lty 2
n &t @

As a matter of fact from Eq. (2.5) we have for the first
coefficients

1 n—1 1

xit= — PR ¥ = T”Z—z — U, 3
n n

=~ L+ O]

1 3—

- 7(%‘4 + znnuifz) (2.6)
Now we look at the solutions of the equation

(L*—2)=0,

L*=23?_,(— 3 u, is the adjoint operator of the operator
L [(2.1)]. We form the Wronskian determinant for the solu-
tions @y, @y,....@, _, of (L — z")p = 0 obtained from the y!"
of Proposition 2.1, that is

po " @l e @)
LN G e gl

W= : : ee : . (27)
¢)0 ¢l ‘pnvl

By (2.4) we can write the derivatives of g, as

P = (X[”)e ,
which after the substitution in (2.7) allows us to write W in
the form

n—1a
W=Qexp ¥ x", (2.8)
i=0
where (2 is the determinant
S P ™) )
PH—Z(/YiO]) Pn—VZ(X“]) Pnaz(/}./(nrl])
0- . .
XIOI ,l/“] . XI" — 1]
1 1 1
(2.9)
We note that £2€4 (u,z~ '),£2 being an element of the form
ﬂ — |€|Z"[" — 12 + 0 (z(n(n — 1)72} — l)’ (210)
where |€] is the Vandermonde determinant
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&' e €l
€ a7t ool
le| = = [[lex — &),
k<l
€ €, €,
1 1 1

which guarantees that W 50 since €, %€, for k #1. We in-
troduce further the cofactors W, of the elements in the first
row of W. Concerning the W, we have the following.
Proposition 2.2:
(L*—-z"W,.=0, k=0,1,..n—1.

Proof: We consider W,,. From (2.7)

(2.11)

(n—2) (n—2) n—2)

¢7 H ¢ 2 o ¢ a—1
¢lln—3) ‘plznf»?l ¢(:: 3)
W, =
@i 2 P
é1 @2 Pn—1

may be written in the form
Wo=det(@" - 2,0~ @' P)
to denote the determinant which has as row vectors @ " ~ 2,
W@, @, where X = (@), %), @¥) |). According to
the equation (L — z")p; =0 one has
D= (2" —ue)®P —u, P’ — _, P

By using this expression for @, the rule for the derivation
of determinants, and the fact that a determinant vanishes
when two rows are repeated, we get the formula

k

_un

z ( - l)i(un - im])“‘ -
T det(@ -V @1k PP
O<kgn — 1,

where @ *'denotes the absence of the row @ %), To see that
this formula is correct take the derivative on both sides of it,
to obtain

k . -
S(— Vi, W' =0
i=0
= det(@ @t pin—1-K B'p)
+det(@n M@= pin-k=-2 B p)

=det( —u, ,_ DK pn-2  Pin-1-K ' D)
+det(@" V@i  Prn-k-2 ' p)
—(—l)u W
+det(¢'"“"¢‘"‘2 SPm—k=2) DD
Thus, we have
n—1
S = Wiu, _ W) - =det{@ ", pIn-2_ P

i=0

and the derivative of this equation yields

2 (— (u, _ Wo)" " =det(@™,. =2
= det((z" — ug)D, ", D) = (— 1)(z" — ug)W,,
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thatis(2.11)up toafactor( — 1)*. The prooffor W,,....W,, _
is the same.

The solutions W,, of Eq. (2.11) also admit the
factorization

W, = lexpzf'”, k=0,1,.,n— 1.
itk
Here {2, is the cofactor of P, _, (y'*!) in (2.9). Since u
= 0 the formula of Liouville’ for the function W (x)

W) = Wisijosp( = [, e
implies here that W = constant and hence we will have
(L* —"\W . /W})=0.

For the solutions W, /W of E
expression (W, /W) = .S %lexp(
by

S«il=0,/0 k=01,.,1n—L

(2.12)

n—1

g: (2.11) one finds the
— ¥} with S ¥ defined

(2.13)

The constant coefficient of S '* ‘e (x,z ") is found to be
€,/nz" ' considering (2.10) and a similar formula for £2,,

2, = 'fk Izm = =222 L 0 (z((n — n — 21/2) — 1),

where |€, | is the cofactor of € ~ ' in the Vandermonde deter-
minant |€].

To see that |, |/|€] is just equal to €, /n one uses the
relation |¢, | = €/ |€,|, €, = exp(2mi/n), in the expansion of
|€| in terms of the |e, |:

€] = z & e =:§;|ek /€5 = nle|

(we choose €, = €} ). This immediately implies that
€|/ (€] = €xl€yl/ €] = € /n

Sl =€, /nz" "'+ 0@z "). (2.14)

Now, we go on to the interpretation of the equation

(L*—2)(S K=" =0, (2.15)
which is another version of (2.11) in terms of § ¥ !, Keeping
in mind Eq. {1.4) and the definition (2.4) of P, (y) it is easy to

see that

Lemma 2.1: The Gateaux differential of P, (y) is the
(k — 1)—order differential operator given by

dP,(y) = ﬁ: (?)Pk pd (2.16)

Lemma 2.2: 1f 37 _ ou, P, (y) = z" the differential oper-
atore ~ ¥o(L — z")oeX can be expressed in terms of the opera-
tors dP, according to the formula

e Yo(L — z2"joe¥ = 3 u,dP, (y)d. (2.17)
[ g
Proof: By definition
dea—’:i Pk(,}.’+6a),
dele-,
then
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(e~ (¥ + el ghly + <)

€e=0

dP.a = 4
de

= — P (y)d + e~ %" (ae")

— — Pyl + [io(lj)m ' a

- ﬁ_‘( (I;)Pk pd

=1

according to (1.4) and the Leibnitz rule for the derivative of a
product. This proves Lemma 2.1. For (2.17)

- R S .

Yod kog¥ = —y{9k - oy Al

e e /Zb(/)e (0" ‘evid
3

=Y P, (1 =dP.d+P,

[0

by (2.16). Mulitply both sides on the left by u,

e ?oiukakoefz iude,\.a-F iukpk
) K=1 L

k=0

and use the fact that 2} _ u, P, (y) = 2" to get (2.17).
Of course, it is also true that

elo(L* —z'oe V= — 3o S d*P,(ylou,,  (2.18)
K =1
where
i k
arp = 3 (=11 () ror
=1

1s the adjoint operator of the operator (2.16). With that, we
are in a position to prove that

Proposition 2.3: Foreach i = 0,1,...,n — 1, S/, as given
by {2.13), satisfies the differential equation

S d* Py, S ) = 1.

K=

(2.19)

Proof: Take (2.18) with the solution y!"' of (2.3). Since by
Eq. (2.15) (L * — 2}(S "'exp( —5(\“')) =0, thendZ} d*P,
("M, S'") = 0. Therefore 25~ 'd *P, (y'")(u, S ") = con-
stant. that this constant should be equal to one can be seen as
follows. In the expression

i d*P (' M, S )

k=1

n

=3 AZ(_ 1)’*‘(1;)8’* Py S

k=11=1

the only term from which a constant term can be obtained is
nP,  (y'")S " since the (u,..,u, _,) are assumed to be free
generators of the ring 4 there does not exist differential rela-
tions between them. But P, _,(y'")=¢€' 2" "' + O(z" )
and S ' from (2.14)is S "'} = ¢,/nz" = ' + O (z ~")so thecon-
stant term of nP, , {y")S " is just equal to one and (2.19)
holds.

Equation (2.19) was considered in the Gel’fand-Dikii
paper.” It was motivated by different reasons as these ex-
posed here, namely, the representation as products of the
inexact components of the resolvent of L. Similarly to what
they did there one can prove that for each y!”, S isin fact
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the only element of 4 (u,z ™ ') which satisfies (2.19). Hence, we
have constructed in terms of the y!" all the solutions of (2.19)
(formula 2.13) belonging to A (u, z ")

lll. VARIATIONAL DERIVATIVES

In the foregoing section we have obtained two systems
of elements of the set 4 (u, z7 ')}, namely the solutions
(o' y'ex™ ) of Eq. (2.3) characterized by Proposi-
tion 2.1 and those of Eq. (2.19) (§©!, U, S ' con-
structed in terms of the y!"! by means of the formula (2.13).
We now search for the expressions of their variational de-
rivatives as they were defined in Sec. L.

Theorem 3.1: For each y!, i = 0,...,n — 1, one has

) 14l )
oxX —SP (), (3.1)
Su,
Proof: Putting y'"! in Eq. (2.3) one has identically
30 ou P (¥} = 2" we carry out the variation of such
relation

S P Su, + z u dP, 5y = 0
k 0 k=1

and multiply both sides on the left by S !, we obtain after
integration by parts in the second summand

n

S 2 . Lo . .
S SUPSu, + 8y S d*P (y")u, S ) = o
k-0 A=

where @ is an appropriate 1-form. But by (2.19)
30, d*P (') u,S'") = 1and in view of the unicity of the
solution S ! and the formula (1.5) our statement is true.

Theorem 3.2: The variational derivatives of the solu-
tions S ¥ of Eq. (2.19) are given by
AR d ; ;
= — SUP, (y'). 3.2
o TS P (3.2)
Proof: We calculate the derivative of =7 _  u, P, (y'")
= 7" with respect to 2,

”n {4l
S u,dpP, X
=1 d(z")
multiply both sides on the left by S ' and integrate by parts
the left-hand side to obtain, by taking into account Eq. (2.19)
for S,

=1,

o’ =S 4 dw.

d(z"

Since (6 /8u,,)d is always equal to zero, Eq. (3.2) follows after
application of § /5u, to both sides and the introduction of
(3.1).

We remark here that the formula (3.2) was obtained by
Gel’fand and Dikii' in the context of the resolvent methods
for the operator L. Here it appears as a simple consequence
of Theorem 3.1 in the present context of the Riccati equa-
tion. Formula (3.2) will guarantee that the Gel’ fand-Dikii
Hamiltonian systems coincide with those which will be ob-
tained in the next section. :
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It is interesting to note that ali the terms y{1,y!],...are
total derivatives. To see that, consider

n—1 5X[l]
i=0 6uk

as follows from (3.1). Remember that S /) = 2,/0, Eq.
(2.13), and that the (2, are the cofactors of the elements on
the first row of £2. Then

S S 1 =
Su, ,Z
k=0,1,.,n-2

since 27 P, (y'")12; is just the determinant 2 (2 9) when we
substitute its first row by (P, (x'),P. (y'"),....P(x™" 1))
which is contained in £2 for k =0,1,..,n — 2 and hence is
equal to zero. From the corollaries 2.1 and 2.2 §y!})/5u,
=0,r = 1,2,...,,and this is equivalent (see Sec. I) to our initial
assertion.

= - zs‘”P ", k=0,1,.,n—2

Z (Xm)ﬂi — 0’

4. THE INVOLUTIVE SYSTEMS RELATED TO THE
RICCATI EQUATION

We start by considering evolution equations for which
the functional

Huz] = [dx 6z — ) @)

is a constant of motion.

Now let the elements of the ring 4 (#} depend on a new
parameter . We shall prove that the Lax equations preserve
(4.1)

Theorem 4.1: For every linear operator X, for which the
equation

= [L,K] (4.2)
becomes equivalent to an evolution system for the u,,
Uyl _, the functionals H 'ed (1,2~ ') are constants of
motion for this evolution system.

Proof: Apply (4.2) to ¢¥" and multiply on the left by §
e~ *". From the left-hand side one obtains, after integration,
that

LA n-2 . ;
J-de lilg — X[ o2 — jdx > S P (")
K=o

_4 H
dt
is the derivative with respect to z of H ") [see Eq. (1.3)].
Going over the commutator on the right-hand side, we
have

J.dx e~ XUSUI[L K ]exli

= f dx(L (S 11eX") KX — f dx e~ X"SUIK (LeX") = 0

by (2.2) and (2.15). Therefore, we have proved that the opera-
tors K which one needs in Theorem 4.1 have been construct-
ed for the first time by Gel’fand and Dikii. They gave® a form
of such operators which is particularly useful here. The
operator

P =(@—yW)=lo§ il j—01,..n—1 (4.3)
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can be expanded in powers of z with coefficients which are
differential operators of increasing order. For each of these
coefficients Theorem 4.1 is satisfied.

To prove that, we shall use the operator (4.3) in a slight-
ly different fashion which will be more convenient here. One
can put
Pl = (eX"ogoe ~X")~To§ Ul = ¢¥"0g~log =" og li
to calculate the commutator [L, 7 "']. We observe that by
{2.2) and (2.15) 2!/ is an operator of the form
@°d~ "oy, where (L — z")p = O and (L * — z")¢y = 0, which
is all that one needs to have [L, 7 '] as a differential
operator.

Proposition 4.1: Let &'l be the operator (4.3) and set

= eprI'] ¥, =S Wexp( — A[ ') then one has the identities

n—ln—k—1ln—-k—I—1
(L—zpzV0=73% Y s <k+’)
k=0 =0 r=0 r
XUppihren (¢i¢£'l))maky
. —ln—k—1n—k—1—-1 ]
‘@[l]o(L_ZIl) Z 2 z (_1),< +r)
=0 r=0 r
><(uk+l+r+ l¢‘¢7('“)(’]ak (4 4b)
With the help of (4.4a) and (4.4b) and the deﬁnmon (4.1) of
H' by substituting @; and ¥; in terms of exp)([” and

(4.42)

S [']exp( [") it is easy to see that
[L79] = [L— 2,21 =" x 13" (4.5)
k=0
where
. on—2-k SH
XUl = g 4.6
y Igo M 6u, ( )
and J = (7 ,} is the symplectic operator of Gel’fand—
Dikii, ">
n—k—{-—1 k + r
T = z [( >uk+l+r+1ar
r=0 r
I+r ,
- r (—a)ouk+l+r+l . (4'7)
We return now to Z ! and write them in the form
7 AU y']oe"”‘oa— lop ™ ""O(e&mS [i])

= —e o(e,z — J)lo(e?'S 1Y),

where o'l is the part ofy'”! which contains only negative
powers of z, o) = y!J — ¢,z. We also note that the expan-
sion of (€,z — d) ™' in power of 9,
€z-9 =Y —1 &
% (6,-2)’+ 1
immediately implies that of 2! as
Z 1

r+1

P = _

()P toeres, as)

7>05=0 (€;2)

where P, _ (0!')) is the differential polynomial (2.4) with o'*
as argument. Now we note that (4.8) enables us to write

1 )
— U, (4.9)

r>0 zntr

Pl -
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in view of the fact that o!! and S = ¢,/nz" "' + Oz~ ")

contains only negative powers of z. The operator Z " is a

differential operator whose commutator with L is an opera-

tor of (n — 2) order with coefficients X || | , as follows from

(4.5) and (4.6) when H /! is expressed as a power series in z.
We summarize this in the following theorem.

Theorem 4.2: For each opeator #7!,
{=0,..,n — 1,r>0, the Lax equation

L=[L>»"] (4.10)
becomes equivalent to the Hamiltonian system

. n-k-2 5Hlxl]+r

U, = T g ——— (4.11)

=0 5uk
Define now on 4 (1) the Poisson bracket
SF ~ OF
(F.Fy} = J-dx ' (y | ) 412
nE AZ/ S, Y S (4.12)

which extends in a natural way to 4 (1,2~ '). Under (4.1 1) we
can write -

dLm — {HUI’HUI }’
dt n+r
but since for (4.11) Theorem 4.1 holds dH V!/dt = 0 and
hence

{HYH!, }=0.

(4.13)
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In view of (4.5),-(4.6), and (4.9)
n— k2 SH 1
Va :
I=0 M (Sul
for s<n. Thus (6H '/8u,); — ¢ belongs to the kernel” of .5~

(remember that H | is always zero because y is a total

derivative). This assures that all the coefficients of H ! are in
involution with respect to (4.12).
{HUWH!"}=0, rs>1.

And this was the property claimed for the Riccati equation
(2.3)

=0
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Generalized Miura transformations induced by factorization of an nth-order scalar operator are
used to characterize a set of Hamiltonian systems by requiring the conservation of the Gel’fand-
Dikii first integrals sequence. The second symplectic structure for the Gel’fand-Dikii equations

is obtained in connection with the previous Hamiltonian systems. Backlund transformations are

also analyzed.

PACS numbers: 02.30. + g

1. INTRODUCTION

Since the discovery by Gel'fand and Dikii' of the com-
pletely integrable Hamiltonian systems related to the resol-
vent of differential operators, a number of interesting prop-
erties exhibited by such systems has been studied. One can
cite the elegant form given by Adler, Lebedev, and Manin to
the Gel'fand-Dikii theory in terms of the Kirillov symplec-
tic structure.?

There was mentioned a series of problems concerning
the existence of a second symplectic structure and the Len-
ard relations. Such relations were constructed by Adler and
Symes by means of the fractional powers of the symbols of
differential operators.?>

On the other hand, the celebrated Miura transforma-
tion* between the Korteweg de Vries (KdV) and the modified
KdV equations was found to be connected with the problem
of the second symplectic structure for the KdV equation; it
may be regarded as a canonical transformation between the
symplectic structure of the modified KdV equation and the
second one for the KAV equation.’ This guarantees that the
second operator is in fact symplectic by constuction. As was
noted by Adler and Moser,® the Miura transformation is
induced by factorization of the Schrédinger operator into
two first-order differential operators. The same factorization
procedure was put forward by Jaulent and Miodek’ in the
context of energy-dependent Schrodinger operators. Also in
this energy-dependent case, one can see that there exists a
canonical map between two symplectic structures.®

The generalization of these facts to an arbitrary nth-
order differential scalar operator is presented in the paper of
Sokolov and Shabat,” where the construction of the Lax
equations for the modified systems is given. Such modified
equations are developed even for nth-order differential ma-
trix operators by Kupershmidt and Wilson.'® The proof of
the symplectic character of the second operator in the Gel-
*fand-Dikii equations is also given by Kuperschmidt and
Wilson. Another proofis made Ref. 11. More applications of
the factorization method can be found in Ref. 12.

In this paper we arrive at these results for scalar opera-
tors in the following way.

The system of first integrals of Gel’fand-Dikii equa-
tions as they were found in the Riccati equation context'® are

“Partially supported by the J. E. N. (Madrid).
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used to characterize the modified equations (the analog of
the modified KdV equation). These modified equations are
constructed as the Lax equations which preserve the system
of first integrals mentioned above. The relevant operator to
be considered in the Lax representation is determined by the
form of the variational derivatives of the first integrals with
respect to the new variables. From the Lax equations we
obtain completely integrable Hamiltonian systems with a
symplectic operator which is a first-order differential opera-
tor. The Lax representation of the new Hamiltonian systems
is found to be particularly useful to prove that in fact such
systems are connected by the transformation with those of
Gel’fand-Dikii. If one transforms directly the Hamiltonian
form of modified equations, then the Gel’fand-Dikii equa-
tions written in terms of the second symplectic operator are
obtained. Finally canonical invariance maps for the modi-
fied equations as well as the Biicklund transformations in-
duced in the Gel’fand-Dikii ones, are analyzed. The Béick-
lund transformations were found by Kupershmidt in the
paper of Ref. 14.

Throughout this paper we shall use the results and no-
tations of the previous work of Ref. 13. For completeness we
include two Appendices with some results which are used in
Sec. 6.

We would like to thank Boris Kupershmidt for infor-
mation about his own results in this field when this work was
in preparation during the Workshop on Dynamical Systems
held in Crete (July 1980).

2. VARIATIONAL DERIVATIVES

We shall introduce a new parametrization of the ring 4
of differential polynomials'® with free generators v,,
V5.5V, _ , Which will be related to the standard collection
Ug, Uy,...u, _, by the factorization procedure described in
Sec. 1. To do that, we define

n—2
Va = z bakvk, a= 0,1,...,” - 1 (2.1)
k=0
where the n X {n — 1) matrix b = (b, ),

a=01,.n— 1,k=0,1,.,n — 2 should satisfy the follow-
ing two conditions.

n= 1 n—1
z bak = O’ k = 0)1,---9’1 - 2: 2 Va = 0, (2.23)
a=0 a=0
rankb=n— 1. {2.2b)
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Let us now define the differential nth-order operator
=@+ V)@ + V)8 +V,_1) (2.3)

which can be written in the form A = 37 _ 0, 3. The coef-
ficients Q, are differential polynomials in v,...v, _,,0, =1
and Q, , = 2274V, = 0according to (2.2a). By setting
u, = Q.(v)one has the relation

i ukak =

or L (u,d) = A (v,0).
The power series y ! and S ) introduced in the context
of the operator L = Zu, d* (see Ref. 13) as solutions of

S uPly)=2", Pily)=e e, y =fxdx,
k=0

@+ Volld+ V)@ + V., 1) (2.4)

(2.5a)
Y d*P(u,S)=1 (2.5b)
k=1
are found in terms of vy,...,, _ , by substituting u, = @, (v).

We retain the same notation y, S,... for y (#,2), S (#,2),...
asfor y(Q (v),2)S (Q (v),2),... Inorder to calculate the variation-
al derivatives of the solutions y'"! with respect to the

Vgs---V, _ o We introduce the following conventions.
Ao =(0 + Vo) + V)@ + Vo), Ao, =1,
a=01,.,n-—1

(2.6)
Aan—l—(a+V)(a+ +1) (a+VnAl)’ An,n-—lEI!

a=01,.,n—1

By A we understand A, ,, _, and A*,A &,,.
adjoint operators.

.. will denote the

Theorem 2.1: The variational derivatives of the solution

¥'"i = 0,1,...,n — 1 of (2.5a) are given by the expressions
[4] n—1 . A i
%‘ = = 3 b (A8 1S e s 167
Uk a=0

2.7)

Note the polynomial character of §y'"'/8v, since the expon-
entials cancel.

Proof: Rewrite (2.5a) to keep explicitly the operator A
[2.3)]

—x (Ae;;m) "
We perform the variation of this identity to get

~(84e8") 4 &0 A (X" 8y ) — 26y ') =0.

If we take into account the relation'?

=7"+ i u, dP, (y'")8

k=1

e t] ol
e Y AeX
we arrive at

e~ "84 ) + 3 u dP Sy =0

k=1

Multiply both sides on the left by S "', apply (2.5b) after inte-
gration by parts to deduce, with an appropriated 1-form &
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(SX[']+ z Zbak(AOa—lsme X[l))(Aa+1n_leX[ll)5 Vg

k=0 a=0

= dw
as it follows from the formula

n—1 n—
sA=3 2 byAoe_
a=0 k=0
easily provable by induction over n. This concludes the proof
of (2.7).

5vaa+ ha—12

From Now on we shall drop the index on y'",8 ), .. and
write simply y.S,... .

We set

o =2y 115 (2.82)

Cu=2" AL 1(Se %) (2.8b)

and define the column vectors & = (&, ),6 = (§,) which en-

able us to write (2.7) in the form

DS W 2.9)

5Uk a=20

Let us now define the matrix

01 0 - 0
0O 01 - O
a= . (2.10)
0 0 0 - 1
1 0 0 - O
The columns of a are the vectors of the standard basis of
R"(e, _ 1,€0,€1,-+€n _ 2 ). Denote by d the transposed of a, then

deta=(—1y" ',

and g is a unitary matrix. Let V" be the column vector

V = (V,,) with components ¥, given by (2.1); we set

D (V) = diag (vg,...,v, _ ;) and similarly for D (§),D(£),... .
Proposition 2.1: The vectors £ and § as defined by (2.8)

satisfy the linear differential equations

ad=da=1, a"=1 (2.11)

T—2)¢ =0, (2.12a)

{@T *a —z)§ =0. (2.12b)
Here T is the first-order differential operator

T=ad+D(V) (2.13)

and T+ =(—d+D(V)a.

Proof: From the definition (2.6) for A, , one sees that
O+ Vo), =2°Agn_ 16X =2£, , according to (2.8a),

a = 1,..,n — 1. Moreover one has (3 + V)&, = Ae¥ =2"e¥
or (@ + Vo)éo = 2€, _ - We have proved therefore that

(@ + D (V) = za&, which immediately implies (2.12a). In
the same way one obtains (2.12b}.

We shall cite here some properties about the linear ap-
plication D of R" in the set of n X n diagonal matrices. For
every vector #eR" it is easily seen that

D(@b@)=aD(0)a,

(2.14)

D(@b)y=daD (6 )a
and for diagonal matrices D (6 )D (p) = D (D (0 Jp).
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lil. LAX PAIRS

Suppose that there exists some linear operator J for
which the Lax equation

4 ro(rJ)]
dt

makes sense as a system of differential equations for the

functions v,,...,v, _ , which are left to depend on a new pa-

rameter £. The precise set of conditions on the J-operators

will be stipulated later. Now, we claim that concerning the

functionals #7v,z) = fdx(ez — y) [in short for

H'v,z) = fdx(€,z — y'")] one has

Theorem 3.1: The functional 7 is a constant of motion
for the evolution equations which issue from the Lax equa-
tion (3.1), with an admissible operator J.

Proof: In like manner as we did in the Theorem 4.1 of
the previous work'?, we multiply on the left of (3.1) by (6Z)
and apply this operator to the vector &, where £ and £ are the
solutions (2.8) of Egs. (2.12). After integration we have

de ;D(V)§=fdx<2§)tr,11§, y=24"

dt
From the left one obtains

fdx ED (V)= fdx 'S, "ilbakga t= 2

k=0 a=

(3.1)

by (2.9). Now we examine the right-hand side,

f dx(EZ)[T,Jlg=de((T+a;>~J§— @EVTE),

which becomes identically equal to zero by virtue of (2.12a)
and (2.12b). Therefore we have proved that (d#°/dt) = 0 as
it was claimed.

Theorem 3.1 tells us that the appropriate Lax equation
which one does select in order to have evolution equations
with an infinite sequence of first integrals, should be at-
tached to a certain differential operator T which in this case
does not coincide with the starting operator A.

The precise set of conditions on J to make Eq. (3.1)
meaningful are

(i) T,J ] should be a matrix multiplicative operator,

(ii) @[ T,J ] remains to be a diagonal matrix with null
trace.

These conditions are obtained by examining the form of

. n—1
dT /dt = aD (V') and the assumption 2 V, = Ofor the ¥,
a=0

Views Vg _ 1

In order to find operators J with the required proper-
ties, we translate Egs. (2.12a) and (2.12b) to equations for the
diagonal matrices D (£ ) and D (af ).

Proposition 3.1: Let the vectors & and ¢ satisfy (2.12a)
and (2.12b), then

ID()=2zD(£)a,
T+D(al)=2zD(al)d

for the diagonal matrices D (£ ) and D (af).
Proof:By(2.12a) D (T¢ ) = zD (£ ). But(2.14)implies that

D(T§)=D(a(d+ D)) =a(d+ D )D& )a
justequal to TD (£ )d@. From (2.11) (3.2a) follows. In the same

(3.2a)
(3.2b)
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way the Eq. (3.2b) is proved.
Let us now construct the operator
M =2D(§)07'Dag) (3.3)

to be understood as a power series of differential operators
when we write them in the form

M = 2D (e~ E) A — y)~' D (a¢)

in which the exponentials’ factor do not appear and
(@ — x )~ " expanded in powers of z (see Ref. 13) to write

1

M= — M, (3.4)
r>0 2
the .#, being differential operators of increasing order.
Proposition 3.2:
[T,.#)=z[a,D(&)D(al)]. (3.5)

Proof: One has the identity
(T,.#]1=z{((TD ()3~ 'D (@) — D (€)' (T *D{ag))~
+ [a,D(£)D(@g)1}
in which we take into account Eqgs. (3.2) to see that they
reduce to (3.5).

We also note that

a[T, 4] =zD(§)D(a5) —zD (@€ )D (5 )

is manifestly a diagonal matrix with null trace.

4. THE MODIFIED HAMILTONIAN SYSTEMS

Our next goal will be to express the commutator (3.5) in
terms of the variational derivatives of the functional

x, [v]

Hloa) = [dxtez -y = § T2

r
r>1

(4.1)

that by Theorem 3.1 is a constant of motion for the Lax equa-
tions defined by the operators .#, in the power series of .#.
By doing so, we shall obtain the Hamiltonian systems, the
symplectic operator, and an involutive system of functionals
with respect to the Poisson bracket given by the new symple-
tic operator.

We shall need the following two identities,

z[a,D(§)D(af)] = — (D (af)aD(£)), (4.2)
dD(ag)aD (&) =D )D(&). (4.3)
The relation (4.3) is an obvious consequence of (2.14), since
aD (af )a = D (@al) = D (¢ ). Formula(4.2)is found by multi-
plication of (3.2a) on the left by D (a{ ) and the transpose of

(3.2b) on the right by D (§ ) [take care of the commutativity of
the diagonal matrices D {£) and D (a£ )], then

z(aD(£)D(af) — D(£)D (el )a)
=D(a¢)T D () — D(a5)TD£)
yields (4.2).
Proposition 4.1: Let .# be the operator defined by (3.3),
then

a[T.4]= —3DE)D(C). (4.4)
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This relation comes directly from (3.5), (4.2), and (4.3).

It proves to be convenient to introduce the vector
7 = (7, ) defined by the product D (£ )D (£ ) which we write as
the diagonal matrix D (7) with 7, =£_ £, =0,1,...,n — 1.

Moreover, let us define the vector x = («,, ) with
components
k= =X k—ol.n—2
v,
K =0.

n— 1

n—1
Keeping in mind Eq. (2.9) one finds k, = Y b7, or

a=10
n—1
gk, = Z b0, k=0,.,n— 2 In(4.4), the traceless
character of a[T,.#] implies that d z 7, = 0 [as one can

check directly in Egs. (2.12)). We summanze the above rela-
tions in the formula

Ok = cdrr, (4.5)
where the matrix ¢ is
boo bio b, 1o
b b b
c= 01 11 n—1,1 , (46}
bO,n—Z bl,n_z bn—l,n—Z
1 1 1

the transpose of b (2.1), bordered by the row (1, 1,..,,1).

By conditions (2.2) concerning b one sees that ¢ is inver-
tible [rank b = n — 1 implies that at least one of the cofactors
of one of the elements, say the ¢, _,; in the last row of ¢, is
non-null. To calculate the determinant of ¢ we add up to the
column i the restant ones and expand det ¢ by the elements of
that column i. By (2.2a) 2 Z b = 0,k =0,...,n — 2, thus
det ¢ is proportional to the non-null cofactor of ¢, _, ;]

From (4.5) 37 = ¢~ 'd«, and this enables us to express
Eq. (4.4) in terms of 6y/6v,,k =0,1,...,n — 2.

To go over the motion equations, we pick out a term
A , in the series (3.4) to examine Eq. (3.1) with J = .#,,
which may be written as

D(Vy=a[T.«,]. (4.7)
From Proposition 4.1 and Eq. (4.5) it easily follows that

D(V)=D(—c"'d,)
turns out to be equivalent to (4.7), or

V= —c""%,,
to be expressed in terms of the independent variables
Ugs---U, _ , as follows. Keeping in mind Eq. (2.1)

V =bu,v = (1)} Z2, since b is a constant matrix

b= —c 'ox,.

Multiply on the left by ¢ to obtain cbv = — dk,. Take care of
the fact that by (4.6) and the property (2.2}
ch = (i)
00---0
is the matrix bb boardered by the row (0,...,0). Remember
that by definition x, _, = O to see that one has simply
bbo = — 3V,

220 J. Math. Phys., Vol. 23, No. 2, February 1982

where we have introduced the vector
VI, =~ 8y,/6v, )i 25 according to the expression (4.1)
of the functional 7, related to the H introduced in Ref. 13
by

H = HoQ. (4.8)

Here Q is the transformation defined by (2.4).

We must prove again that a determinant does not van-
ish; here is now det bb.

This comes in this case by considering the product ¢é,
which by (4.6} and {2.2) equals

0

. b b
cC= ;

0

4] e 0 n

together the above proved property det c#0.
These considerations allow us to write finally the mo-
tion equations (4.7) in terms of v,...,, _, in the form

V=SV, S = —(bb)"' (4.9)

in which we want them.

The matrix . which appears in {4.9) is manifestly a
constant, nonsingular, symmetrical matrix. We define the
operator

4=53 (4.10)

that turns out to be a symplectic operator. (Here the Jacobi

identity follows directly from the self-adjoint character of

the Gateaux differential for a gradient.' So we have
Theorem 4.1: The Hamiltonian systems (4.9)

V=4V, r=12,.
admit a Lax representation
= [T4,]
in terms of the first-order differential operator 7'[(2.13)] and

the pairing operators .#, [(3.4)]. This result is contained in
Ref. 10.

Let us now introduce the Poisson bracket

5F
F.F,) = |dx 5 =2
(F,Fy) k/zo Kl &)k 51),

(4.11)

(4.12)

associated with the symplectic operator 4. The Hamiltonian
systems (4.11) may be also written as

lj = (v’%r )r

and morever one has

Corollary: The functionals #°,[v] in the series (4.1) are
in involution with respect to the Poisson bracket (4.12). In
consequence the Hamiltonian systems (4.11) are completely
integrable.

(4.13)

Proof: By Theorems 3.1 and 4.1 5%, is a constant of
motion for Eq. (4.11), but d#°,/dt = (7, ,% ,) and this im-
plies that

(# ., 7)=0, rs=12,... (4.14)
We shall call Egs. (4.11) the modified Hamiltonian systems.
Note the simple form of the symplectic operator £((4.10}]

and that (4.11) depends on some free parameters through the
matrix b [(2.2)].
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5. MODIFIED EQUATIONS AND GEL'FAND-DIKII
SYSTEMS

Firstly we take into consideration the Lax representa-
tion of (4.11). We further introduce the following two matrix
differential operators:

D, =diag(1,A4p,A¢1,-04 i _2)s

D* = dlag(A far—1 ’A2,n — 1""’An —1ln—1 ’1)?
where the A, ,and A, , _, are defined in (2.6).

Multiply the Lax equation T = [T,.#,] on the left by
D, a and on the right by D_ to form the expression

D,aTD_ =D a[T,.#,1D_.

Both sides in this equation are diagonal matrices. The trace
of the matrix in the left turns out to be
S,D.,dTD_ =S,D.D(V)D_
n -1 .
= z AO,a - VrzAa tln—1 = iA’
=0 dt
. =A,,  =1and A is the

(5.1a)
(5.1b)

where according to (2.6) A,
operator [(2.3)].

nn

To calculate the right-hand side, we examine the expression
D, alT,.#\D_

with the complete operator .# [(3.3)] which we write in the

form

= diag(H o, Myl )
The definition (2.13) of T gives us the formula

S,D &l T,.#1D_

n =2

= z A(),(x"//aAa + 1.1 + A'///H — l)
a =0
n—2

o ( Z AO,a'/”(IAa + Lon -1 + U//n - lA )
a = 0

=AM, ,— W, A

By (3.3)and (2.8)..#, _, is found to be
‘///1 1 =Z§” Ia" Ig():Z”eiailse "\A(:Z”.'/),

where .7 is the operator introduced in connection with L to
pair with it in the Lax equations problem.'* Thus we have

S,D.a[T. 71D =2'[A,7].

In this way we arrive at the following result.”
Theorem 5.1. The Lax equation

T=[T.7,], r=1, 2,.
implies that A evolves according to the equation
A=[A,7,]

6. THE SECOND HAMILTONIAN STRUCTURE

In this section we examine the operator % defined by
(A5) (see Appendix A). The property of % to be symplectic
was conjectured by Adler” and finally proved in the works of
Refs. 10, 11, and 14. We shall prove that by the same method
followed by Kupershmidt and Wilson.

To deal with the functions 4, = Q, (v) [(2.4)] in the con-
text of the Hamiltonian systems associated to the Lax equa-
tions of L = =, u, 3" the property to be free generators of the
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ring A4 (1) should be proved. This result follows from some
preliminary considerations.

Lemma 6.1: Let U, = N_(V,, V>,...,V,)

a =1, 2,.,n,n>2, where the polynomials ¥, define the set

of variables U ,...,U, in terms of the differentially indepen-
dent (d-indep.) ones V,, Vs,...,V, . If the set U is not d-indep.
there exists a non-null polynomial F such that FoN vanishes
identically and VFoN is a non-null vector.

Proof: Let FEA (y, Yayo-sy, ) With y(, vs,.0p,, , 822 d-in-
dep., thus VF = (6F /6y, ), _ | . From the definition of differ-
ential dependence,'” a non-null polynomial F exists such
that FoN =0. We consider here polynomials £ which are not
total derivatives, equivalently VF #0. If F = dG we take G
instead of F. Then V FoN £0or V FoN = 0. In the first case
the lemma is proved. If V Fo N = O we take as initial polyno-
mial F one of the polynomials 8F /by, ; if F was of degree M
aspolynomialiny,,....y, ,6F /8y, isof degree M — 1. By con-
tinuing this descending process we arrive in the limit case to
a polynomial F which has degree 1 for which
VF =V FoN = const. #0.

Example: Consider
U=V +V,
Uy=Vi+ Vi,

and F(U,, U,) = YU, — U;)*. Then FoN and V FoN vanish
identically,

(0. 01)

VF = .

U,-U;

If we consider the first component

U, ~Uy =38 ((U,—U7)weretain U, — U, for which
the lemma works.

Lemma6.2:LetU, = N, (V,,...,V,)define the variables
U,,...,U, by means of the polynomials ¥, in terms of the
differentially independent ones V,,...,V, . Then, if the kernel
ofd ;) N ond(V,..,V,){the ring of differential polynomials
in V,,...,V,) contains no other vector than zero the variables
U,,..,U, are d-indep. (d ;/ N denotes the adjoint of the Ga-
teaux differential 4, N '%).

Proof: Ifthe U,,...,U, were differentially dependent var-
iables, by Lemma 6.1 we will have a polynomial F such that
FoN=0and VF o N #0. From the identity
(FoN)V, V,..,V,) =0 we deduce

VAFOoN)=d N(VFoN)=0,

a contradiction.
We apply this result to the transformation induced by

I+UG "+ UG P+ U, =04V, )+ V,_ )
~(d+ V). (6.1)

Proposition 6.1: Let
U,=N,V,,..V,)a=1,2,.,1,n>2be the transformation
defined by (6.1), where the V,,...V, are assumed to be J-
indep. variables. Then the set U,,...,U, is also d-indep.

Proof: By induction on #,

Forn =2,from3° + U, @+ U, = (3 + V,)@ + V,) we
deduce

1 1 1 —-d+V,
d /N = ( ), + == ( ")_
; I+ v, av N 1 v,
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From

d,TNa=(a'+(_a+V2)az)=0,

a, + Va,
a= (al)EA ¥, V2)
a,

we geta; + (V, — V,)a, = 0, which implies a, = 0 and
a, = O{if a, contains derivatives of maximal order m, and m,
in ¥ and ¥,, respectively, the coefficients of V'™ * " and
¥, *+ " which are da,/dV,"™ and da,/3V," in the equa-
tion for a, should be equal to zero, a contradiction).

Now, we write (6.1) in the form

F+US '+t U, =@+V ) "+ WI
+ Wn—l)

to examine the transformation of the d-indep. set
(Wi W, _ W, )W, =V, into the variables U,,...,U,.
Then

1 —9+ W, 0---0 0

0 1 —3d+ W,-0 0
diN=] - e .

0 0 01 —-J+ W,

1 W, Wy-W,_, W 1

and from d ;; Na = 0 we deduce @ = (4,,)) = 0 by the same
argument used in the case n = 2 which we apply here to the
equation

[(a - Wn)" ! + Wl(a— I4/")”- : + o + u/nA 1 ]an = O)
then

a,=0@—W,)" “a, =0.

Another proof of this result can be found in Ref. 10. The
differential independence of the set (ug, ¥,,...,4, _ ;) defined
in terms of (v, vy,.,0,  2) by (2.4) follows from

Proposition 6.2: The variables (ug, u,,...,4, _ ,),n>3 de-
fined by (2.4) are J -independent.

Proof: Write the formula (2.4) in the form
3" +u, 0"+ u 0+ uy

=@+ V)@ + W, 18"+ + Wi+ Wo)
(6.2)

to see that
n—2
()Vp= — 3 W, tohaveu, ,=0,
=0

(b) The set (;}0’ W,,..,W,_,)is d -indep. The d -inde-
pendence of this set follows from Proposition 6.1 applied to
the transformation induced by

T4 W, 0+ WA+ W,

=@+ V)d+ Vo) @+ V, )
We observe that (V,, ¥,...,V, _ ) ared-indep. since they are
obtained from the J -indep. set (¥, ¥,,...,V, _, ) through the
transformation

n-—12
V, = Z bikvk’ i=12,..,n—1

k=0
and the matrix b,, obtained from the b,, [(2.1)] is nonsingu-
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lar [to see that, use the matrix c [(4.6)] which was nonsingu-
lar, and property (2.2a) of b to get the formula
Osdetc = ( — 1)"~ 'ndetb,, ]. That the J -independence is
preserved by the composition of transformations is easily
seen from Lemma 6.2.

Thus we can apply Lemma 6.2 to (6.2) written in the
form

" +u, 3" 4t u,d+u,

n—2
=(0-"SW)e "+ W, e WO W

0
to confirm the d ~-indep.of (ug, Uys..sté,, ).
Now, we are in a position to prove that ¥ is
symplectic.'%'"14
Theorem 6.1:Let & be the operator induced on
A (ug, uy,..;u, _,) by (ALS5). & is symplectic.
Proof: Theorem 5.1 tells us that Eq. (4.11),

i= KV, (6.3)
goes into the equation (see Theorem 4.2 in Ref. 13)
QW) =T (V.H,,,°Q) (6.4)

ifu = Q(v)[(2.4)]. On the other hand, from (4.8) %°, = H,°Q,
Vv%r - d!;FQ (VuHroQ )’
and

Q)=d,Qv=d,Q%dQ(V,HoQ) (6.5)
according to (6.3). By subtracting (6.4) from (6.5) we obtain
4,9%d;fQ(V,H,Q) -7V, H,_ ,°0)=0,
But we have from (A 5)

YV H, -9V H, =0
and from these last two equations

(¥ —d,Q%d }Q)V, H,Q)=0.

To see that & coincides with d, Q.%"d ;* Q we use the fol-
lowing lemma due to Kuperschmidt and Wilson, '® we shall
prove it below:

Lemma6.3: Let E = Z¥_  E,_(v)3® be an operator which
cancels all the vectors V,H,°Q,r =1, 2,... . Then F is the
null operator. In this way the operation {F,, F,}., defined
by

SF SF.
F,F,}., =1d LY, =2
5, B} J xgg Su, K Su,

is a Poisson bracket, due to the relation'®!’
{le F2}:«/ oQ = (F0Q,F,°Q),

and ¥ is symplectic. We observe that the functionals H, are
in involution also with respect to this Poisson bracket,

{#,, H}oQ=(H QH Q)= #,)=0

[see Egs. (4.8) and (4.14}].

Proof of Lemma 6.3: In view of the homogeneity prop-
erties' of the functionals H,,r = 1, 2,..., the highest-order de-
rivatives contained in H, appear in the linear part of H,. By
using (B1)

SH

n—2
r+n +hk+l+1—
= -S- aklul(’ n + e,
=0

Su,
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with a, nonsingular for r prime to n. We need the linear part
of (6H, , ,/6u,;)°Q, for which we obtain from (2.4)

n—1 n—2

a
= bav‘"Ak‘”*-...’
Qk a:nZlfk l;o(n_l_k) 1

where we have calculated (d /dA )|, _ o @ (Av). Then
u, =37 22p,v," ¥~ 4 (lower terms), and
8H, | n_2 :
Orrn 60 = DR
5u, Q [;07’/\1 l

The matrix ¥ is nonsingular if the same is true for

a
Pr = z(n 11— k>bal

a

and this is seen from the relation

P Eula

0 ver 0 n
The first matrix on the left-hand side is

~(,-5-1)
#Ia_n_l_l

bordered by the row (1, 1,...,1); this matrix is triangular with
non-null entries on the diagonal and hence nonsingular. The
second matrix is ¢ [(4.6)] nonsingular, therefore p is
nonsingular.

We take r prime to » such that the coefficients E_(v)
contain derivatives of strictly lower orders than r + M. We
make the change w = yv: iIf E(V,H, , ,°Q) = 0 each coeffi-
cient of w, " * ¥ * ¥ should vanish separately, then
(Ev)i =0,i,k =0.1,...,n — 2 for arbitrary M and this im-
plies £ = 0.

VIl. CANONICAL MAPS AND BACKLUND
TRANSFORMATIONS

The results of this section were considered in the Ku-
perschmidt work of Ref. 14.

Let us examine the Lax representation {4.7) of the modi-
fied equations (4.11}):

T=[T.#,] (7.1)

Note the following property due to the definition (2.13) of
TV, =ald+ D(V)):

aT(V,9)d = T(aV,d), (7.2)

as follows from (2.14) and the unitary character of a. The
invariance of the operator T under the transformation de-
fined by the unitary matrix @ suggests to us to investigate the
behavior of Eq. (7.1) in this transformation. It is easily seen
that (7.1) is left invariant if the operator .#, is itself an invar-
iant operator. We shall prove later that it also happens for
the transformation defined by a.

Let us denote by ¥ = a¥ the action of a on V. The re-
sulting vector ¥ is obtained from ¥ by a cyclic permutation
of the V-components V, = V,, V, = V,,...,

V, ,=V,_,,V,_, =V,and this guarantees that
Sr_ LV, =3"_1¥, = 0according to (2.1).
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But the V-components are not independent compo-
nents. We shall define a transformation in terms of the v-
variables for which the motion equations are formulated.

Proposition 7.1: Let I be the (n — 1) X (n — 1) matrix

= — Sbab (7.3)
with % defined by (4.9), b in (2.1), and a by (2.10). Then
=1l (7.4)

implies that the vector V, defined in terms of 7 by V=bb,is
related to V by

V=aV. (19
Proof: From (7.3) and (7.4) one has — %" ~'5 = babv. If
we take into account that — %'~ = bb, then b (b5 — abv)

=b(V—aV)=0.Thus ¥ — aV = K, with a certain K such
that 5K = 0 and 2/,~ ) K, = 0. These two conditions about
K may be summarized in a single condition cK = 0 with with
the matrix c defined by (4.6). As it was proved that detc #0,K
must be equal to zero, and this finishes the proof.
Concerning the matrix / we have
Proposition 7.2: The matrix / has an inverse given by

[='= — . %badb. (7.6)
Proof: We take advantage of the identity
0
| P (7.7)
0
0O -« 0 n
that comes from the definition (4.6) of ¢. Since det ¢ #0, this
shows us that det 1 = — (det.”")det(bab ) #0. Now, from
(7.5) bb = abv or babi = bbv. The introduction of
/"= — (bb)~" completes the proof.

Corollary: The transformation (7.4) is a canonical in-
variance map for the symplectic operator % [(4.10)].

Proof: From (7.3) we get the expression

I'= —babyr
from the transpose of / (remember that %" = 7). Formula
(7.6) yields ! ~'= 1.7 "' or

S =17T (7.8)
Multiply on both sides by d to obtain %" = L% [

The invariance of %" under the transformation (7.4)
suggests to us another way to prove the invariance of the
modified equations. We shall give two different, but equiv-

alent proofs of this fact: one for the Hamiltonian form (4.11),
another for the Lax representation (7.1).

Proposition 7.3: Let y (v,2), y(0,2) be the solutions of (2.5)
corresponding to (vy, Vy,...,0, _,)and (g, yye.sDy, 5 ), TE-
spectively. Let & and v be connected by [(7.4)] o = Iv, then
¥ (v,2) 1s related to y (0,z) by

Yv.2) = y(5.2) + ¥ B2 + 7, ] (7.9)

_Proof: Denote by A (V) = (3 + V)0 + ¥, _,),
AV)=(3 + Vy)+d+ V,_,). From Eq. (7.5) one finds the
relation

AVIO+V, ) =@+ 7V, NA(P). (7.10)
Take the solution'” y (9) of (2.5a), y (V) = €2 + O (z~'); then
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(see Ref. 13) (A ) - z")exp)((ﬁ) 0 1mphes that
a=(3+V, Jexpyld)=(x(d)+ 7, )expyld) satisfies
the equation AV)—2"a=0as follows from (7.10). But
is a solution of the form

o= a,,expfx(x(m +n[y@) + 7, |\ J)dx,

where a, does not depend on x, as follows from the first-
order differential equation

a' = (@) + dn[x@) + V¥, e
But y (5) + dIn[x(7) + 7,
does satisfy (2.5a),being
YW+ +V, J=e+0(z"
sition 2.1 of Ref. 13) formula (7.9) holds.

Corollary. The functional ¥ [(4.8)] is invariant, that is

H,2) = Z0,2). (7.11)

Theorem 7.1: The modified Hamiltonian systems (4.11)
are invariant under (7.4). That is

V=KV,
ifo=X"V,7#, and 0= lv.

Proof: For the proof take the derivative of (7.4) with

respect to ¢ having in mind (4.11), (7.8), and (7.11).

On the other hand, one can obtain another proof of
Theorem 7.1 by considering the invariance of the operator

# , in the Lax representation (7.1) as was announced.
From Proposition (7.3) one has the relation

. ] is a power series of z which

"). Thus, (by propo-

ex(v — ___(a +V _l)ex(U)

(7.12)
in which the constant factor 1/€z comes out by examining
the power series expansion of exp [y(v) — x(?)] and that of
ywm+v, ,

We shall also need to use the corresponding formula to
(7.9) for the solutions S of (2.5b} (see Ref. 13).

s =5t~ =2 5—)

which is proved in same manner as (7.9) was. This relation
enables us to write
SEe-*= L 3+ V) Sl (7.13)
€z
the analog of (7.12) for the ‘““adjoint problem”.
Now, we are in a position to formulate

Theorem 7.2; The operator .# (3.3) is left invariant by
(7.4). Moreover, the Lax equation (7.1) is invariant.

Proof: From (7.5), (7.12), and (7.13), keeping in mind
definition (2.8a) and (2.8b) of £ and ¢, it is easy to see that

£(0) = %a; W £ = eat (o).

Thus, one finds

a# )i =aD(£)ad™ 'aD (af)d = (D),
where (2.14) has been used. This formula, together with Eq.
(7.2), guarantees the invariance of (7.1).

As we can repeat the transformation (7.4) with v as
startingsolution, (/) = {1,/,/%,...,/" ~ '} arecanonical invari-
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ance maps for the modified Hamiltonian systems (4.11).
That /" = 1 follows from (7.5) and the property a" = 1
[(2.11)].

The same argument used in the Miura transformation
for the KdV equation allows us to bring Backlund transfor-
mations for the Gel’'fand-Dikii equations (4.2).

By Theorem 5.1 u = Q (v) satisfied Eq. (6.4), and the
same is true for ¥ = Q (lv). We take advantage of relation
(7.10) in the form

Luo+Vv, )=0@0+V,_,)L @) (7.14)
according to the transformation law L (u) = A (V).
In terms of the variables do, = &, + u,,
b, =u, — u,, Eq. (7.14) reads
(o
al{ — - ﬁn _ ar _ﬁ ’
k [}; - k 2 ( ! |)
(7.15)

1
I’(l—zﬁ;<~l _ZBL(_”_Bn72 +/{‘O))

k=0,1,.,n -2,
where 4, = constant and V., _, has been expressed as
V,_ | =(1/n)B, , + A, asfollows from (7.14). We can re-

write (7.15) in the form a; = g, (£ ) but only in the cases
n = 2, 3 are the g, differential polynomials in /3.

In fact one has

@2 =ln—2;,— B
— 24,8, > —Zﬁn,3 + A,, A, = const,
ay_,= W B ) (7.16a)
- 24, B, -2, B, ) (7.16b)
plazlin=2) _213)3' ”22’ B, — ”(;)2 2 B,
"’n Lip, . B,

/11/9’,’,72 —Br_ s =24B =28 .

Note'* that the first two terms on the right-hand side of
(7.16b) are total derivatives only for n = 3.

Vill. EXAMPLES

We shall give here some explicit constructions for the
symplectic operator and Backlund transformations pre-
viously considered.

n=2

b=(_y7/), y = const, = —(bb)"'= — 1/29~

The symplectic operator 4 [(4.10)] is # = (1/2%*)d and

Miura transformation u, = Qq(ve) = — (Y0 + ¥°v3 ). The
operator ¥ is found to be
Y =d,04d Q= —7/2 (¥3 + 2¥700)A(¥d — 2¥°vo)

=18 + 2ud + ug.
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To formulate the Bicklund transformation, Eq. (7.16a)
is here

a, = “%63 — 2485+ 4,
or 7 a, = (6/8B,)F, with
F = fdx(— B3 — 2485 + 24,B,)being 7~ = 29, the oper-
ator of Gel'fand-Dikii.

n=3.
We select for simplicity the matrix
1 1
=L |1 _1]
v2\ 2 0
which gives us
1/1 0)
S=- 3 (o 3/
The transformation is induced here by
1 1
d+ v+v)(c9+ v—u)a—x/Zv
(6 g+ v0)(0+ —o— i) o
=3 +u,d+ ug
The operator ¥ =d,Q4d ;" Q,
g — (900 L(901)
g 10 y 11

with
Goo= —4[20° + 4u, 8 + 6u| P
+ (6uy — 6uf + 2u,%)d]
+2uy — 3uy +2uui ],
Go= —9% =34+ u,0 + 3ud + u},
&G, =294+ 2u,0+ u},

which are found after some calculations. The operator of
Gel'fand-Dikii is here

(%)

For the Biacklund transformations, formulas (7.16a)
and (7.16b) yield

ai =B =181 — 248, — 2B, + 4,,
o= — B + 31 — 3B — U]
+B — B4 — 248, + 4,
that may be written in the form
Ta=V,F (8.2)
with the Gel’fand-Dikii operator (8.1) and the functional

F(g) =de(3ﬂ<>3{ BB — 61— IBE + 30,5,
B gt - L L +A8T +348,).

When a Hamiltonian system admits a symplectic operator
which does not contain the variables (the #, in this case), the
Bicklund transformations which may be written in the form
(8.2) prove to be canonical in variance maps for such system.’
Here, that is the case only for n = 2, 3.
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APPENDIX A

We shall construct here an equation®*' for the power
series V_ H [u,z] [Eq. (4.1) of Ref. 13].
Consider the formal series
= Sklx.z)
plxéz =3 §—— S, = —9)'s,

y and S being the solutions of (2.5a] and (2.5bj. For negative
k, (y — 9) is defined as a formal series in 8. From Egs. (2.2)
and (2.15) of Ref. 13 we get the relations

n k k

2 (a)ukstigl—!—a =2"S;, (A1)
k=0 a=0
n k41 .\
2 2(“l}a< a )Sk+l—auk(a)=zsl’ (AZ)
k=0 a=0

which are obtained in the Gel’fand-Dikii papers cited in Ref.
1. By introducing the multiplication law (see for example the
work of Adler in Ref. 2)

ailg Parfed) = 3 3a,Naia)

o I

(here d,=d) one sees that (A 1) and (A 2) are equivalent to
Lop =Z"p,
poL =2'p,

with L (x,£ ) = S2u, £ ¥ = e ~#*L (J)e**. Then p commutes
with L and the decomposition

S
po=3

k>0§k+l

p=p+p_s pr=3S5 i £5
&3>0

gives us
Lop, —p,°L=p oL—Lop_.
Since the left-hand side is positive in £ so is the right-hand
side and hence it contains the coefficients
S0, 1505, _ ,only.
The equations for p yield
Lopp, +p_)=2"p, lpy +p_JoL=2"p
and
Lop, +(Lop_), =2"p,, poL+(p °L), =2p,
to get finally
Lojp_oL), —(Lop_),oL =2'(Lop, —p.°L). (A3)
On the other hand p _ may be written in the form

Sk 1
p- ‘gogw _’<Z><)(§+5x)"’“

Iz

Here 1/(£ + 3, )¢ * ! should be understood as a power series
in 4, . It is easily seen that

k rk
Ry = Eo(a)azsw =58P, (x), k=012. (A4
by using the identity
& k
Sk = (l/ —_ ax)ks__— Z ( _ l)n(a)ag(spk Aa),
a=0

which is proved by induction.
The left-hand side of (A 3) depends on (R, R ,....R,, _,). To
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obtain an equation for V, H [u,z] = (R, )i Z5 [see Eq.(3.1) of
Ref. 13], R, _, should be expressed in terms of V, H [u,z].
To do that we use Egs. (2.5a) and {2.5b). From the Riccati
equation we get

n
Y u, R, =2"R,
K=o

{(we have multiplied it by S). The equation for S gives us
Rn - naan -1

=R, =S (-1 (ot Ry

i=0 k»i
(see the Proposition 2.3 in Ref. 13). If we eliminate R, be-
tween these two equations we deduce for R, _, the
expression

1k )
'(.)a,*—'—‘(ukk,-)
(= O0ksi+ 1 I

+_ 2 ). Therefore (A 3) induces the

1 —
=Sy
in terms of (R, R ,...,R
equation
(Y -z )V, H{uz] =0 (AS)

where 7 is the symplectic operator of Gel’fand and Dikii.
More detailed versions of these facts are available in the
literature cited.

APPENDIX B
In the work of Veselov (cited in Ref. 13) it is proved that

for r prime to n, the matrix a,,,,k,/ = 0,1,...,n — 2 in the
linear part of 6H, _ , /6u,
6H n-2
r+n o _ Zaklu,lr+k+l+17"'+'" (Bl)
(Sllk 0

is nonsingular (the Hamiltonians H,,H,,...,H, are not of in-
terest here). The following proof is due to Kuperschmidt and
Wilson.'?

We consider the series p introduced in the Appendix I
for which the equation

Lop —poL =0
holds. Let p, , , denote the coefficient of 1/z" * " obtained
from the expansion of S, (x,z) in powers of z and
p" +n

= (d /dA )|, _op, . »(Au) the linear part of it. From
Lep, ., —p,. .°L =0 wededuce
E"p, =P,y n®€" + L%, ,0)—p, ,(00°L, =0,
— n—2
WhereLl=L= zukgkandpr+lz(0)=pr+ n(u)|u:0'BUt
k=0
S« (0) 2—3d,) 1
p(o)=;§k+l=; §k+1 nz""
_ zF 1
_zk: nz" ' £FT!
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and
1
pr+n(0) = _§r’
n

as follows fromy =z+0(z7"), S=

—+0(z "),

and the homogeneity properties of y and .S (we consider
¢,= 1 only; the proof for y'",§ " arbitrary is the same). If
we take into account the relations

§" pr+n :(§+a)pr+n7pr+n gn_é—”p_r+,, we get

d, n _
5[( G “) ’IJPHH + —nl—§’L.(§)—(§+ax)'L,(§)
or

- L rg2 (140787 —1 u
pr+n = _n_ Z §) Ii_ly

1+a/§)n 1§n7r
from which
— n—12
(Sk)r-+n — Zﬁk[ultr+k+l+lfnl’
=0
where f3,, is the coefficient of £7* *+/* ' =" in the series
1 {a+8)y-1
n(1+45)—1

and for r prime to » this Hankel matrix is nondegenerate. '’
The 1-1 relation between (R,,...,R, ,)and (S,....S, ),

S, = i (— 1)“(2)&“& o

a—0

the inverse of (B4), finishes the proof.
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A global two-point diffeomorphic extension of Lorentz transformations is constructed which
preserves the global Lorentzian metric structure of flat R 4, This global mapping induces, as a
tangent-space mapping, instantaneous Lorentz transformations parametrized by interframe
velocity functions. The elimination of pseudoterms from particle and electromagnetic field
equations leads to an exact analytic expression for the affine connection needed for covariant
differentiation. Examination of invariant particle equations gives an obvious proof of the
equivalence principle in terms of the symmetric part of the acceleration-group connection.
Transformation properties of the connection coefficients are shown to be in accord with general
covariance requirements. The specific case of the rotating observer is treated exactly where it is
seen that the affine connection merely supplies the exact Thomas precession term. Recent work
by DeFacio et al. is found to be especially convenient for comparison with the present work. The

results of the two approaches agree precisely. A summary of results indicates that the global
isometry approach gives results consistent with those obtained via presymmetry arguments.

PACS numbers: 02.40. + m

1. INTRODUCTION

A number of recent papers' ™ have dealt with accelerat-
ing observers in flat Lorentzian R * using modern differential
geometry and the concept of presymmetry. Local differen-
tiability and covariance arguments are shown to lead to ex-
tensions of previous results in such areas as Fermi—Walker
transport.’

Recent work has also appeared®® treating the accelera-
ting/rotating observer in arbitrary space-times via general
geometrical methods. Another approach, taken in this pa-
per, is to construct extensions of global invariance groups
[such as O (3) for Euclidean R * or the full Lorentz group L,
for Lorentzian R *] on flat metric spaces and then to investi-
gate the local (tangent-space) mapping induced by the exten-
sion of the global group.

In this work we extend proper Lorentz transformations
on Lorentzian R * to nonlinear transformations of relative
coordinates parametrized by arbitrary C' time-like inter-
fame velocity functions. By requiring that the global metric
7=(+ + + —)beinvariantand that Galilean and Lo-
rentz transformations result in low-speed and zero-accelera-
tion cases, respectively, a relative-coordinate map is found
which induces a tangent-space isometry consisting of instan-
taneous Lorentz transformations.

Particie four-momenta, defined in terms of tangents to
nonspacelike curves, then instantaneously boost to the accel-
erating reference frame, and the elimination of pseudoterms
from particle equations relative to noninertial frames gives
an analytic expression for affine connection coefficients ap-
plicable in all cases of C ? time-like observer world lines.

Particle equations lead immediately to a local equiv-
alence principle for the symmetric part of the affine connec-
tion.

Applications of the local theory are presented including
the simple rotating observer (where the affine connection
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supplies the Thomas precesion term) and a comparison with
the results of DeFacio et al.? (which are identical with those
obtained via the methods shown herein).

Pseudoterms appearing in Maxwell’s equations are also
eliminated via the same connection and covariant Maxwell
equations are written down. The pseudoterms (pseudocur-
rents) are briefly discussed because of their implications con-
cerning charge conservation.

Finally, a summary indicates that the results of this pa-
per are consistent with those obtained from general presym-
metry arguments.’

Concerning notation, since some manipulations en-
countered in this work may be rather novel, many results can
most easily be obtained in coordinate form. However, covar-
iant coordinate-free results will be indicated where appropri-
ate.

Il. GLOBAL COORDINATE MAP

Covering Lorentzian R * with a single orthonormal Car-
tesian coordinate patch, (x, y,z,ct ) = (x', x*, x>, x*), the view
is taken that the causal structure of the C © manifold is abso-
lute in that all time-like observers must obtain the same caus-
al relationships between any pair of events. More exactly,
any mapping of coordinates ¢:R * >R 4, parametrized by a
future-directed time-like C? curve, must preserve the Lor-
entzian metric structure globally. The mapping is then natu-
rally cast as a relative coordinate map due to its intrinsic
nonlinearity (even in the Galilean limit) and due to the neces-
sity of keeping (X, — X, X, — X,)invariant, where X,, X, €
R *. By hindsight, the relative-coordinate map is convenient,
too, in that it is translation invariant and easily defines a
tangent-space mapping.

Almost all results may be obtained by considering a
two-dimensional (2-D) example. Let (x,,ct,) and (x,,cz,) be
two events relative to an origin O. Let an origin O’ move with
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velocity v(t ) relative to O. The relative coordinate transfor-
mation is, in the Galilean limit,

(x, —x,) =x, — x, —f v(t) dt, (2.1)
fH
and (£, — t))'=(t, — 1,).

Similarly, relative coordinates may be taken as the basis
for special relativity (SR}, to no great advantage since the
theory is linear.

We then take as the general form for the mapping, in the
2-D case,

(X —x)" =4 [(x; — x,) — belt, — )],
and
ct, — 1)) = A [clt, — 1)) — 8lx, — x))].

For an isometry, one immediately requires
Ar=(1—6%"", and to obtain the Galilean limit one re-
quires 6—0 for |v(t )| €c. Then, Eq. (2.1) is obtained, for low
speeds, if

5= (fu(t ) dt )/r:(tz —1). (2.2)

Interestingly, the § factor generalizes the rapidity 3 of
SR to the average velocity of O ' relative to O during the
t, — t, interval. Clearly, if v(t) = v, (a constant),

8 =B, =uvy/c.

Even in this 2-D example it is obvious that the global
map reduces to identity for pairs of events such that § = 0.
This does not, however, eliminate accumulative tangent-
space effects such as proper time intervals and spin preces-
sion.

To generalize to arbitrary velocities, v(¢ ), of O ' relative
to O, the 3 parameter of SR is replaced by

5= frzv(t Vdt Jelt, — 1)) (2.3)

again the average O ' velocity is relative to O. Defining

A = (1~ 18|%)~"2 the A and & factors are then inserted in an
arbitrary rotation-free Lorentz transformation matrix,'°
A*#, and the desired isometric map is

(X, — X\)* =A%, (8)(X, — X)), (2.4)

where the summation convention applies but indices are not
tensor indices. Due simply to the structure of A #, we obtain
that (X, — X,)* = |r, — r,|* — c*(t, — ¢,)* is invariant.

The 8 parameter is well behaved, even as ¢,—,, since
v(t)is C ' and the mapping Eq. (2.4) is differentiable as well
since |v(t )| < cis alsoassumed. Consequently, the mapping of
relative coordinates defined by Eq. (2.4) is the diffeomorphic
isometry, ¢:R *—R %, which was sought.

Clearly, for time intervals during which v(¢ ) is constant,
ordinary Lorentz transformations results and if | v(¢ }| €c dur-
ing an interval, Galilean transformations result.

While being fundamental in guaranteeing an invariant
causal structure on the Lorentzian space-time manifold, the
global map is not particularly important for calculations.
The induced tangent-space map of Sec. 3 is of prime impor-
tance for applications.
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lll. TANGENT SPACE MAP

For events in R * whose ¢ labels are equal, the 8 and 1
factors of Sec. 2 become time-dependent B and ¥ factors. In
other words, equal-time events define relative coordinates
which instantaneously Lorentz transform. This will be im-
portant in Sec. 4.

Similarly, infinitesimally separated events, for which
(X, — X} = dx*, will also suffer instantaneous boosts to the
accelerating observer’s frame via''

dx = A* (B(t)dx". (3.1)

Hence, the global map induces a tangent-space iso-
metry at each point in R * according to the time-dependent
B(z) of the accelerating observer.

The natural parametrization of time-like curves via an
invariant proper time is again possible since, if dx* repre-
sents an infinitesimal displacement along such a curve,
dr’ = —7,,dx"dx"is invariant (c = 1). Hence the covar-
iant velocity or normalized tangent vector has components
v = dx*/dT and a massive particle’s four-momentum is co-
variantly defined as p* = mv*. With a quantum hypothesis
appended to interpret massless-particle four-momenta in
terms of null-curve tangents, the tangent-space map implies
an instantaneous Doppler shift, as expected.

Then, (1,0) tensor fields on Lorentzian R * simply boost
to the accelerating frame as

THx') = A", (x)Tx),
with tensor products of vector fields and 1-forms transform-
ingviaA# andA ~ ', oncontravariantand covariant indi-

ces, respectively. In particular, the components of the elec-
tromagnetic 2-form F,,, transform as

F',,=A "A" ‘BVFQ,,.

Using Eq. (3.1), transformations of coordinate velocity,
v = dr/dt, and coordinate acceleration, a = dv/dt, may be
easily obtained.'”

The coordinate 4-acceleration, a* = dv*/dr, will illus-
trate the need for a set of connection coefficients for covar-
iant differentiation. Relative to an accelerating observer,

— d_v“ =A#Vdvv + dAHV
dr dr dr

Clearly Eq. (3.2) contains a pseudoterm and that term is
Galilean for small |B(z)| in the matrix A. The pseudoterm is
absent for inertial observers (dA /dT = 0).

If the transformation is to the self-frame of the acceler-
ating observer, v’ = (0,c)and a’ = (0,0) from Eq. (3.2). Hence,
self-4-acceleration has been eliminated all along the acceler-
ating observer’s world line but the 4-acceleration is not a
covariant quantity. In Section 4, connection coefficients are
obtained to eliminate the pseudoterm in a’ = dv'/dr.

a*

v, (3.2)

IV. THE AFFINE CONNECTION

Let O be an inertial frame and let O be noninertial rela-
tive to O. Rewriting Eq. {3.2) as

73 ~ iy
dov ATy o pu B (4.1)

dr dr dr
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the left-hand side of Eq. (4.1) may be written entirely in terms

of bar quantities, viav* = A ~ ', 5" and
—d—(A #.A ') =0, to become
dr
T
di +Aua(_g__A —la )—s = A" éﬁ,
dr dr dr
or

dav* d

4 Ak, (-—A
dr ax’
We define the affine connection for O as

g~ dv¥
,lav)vﬁuv=/‘1pv .
dar

Fa=an (2L -*a). 4.2
L 7 .2)

Recall that the A matrices appearing in Eq. (4.2) involve
the variable 3 corresponding to O motion relative to O
(which is an inertial frame with constant B factor).

Hence for inertial frames the I” coefficients will be zero.
However, formally adding a (zero-valued) connection /~ on
the right in Eq. (4.1) we obtain the convariant equation of
motion,

dl TS v v
K_=(E)”=A“v(f‘i) X 4.3)
m dr or m
where
v d ) .
—a— = 71— + I'(v, }and K is the convariant 4-force.
r
[Note: I"(v, )means I",v” not I'§,v" since I is not sym-

metric.]

If the acceleration @* = O relative to O (inertial), Eq.
{4.3) is identically the geodesic equation

4 + (5,5 =0

dr
relative to O, as required. It is to be noted also that the covar-
iant particle equation [Eq. {4.3)] picks out only the symmet-
ric part of the connection. Hence we have a statement of the
equivalence principle that the gravitational connection is lo-
cally equivalent to an acceleration connection’s symmetric
part. The acceleration connection has zero Riemann—Chris-
toffel tensor so the equivalence is strictly local.

The antisymmetric part of the connection, arising from
antisymmetric rotation generators, is the source of Thomas
precesssion, which is obtained in Sec. 6.

V. TRANSFORMING I

The transformation properties of the affine connection
are easily shown to satisfy the general requirements imposed
by covariance.

For all inertial frames, I" = 0, from Eq. (4.2). Let O be
inertial, let O ' be noninertial with rapidity B(¢ ) relative to O,
and let O " be noninertial with rapidity B'(¢') relative to O .
The motion of O’ induces the tangent-space map A *_[B(z )],
whereas the motion of O "’ induces the the map A *_ [B'(¢ )]
Under composition the combined tangent-space map is
A*,(t"\ A, (t) and the connection for O " is given by

a

r"=A4—2(A'4)",
axll
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where indices have been suppressed for simplicity. Using
8 /9x" = (A}~ '3/dx’ and simply differentiating, one obtains
in full-component form,

r"aﬂr =A ‘a __B(A )

a "
+AC (A )‘“ AN~ “’yl""‘m, 5.1
where
re_=A*, —a—‘vA
a ’

is the connection for O . It is seen that Eq. {5.1) is equivalent
to the general law for transforming connections.?

VI. APPLICATIONS

In this section we treat two problems, the rotating
frame® and the comparison of present methods with recent
presymmetry formulations of accelerating observers.?

The rotating observers, O, relative to an inertial, O, will
be taken to have |B| = const and B-d B/dt = 0. For simplic-
ity we confine the motion to the xy plane. Connection coeffi-
cients are calculated using Eq. (4.2) in the form

T =Ar(4 ien ),

since A depends on B(¢ ) explicitly.
Nonzero connection coefficients are

= B, v—1),, .,
riz = —I;3 = _y(‘}’ 3 )(ﬂyﬂx Bxﬁy)7
c B
= = -1
Fi= -4 =""YUgs p4s)
V)
FL‘ - Flltl = _ziﬁxﬁx’ 1—:;4 = f;l = %ﬂyﬂx)
FiL=Thi=18, Th="T= %Bxﬁy,
Fg“ = —;1 = Jéﬁyﬁ'wandl_‘i‘t = F:z = '%By,

where B = d B/dr =y d B/dt and ff‘,ﬁéf‘;{,

These connection coefficients satisfy the general re-
quirements** of an acceleration connection.

Consider a classical spin vector, S, satisfying S#v, = 0.
Let dS*#/dr be given in the inertial frame, O. Relative to O,
S = (S,0) and & = (0,c) if the spin is taken to be at O.

After lengthy summations and manipulations, one
finds, using

Cu v v
VS: _ 4u IS _ 4u dS” (6.1)
ar ar dr
that
ds’ ; dS”
= - XS) = \ 6.2
2 (07 XS) " ar (6.2)

and d5*%/dr = 0, where o is the expected Thomas preces-
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sion angular velocity,

O

A second application is to compare results of the pre-
sent method with recent exact calculations of accelerating-
frame observations of free {inertial) particles.? Two cases are
considered in Ref. 2, those of spatial and null simultaneity. It
is to be noted that in both cases, the authors choose to define
X — z(7) in terms of a basis of tangent vectors at z(7), namely
in terms of ¥ = dz/d and a space-like orthornormal basis
for S,,, = u*. While it is generally not possible to equate
manifold and tangent-space coordinates or displacements,
expressing X — z(7) as reu* for the spatial simultaneous case
and asy = — ru + r in the null simultaneous case has the
advantage of being realistic in that an observer makes obser-
vations via the local tangent space. We agree that spatial
simultaneity has mathematical deficits as well as describing
a physically, impossible measurement process.

Accepting the expressions for X — z(7) in either case,
the calculation of ¥ and ¥ leads directly to the results given in
Ref. 2. Also, we are in complete argreement regarding null
simultaneity of two events as an invariant statement and
hence as an equivalence relation for all observers. The invari-
ance of the null simultaneity statement is obvious whether
manifold coordinates and the global map are used or the
tangent-space expression and the induced local map are
used.

Vil. ELECTRODYNAMICS

The contravariant components of the electromagnetic
2-form, F**, transform as a (2,0) tensor via

F™ = A", A"GFP,

however, the Lorentz covariant Maxwell equation

,F* = —(4m/cWJ” will take on pseudoterms from the
time-dependent boost to an accelerating frame. Specifically,
we obtain

O F* = [3,(A* A ) [F¥ — (4m/c) ™, (7.1)
where J¥ = A ¥_J “. Due to the symmetry of the A matrices
and the antisymmetry of F one still obtains a continuity
equation

3,9, F* = — (4n/c)d,J" =0,

but Eq. (7.1) may be interpreted as containing pseudocurrent
terms. It is easily demonstrated, using J ',, =A" "#6 /at,
that the pseudoterms of Eq. (7.1) have vanishing fourth com-
ponent (no pseudocharge) which is physically reasonable.
Also, the boosted Maxwell equation of Eq. (7.1) may be rear-
ranged, whereby the pseudoterms are expressed in terms of
the connection coefficients of Sec. 4, to obtain a covariant
Maxwell equation.

9 F™ + I F" + [ F = —(d/c}"

or

230 J. Math. Phys., Vol. 23, No. 2, February 1982

FBg— — (dm/c) P

In noncovariant form, keeping pseudoterms as inhomo-
geneous pseudocurrent terms, a Green’s function integral
equation solution for F is easily constructed.'?

VIll. SUMMARY

The construction of a relative-coordinate-defined non-
linear extension of Lorentz transformations as a diffeomor-
phic isometry on Lorentzian R * leads to a number of pleas-
ing results. Galilean and special relativity can be reproduced
as limiting cases of the global-manifold map. The tangent-
space mapping is entirely in agreement with presymmetry
arguments in that it is parametrized by interframe velocity
functions and acceleration covariance can be explicitly dem-
onstrated with a closed form for the affine connection. The
equivalence principle follows immediately from invariant
particle equations. Finally, covariant electrodynamic equa-
tions were constructed based upon the connection for parti-
cle equations found in the present work.

Subsequent work has shown that the induced tangent-
space isometry found for flat R * may be mapped onto the
usual D ""*%9 @ D ©'/2 gpinor representation of the full Lo-
rentz group thereby generalizing the Dirac equation to ac-
celerating frames for which the appropriate connection coef-
ficients have been found.

Working, via similar isometry techniques, on arbitrary
space-times it has, furthermore, been possible to find a glo-
bally isometric tangent-space map induced by arbitrary
time-like observers. Acceleration covariance has then been
shown for general space-times. Careful analysis of the map-
pings involved in defining a general spinor theory has result-
ed in a generally covariant Dirac formalism as well.
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Local particle interpretation or, equivalently, an enlargement of a structure group to the
Poincaré group at each point of a Riemannian space-time manifold naturally results in a
complexification of the Clifford algebra for the tangent Minkowski space. Following
Crumeyrolle, twistor space is identified with an appropriate one-sided ideal of this algebra.
Every antiautomorphism of the latter provides a unique projection from the complexified
Clifford algebra onto the affine complex Minkowski space. This projection commutes with the
action of the Poincaré group. Using the above approach, three projections (the cases of
symmetric, antisymmetric, and Hermitian tensors) are derived. The projection in terms of the
antisymmetric, decomposable tensors is shown to give the Penrose projection.

PACS numbers: 02.40.Ky

1. INTRODUCTICN

The technique of Clifford algebra calculus has been
proven useful in the theory of spinors,'™ especially in the
curved twistor theory.®” In the present paper it is shown how
this technique used locally over a complex space-time mani-
fold can be used to derive two new projections from a tensor
product of twistor spaces. The very well-known projection
given by Penrose’~ has been rederived for a purpose of com-
pleteness. In Sec. II we give a short historical survey on the
problem of accomodation of translations in a spinorial fiber
bundle and the logistic of our calculations. Section III starts
with a brief review on an abstract Clifford algebra and its
representation in a spinor space. The conformal group
% (1,3) is introduced and its elements are expressed in terms
of the Clifford numbers. Section IV deals with certain repre-
sentations of ¢’(1,3) on a complex Dirac-Clifford algebra
defined through the antiautomorphisms of the latter. Main
results of this paper are derived in the coordinate-free lan-
guage. In Sec. V following the well-known approach of Refs.
1 and 10 we introduce a twistor space 7 as an ideal in the
Dirac—Clifford algebra. Hermitian and symplectic forms in-
variant under U (2,2) and Sp (4,C) are defined on .7". In Sec.
VI we define explicitly the isomorphism between a complex
Dirac-Clifford algebra and a tensor product of twistor
spaces and restate our results from Sec. IV in terms of sym-
metric and Hermitian tensors. In Appendix A we list all
formulas from a Clifford algebra calculus necessary to ob-
tain our results whereas Appendix B explains the notation
used in this paper.

il. MOTIVATION AND SHORT SURVEY

Many geometric ideas can be expressed algebraically
using the well-known algebra introduced by Clifford one
hundred years ago. The advantages of geometry based calcu-
lus from the point of view of simplicity and potentially rich

*'On leave from Wroclaw University, Wroclaw, Poland.
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physical applications have been stressed by many authors. In
particular, in Refs. 11 and 12 such geometric formalism is
fully developed.

In the present paper we are interested in exploring the
possibility of using exclusively Clifford algebra calculus for
the old idea'? (see also Refs. 14-16) to describe the physical
phenomena in spinor space rather than in real affine Min-
kowski space M °.

A Clifford algebra gives very natural and clear geomet-
ric interpretation to constructions involving affine Min-
kowski space and twistor spaces. Perhaps the crucial point
for all results presented here is the link between the Witt
decomposition of tangent Minkowski space, basic in certain
approach to spinors and twistors'” (cf. Refs. 3, 4, 6, 10, and
18) and the Poincaré group as the structure group (cf. Refs.
19-21) of the fiber bundle over a real Riemannian space-time
M.

We express all notions in abstract (coordinate-free) Clif-
ford algebraic language and show how all conclusions result
from the Clifford associative multiplication and regarding
each point of M as having attached to it a 16-dimensional
real Dirac—Clifford algebra & . Thus we have a bundle of
Clifford algebras over M, which is natural from the view-
point of geometry and will provide a natural physical inter-
pretation for our results. When we restrict ourselves to the
tangent bundle (instead of the Clifford bundle mentioned
above) with the Minkowski bilinear form 7,,, [signature(1,3)]
defined for each tangent space T, M, we have in mind the
geometry of tangent Minkowski space. It is the Clifford alge-
bra & at p e M in terms of which the latter can be expressed
in full. Having defined a Clifford algebra it is essentially the
same as having a symmetric nondegenerate form (cf. Refs 1,
22,23).

We believe that the above point of view would be also
convenient while investigating a nonrelativistic Galilei—
Newton space-time N for which 7, N has a singular metric (0
1 1 1). It would be interesting to study the structure of Clif-
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ford algebra and its representations for this Galilei form.’
However we are not going to consider this problem here.

In the present paper a twistor space is defined as cetrain
ideal in Dirac-Clifford algebra (cf. Ref. 24 and more recently
Refs. 10 and 22). The isomorphism between the latter and
the tensor product of the twistor space with itself makes it
possible to express the coordinates of any algebra element in
terms of its tensor coordinates (see Sec. VI).

Three projections from tensor products of twistor
spaces on complex affine Minkowski space are derived for
symmetric, antisymmetric, and Hermitian tensors respec-
tively. It is proved that the conformal group, while acting
linearly on the Dirac~Clifford algebra induces, via twistors
and the above isomorphism, correct conformal transforma-
tions in the complex Minkowski space. It turns out then that
the tensor product of two twistor spaces is the smallest com-
plex manifold®® from which one can project.

In the case of decomposable tensors the above projec-
tions define the same complex vector (this was shown in Ref.
26). Projection involving the antisymmetric forms was found
by Penrose and discussed in some detail in Refs. 26-28.

We will now make a few remarks about possible deeper
motivation for the present considerations. One is the at-
tempt'? (cf. also Ref. 16 and the references therein) to de-
scribe physical phenomena using fields over the twistor nu-
merical space. This space has more dimensions than
Minkowski space which allows more conservation laws, for
example, the conservation law of charge, to be given a geo-
metric interpretation. On the other hand, it makes it possible
to describe the internal degrees of freedom of elementary
particles with the help of the parameters of twistor spaces
tensor product, a typical fiber over real Minkowski space
being considered as a base. An interesting point is that a
Minkowski vector needs to be constructed from at least two
twistors (tensor fields of rank two), that may provide a geo-
metrical interpretation for quark confinement.

One can also view twistor space as the classical relativis-
tic phase space (cf. Refs. 9, 28, and 29). The present paper
could be one of the steps in the above program to treat the
twistor coordinates as the base-space coordinates for the cor-
responding vector bundles over twistors.

The connection between M ¢ and twistor spaces (which
are the Cartesian products of Lorentz spinor spaces) has its
own history. Several different solutions were suggested to
the problem of accomodation of translations in a spinor
space so that the space-time Poincaré group (or its extension
to the conformal group) could be retained. In 1936 Dirac
noticed the possibility of representing translation generators
by d, + AY1 + iys)y, (i.e., with an intrinsic part), contrary
to the usual 4, for ordinary Dirac bispinors. This point of
view was further investigated in Ref. 30, where a close rela-
tionship was shown between the complex Dirac—Clifford al-
gebra and conformal group (in this respect cf. Refs. 18, 31,
and 32). Thus Dirac?® (cf. also Ref. 30) had already distin-
guished the ordinary Dirac bispinors from fields (redisco-
vered later in Ref. 8 and there called twistors), belonging to
the representation with intrinsic translations. Evidently
Penrose first found one of the connections between twistors
and M ° (cf. Refs. 9, 14, and 28 and the references therein) by
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means of the complex Pliicker coordinates of bitwistor [a
skewsymmetric tensor of the conformal group SU(2,2)].

In the present paper, however, we would like to empha-
size the possible geometric interpretation of twistors
through the real Clifford algebra for de Sitter space rather
than the holomorphic aspect of the complex manifolds advo-
cated by Penrose (cf. Ref. 7, 14, and 28.)

A quite different approach to the connection of twistors
with space-time was suggested in Ref. 34 (see also Ref. 35)
where real space-time coordinates were expressed as bilinear
functions of twistors. In particular, we will show in the last
section that such a representation is in contradiction to the
desired form for linear transformations of the twistor space.
We also show that the corrected representation of this type
coincides with Penrose’s formula in the case of simple Clif-
ford numbers (decomposable tensors).

Different solutions were found in Refs. 36 and 37,
where the author abandons the assumption of linear repre-
sentation of the conformal group in spinor space (this repre-
sentation is obviously linear when restricted to the Lorentz
subgroup). In this case, the following representation of the
space-time coordinates, x* = 77%#{ can be retained.

One may ask, of course, if the formulation in terms of
Clifford algebra is only an elegant restatement of known
ideas and how much insight and new substance can be ob-
tained using this approach. New light has recently been
thrown on this question in Ref. 38, where a very elegant and
transparent treatment of the Riemann curvature tensor and
its properties was given. We also think that it would be a
great deal more difficult to derive these projections without
using the concepts of Clifford algebra.

tIl. PRINCIPAL CONFORMAL BUNDLE

No global properties of a space-time manifold M are
investigated in the present paper. & always denotes a real
Dirac—Clifford algebra of a tangent Minkowski space 7,M
for some fixed point p € M.

Recall some of the most important notions concerning a
general Clifford algebra C (Q ) of a linear, finite-dimensional,
real vector space V, dim V' = s, with a bilinear form B :

V X V—R, and its associated quadratic, nondegenerate form
Q. For details see Refs. 1, 2, 5, 10, 22, 23, and 39. The ele-
ments of C (Q ), denoted here by m, n, ---, are called “*Clifford
numbers.” Any Clifford algebra C(Q ) can be decomposed
into a direct sum of k-vector spaces

k s
Co=AV,k=0,1,2,+,5C(Q)= Y @C,, where A de-

k=0
notes the exterior vector space product. Evidently, C,=V,
C,=R (real numbers), and dimC,, = (3.). Thus any element
meC (Q)canbewrittenas m = Z {m),,(m),eC k=0,
k=0

1,2, -, s, where (m), is called a k-vector part of m. At this
point we adopt notation from Ref. 12.

The Clifford algebra C (Q ) is a Z, graded alegebra. This
important gradation is due to the linear automorphism a,
called also a principal automorphism of C (Q ), which is just
the reversal of space and time tangent velocities, i.e., PT
transformation. Let m, n € C(Q); then

(1) almn) = a(main),
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2) a({lm),)=(—1)(m)eC,,k=0,1,2, 5.

With respect to a, for distinguished V as the subspace of
C(Q), there is the following eigenspace decomposition (for a
matter of convenience, when Q is not specified we put
C(Q)=C):C=C"oC~ whereC * = eigenspacefor + 1
{@|c- =id)and C~ = eigenspacefor — l{a|.- = —id).
C * is also a subalgebra of C.

Let B denote the unique linear antiautomorphism on C,
an identity when restricted to V. 8 is commonly called a
principal antiautomorphism of C (Q ). Explicitly we have

(i) B (mn) = B (n)B (m) for any m, n, € C(Q),

(it) B{{m);) = (= 1}* = W2{m), for (m), e C,,
k=0,1,2,-,s.

The antiautomorphism £ allows us to introduce the
spinor norm N (m): = 3 (m)m for an arbitrary Clifford num-
bermeC(Q). LetK = {meC,mV = Vm]}. Then the spinor
norm of any element from K belongs to the center Z of C (Q)
(see also Sec. III).

Itis known that if dim¥ = s = p + g is even, i.e., O has
signature (p,q), then Z = R and forsodd, Z = R @ C,, where
C, is a one-dimenstional space of pseudoscalars (cf. Refs. 1
and 10).

Let #(p,g} be a unit pseudoscalar and

* (0.g) = (— 1)~ "2detQ, detQ =  — 1. (3.1)

Then any element of center Z for s odd can be represented in
theform Z 3 a + b* fora, b € R. Let Z * be the set of all
invertible elements of Z. Then the Clifford group G of Q is
just the subset of K such that N(G )€ Z * and

N{g.8;) = N(g)N (g,) for g,, 8, € G. The homomorphism
A:G—O0 (p,q) onto an orthogonal group of quadratic form Q
with signature (p,q) is then given by

Alglv=gvg~'forve V,ge G where ker A~R *.

One also defines Pin (Q ) as the set of elements of G for which
the spinor norm is * 1 valued. The orientation-preserving
(pseudoscalar *) special Clifford groupis G *: = GnC * and
A (G *) = SO(p,qg) for which N(G *) = R *. The spin group
Spin(Q) is defined as the even part of Pin(Q), i.e.,
Spin(Q )=[Pin(Q)]* CG *.

Any 2°-dimensional associative Clifford algebra is at
the same time a Lie algebra with Lie multiplication
[m,n] = mn — nm for any Clifford numbers m, n. The Lie
structure is uniquely induced by the fundamental Clifford
geometric multiplication.

Using S it is easy to see that the space of 2-vectors C,
forms a Lie algebra o{p,g) of dimension n(n — 1)/2, the Lie
subalgebra of C. Let us decompose & as follows:

Dt =SeTeP
and

D =Ved, @=D D",
where from now we adopt new notation uniquely for &,
(k=0, 1,2, 3, 4), namely, &, = S (scalars), &, = V (vec-
tors), &, = T (tensors), &, = A4 (axial vectors), &, = P
(pseudoscalars), while the respective k-vector parts of m € &
we denote by s, v, 1, a, and p. Then the Lie structure of & /Z
is given by

(PA)CV, T2, 1CP,, VV]ICT,

(4, 4)CT,{V,A]CP, (P,V]CA, (3.2)
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k
where &, = A V. Here V is identified with T, M. Equation

(3.2) shows that the algebra & canbealso considered asa Lie
algebra of the group of inner automorphisms of Z.
The following isomorphisms take place:

Lie{ 2 /Z }~s0(1,5}>su*(4). (3.3)

The group SU*(4) will be introduced in the next section as
the group of linear mappings of a twistor space 7 commut-
ing with a particular semilinear map &:.7 —.7 (cf. Ref. 40}.

We would like to enlarge the Lorentz algebra of tensors
to that of Poincaré group. If one looks for the translation
generator as a linear combination of vector and axial vectors
there is no solution for the hyperbolic form % unless one
complexifies &. Alternatively, one can think in terms of the
mapping so(1,5)—s0(2,4) via complexification
su*(4)—su(2,2) (see next sections). However, formal algebra-
ic complexification without an underlying geometric basis is
contrary to the philosophy of the geometrical calculus (com-
pare, for example, Ref. 12). Therefore one would like to have
a geometrical interpretation of the imaginary scalar by
means of the new “hidden” dimension. This is due to the role
of 7 as the unit pseudoscalar of Clifford algebra = for a real,
five-dimensional de Sitter space {the center Z is then two-
dimensional). From (3.1)fors = 4 or 5 we have »(Q )* = detQ
and one demands that detQ = — 1, which means that the
desired de Sitter-Clifford algebra 2 is simple. Therefore,
there are three possibilities: ¥, , —de Sitter space with bilin-
ear form of signature (+ + + + —), V,;and V5. How-
ever, one would like to consider the Dirac-Clifford algebra
& as an even subalgebra of 2. This is the case if V.=V, .
Complex conjugation now in & has a clear , geometric in-
terpretation as the principal automorphism «; in Z. That is
why algebra &, stable under complex conjugation, can be
identified with the even subalgebra of =

It=9 =SoT.ed,andS =V, e T.0P,,
where 2, = S (scalars), 2, = V, (de Sitter vector space),

3, =T, (tensors), £, = T, {dual tensors), £, = A4, {axial vec-
tors), and 2, = P, = j® R (pseudoscalars). Moreover,

A, =iV, =A+PorV+P,

T.=ieT,=V+Tord+T,
and 7 is the unit pseudoscalar for the simple algebra 2, hence
i€ Z, (center of 2).

Let {e, } be an orthonormal basis for T, M, i.e.,
e e, =M i, v=01,23and {f, },a,b = 1,2,3,45,
fufy =8a = { — diag 7,,,, + 1} = (4,1) can be a corre-
sponding basis for V. Here {f, } = {i*e,, i*}.

For Lorentz signature (3,1) one gets a de Sitter space
with signature (2,3). 2 forg,, = diag(+ + + + —)and 2

for g,, = diag( + + — — --)are isomorphic as universal
Clifford algebras (cf. Ref. 23). A possible basis for V, withg,,
= diag(+ + — — —)is {fi, e, }. Thus i=+(4,1).

Now let 3; be a principal antiautomorphism in = and
¥,=a,°0;. Acting with ¥, on 2 one gets the following
decomposition:

>S=3g Sac
where
7:(29) = — 2, (2%) = 2*
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and
=V, eT, 0P,
s =4, 0T,

It can be shown that £/P, is a 15-dimensional, real Lie
algebra of the conformal group o(2,4)=~su(2,2). In other
words, {Ve Teid ®iP} and { V«—sA4 } provide two such
algebras; the latter occurs due to the duality in 2:
Aji=IiA, =V, Ve Tand A& T areboth de Sitter-Lie alge-
bras. For the physical meaning of 15-dimensional, real
Dirac-Lie algebra (3.2) see Ref. 18.

Recall that, due to the isomorphism between £ and
Z°, a, acts on 2 as complex conjugation while B, = Boa,
B and a being principal automorphism and antiautomor-
phism in &,

A conformal group can be introduced by means of ex-
ponentiation of its Lie algebra. The connected component of
identity of conformal group %" = %'(1,3) =
{g = explk), keZ/P,}. Also a,(g) = explar, (k ), B.(g)

= exp(B,(k )), where g = exp k, k€Z°/P,. Since y,(g)
= exp( — v, — t,), v,€¥, and t,€T,, then y,(g)g = 1 for any
element g of J%". The generators of %" are

(1) de Sitter translation: SM = e, ia + bi*),
a=1+1/Rb=1~-1/R* Ifa=b=1, (onecanobtain
this by means of the contraction R— o) then S, = le,

(1 4 i»)=P, and one gets a generator of the Pomcare trans-
lation. If —a =5 =1thenS, =le, (— 14 i*)=K,,agen-
erator of the special conformal transformation.

(2) Lorentz rotation:

M, =le, Ne, =l[e, e ]

(3) Dtlatatton

D= —ix,
Lets=¢€“S,,t=7P,,c=y"K,,d=p'Dand A = A"

M, pv=01,2, 3 whilee’, 7, y* p’, A #" are real num-
bers. Then after integration one gets the corresponding
group elements
(1) de Sitter transformation: g, = exp s = cosh w

+ s- sinh w/w, @50, where ” = }(e”¢,,) (a*> — b ?). When
R—w (0—0),8,—g, =1+5|,_,_, =1+t (Poincaré
translation), and for
(2) special conformal transformation: g,

=expc|_,_p1=1+c

(3) dilatation and Lorentz rotation: g, = exp d = coshf
+(sinh §)ix,{ = —p'/2and g, =expA, A =A""M,,
respectively.

Therefore the enlargement of the Lorentz algebra of
tensors of T, M to the Poincaré algebra naturally results in
geometric complexification of the Dirac~Clifford algebra.
< for T,M isisomorphic to the real de Sitter—Clifford alge-
bra 3 for V.

IV. PROJECTIONS FROM - ON COMPLEX AFFINE
MINKOWSKI SPACE-TIME (V)¢

We begin this section with some general remarks con-
cerning the subgroups of C *, the set of all invertible elements
of a Clifford algebra C (Q }=Cand their different linear repre-
sentations on C as a natural representation space. We want
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to emphasize the fact that for a fixed group GC C * one can
define its linear representation 7 on C by means of any (cy-
clic, length 2) antiautomorphism ¥ of C, invariant under
group action in the sense that the following diagram
commutes:

G XC3( g,m)—m(m)—gmr( gleC

lr

G X C3(g:n\m))—v,(vim))=gy(m)y(g)eC. (4.1)
In order to enumerate all antiautomorphisms of C, called
here y,, i = 1,2,--, it is sufficient to consider the group of
automorphisms, called a;,j = 1, 2, - of C, Aut C, and one
fixed antlautomorphlsm, say B of C, for any ¥, = a, 98 for
some a; € Aut C.

In the forthcoming we restrict ourselves to the sub-
group Aut,C of Aut C where Aut,C = {a, € Aut C |
= 1}. Notice that Aut, 2 = {1,a,a,,a%a, } where a is a

principal automorphism of &~ while a, denotes complex
conjugation in &°. Since y(mn) = y(n)y(m) for any m,n € C,
= 7;3& and 7;:G—> Auty

onto

is a homomorphism where Aut y denotes a group of linear

bijections y,: C—~C preserving y.
Diagram (4.1) gives rise, in general, to a so-called twist-

ed adjoint representatlon (cf Ref. 1 and 10} ya(g, where a €
Aut,C. For let 3 (g) = g~ . Then for a given y we havea €
Aut,C such that y{g) = a(g_ '} and

Velm) = gmalg™"),

Vaig (M) = alglmg ™" (4.2)

There are three independent antiautomorphisms in % :
B, a°p, a;of and their composition aoa, of. They provide
four different realizations (representations) of any group
G C C*on C, each of which preserves one antiautomorphism
[in the sense of the diagram (4.1}].

We want to point out here the important fact that the
condition that a representation 7; of G commute with y does
not lead to any restrlctlon on G itself. However, if one re-
quires that V.oV =V 07/, holds for everyge Gandi =1, 2,
then the group elements need to satisfy the relation
71(g) = ¥,(g). In the very same way,
¥1lg) = 7,(8) = - = ¥, (g) for some k if the antiautomor-
phisms y, through y, are to be preserved by a group
representation.

Therefore, for a given group GCC* wehave two types
of group homomorphisms, ¢ and y, where

c*:aagi¢ eInC: ¢ (m) =

it can be easily shown that 7:g. O;A/gz

t

gmg .,

c* DGBg—»yge Auty: yg(m) gmy(g),
and In C denotes a set of inner automorphisms of C. These
two homomorphisms are of great importance for all future
applications. Here ¥ is called the action of GCC * on C.

For a given y one can define a corresponding norm N,
which is amap N,: C 3 m—N,(m) = y(m)m € Z, where Z
is the center of C. We have the following diagram (for every
meCandgeG):

N,
Coml—Vimj=meC
be v te
Cogmyl g)—=-gy(m)y(glgmy(g) = gyim)my(g) (4.3)
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If one requires the above diagram to commute then a sub-
group G, of G for some antiautomorphism y can be defined
as

G,= {geG, y,(m) = ¢,(m) for every meC}. (4.4)

Notice that (4.4) is equivalent to ¥, (¢) = 1 and

N, oy, = 7,°N, for every g € G,. One concludes that any
group G, preserves both 7, and y;, for some i and j, with
respect to the homomorphisms ¥; and ¢, respectively. Ac-
cording to the definitions of Pin(Q ) and Spin(Q ) (see Sec. III)
one can recognize that for & Pin(n) = Gz and

Spin(n) = GzNG,,.5- Spin(n) is a twofold cover of the Lorentz
group SO(1,3) which acts on & via ¢. Therefore, one can
also characterize the Lorentz group as

GGy NG, o5,G5NGg NG, o5 , 0T Gp NG, .. Linear represen-

A A N ——
sentations 3, B;, a,°B and a of, of the conformal group %~
on Z¢ are the only ones which become the ¢ action when
restricted to the Lorentz subgroup. This is because
g~ =B(g) =B.(g) = (Bea,)(g) = (a.°B,)g) for any element
g of the Lorentz group.

Given now any representation fof ¥ on &Z° one may
ask whether or not there exists a projection p,, from 2 on
(M °¥, defined by the following commutative by assumption
diagram: -
Ve
K Dg: D — 9

l Py l Py

H DMy~ M

(4.5)

In what follows, our aim is to construct pgand p,, g .

Leta,a,, B, and B, be as before. Then m € & is said to
be

(i) symmetric if 8(m) = — m,
(ii) antisymmetric if 8 (m) = m,
(iii) Hermitian if (8, °a,) (m) = m,

(iv) antiHermitian if (8,0a,) (m) = — m. (4.6)

The definitions (i) and (ii) express the fact that B (f) = —f,
which means that £, the generator of .7, is a bivector in &~
The role played by fin establishing the isomorphism be-
tween Z°and .7 ® 7 will become clear in Sec. V.

A.

Let us consider first the action %" on &~ preserving
decomposition of any m € & into its symmetric and anti-
symmetric parts:

K 3gD dmogmBlg) =m'e -, (4.7)
Ifm = + B(m)thenm' = 4 B(m'). Moreover, if m is sym-
metric then m = g + ¢, while m antisymmetric means that
m=s+v+p whereseS,veV,teT,acA,andpeP.

The following is divided into two steps:

(1) We find the transformation properties of all k-vector
parts of m € &< under %, i.e.,

D3 (my, —{gmBle)ie D.° (4.8)
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fork = 0,1,2,3,4andge ¥

(2)Next we look for all combinations of {m),’s which
would transform like a vector under %". They will give us all
projections from &< on (M ).

Let us proceed with step (1). We first list the elements of
K in terms of the Clifford numbers:

(i) Poincaré translation g,

8 =explir(l +i%)] = L +4r(1 +is), 7=r4,,
(ii) Special conformal transformation g.:
8 = exply(l —i0)] =1 +4x(1 — iv),

K = «K"ie, *,

(4.9)

(iii) de Sitter transformation g, :

& =exps = coshw + s (sinh w)/w,
(iv) dilatation g;:

8s=exp (p'D) =cosh{ + (i*)sinh &, ¢ =p'/2,
(v) Lorentz rotation g,

gi=expd, A=A M, .

Cpmbining (4.8) and (4.9) we get the full list of transforma-
tions of (m}, (with the help of formulas given in Appendix
A):

(i) Poincaré translation g,

)4

A3a— a+ 2T At Ed,

w#0,

T, 2t—teT,,

T_3t,>t + (ra)l — is) + rt,7eT_,

§3s—s+ 70 + 577 + priine S,

V3v—v+ 7is + pix) eV,

P3p—p — (rv)is — ir%six — irp € P,
whereT=T, T _,T, ={teT,i*t= +1]for

t=t,+t.
The following are the Poincaré invariants:

(4.10)

cilo0)=s + ip*, t, =t (1 + i%), e;=L/ls + piw)’,

where
—] 2
=222 (2 Vit oy
S+ipa S+ ips
=5 — v —p?

is an invariant of the conformal group. We define
(v — ai*) " '=(v — ai*)/(v — ai*)?, provided (v — ai*)?#0,
and more generally ((m),) ™ '=(m),/({m),)* provided
((m) P} #0, {m), eD",.
(i) Special conformal transformation g._:
13
V3v—>v+ (pix —s)ke V,
S D 55 — Kv + (s — pi*) € S,
P 3 p—p — (Rv)i* + Y&(si* — p) € P,
T 3 t—t —(K-a)(1 + i*) + WKtk(1 + ix)eT,
ADa—a+ (Rt)irx—RANteA,
K=ki* (K), = (RP=k"K,.
8
It follows that z,—¢,, the antidual part of tensor t € T is

invariant under g_ action. For convenience we put
cosh w=x, a sinhw/w==y, b sinhw/w=z;

(4.11)

Ablamowicz, Oziewicz, and Rzewuski 235



then 1 — x? = }€*(z* — »?). Hence
(iii) de Sitter translation g, :

SD535] 3% + YePW? + 2] + ylxle) + Yl zpinlesS,

Pp—p| x* — {e) + 27)| — 2| x(€v) + Ye)ps| ixeP,
V3u—v + €[x(ys + zpit) + Yev)y*> — 27)]e V,
ADa—x’a + xzlet)is + xyle Nt) + Yp* — PP)eac € A,

T, Dt,-x%t, + x(ealyly — 2)(1 + i#) (4.12)

+ lete(y + zi*)y — 2)(1 + i*)e T,
T_Dty—»x*t, + x(e-a)}ly + z)(1 — ix)
+ jetely — zi*)(y + 2)(1 — is)e T_.
There is the de Sitter invariant ¢,(R )=(s + pi*)
— (s — i p*)/R * which becomes the Poincaré invariant
¢,( o) at the limit R >— . One can notice that if
x =y =z = l{w—0o0r R— ) then (4.12) gives (4.10). More-
over, if x = — y =z = 1 then one gets (4.11).
(iv) dilatation g
8a
ASa—saeA is invariant,

TDt—t (U + v* + 2uvin) eT,
S35’ + Vs + 2uvpises,
V3v—veV is invariant,
P3p—(u® + vPp + 2uvsiseP,
cosh{=upu,sinh{=w.

(v) Lorentz rotation g,:

(4.13)

E-{}
SD5-»s€8,

P3p—peP,

V3v—{(exp A )v + alexp( — 1)), €V,
A3a—>{(exp A )(v + alexp( — 4 )), €4,
T3t—(lexp A )t(exp{ — 1)), €T.

Let us define two Clifford numbers z, and z, by
z,=vls + ip*) !, (4.15a)

z=[(1 + i*)t ~")-a. (4.15b)
We now seek the transformation laws of z, and z, under the
conformal group ¥~ making extensive use of (4.10)—{(4.14).

Let us see first how z, transforms under de Sitter translation
41

(4.14)

J &
& (2+p)|zi+ [ X0s + 2pin)/ls — pi%) ca + (2)°] + Y€’ — 2) ¢ (4.16)
o z = y)les + (221 + 2x%(ys + zipx)/[s — pinjlc; + 211 + x* — Z)ez))’
where
c; =1/(s + pi*} = (s — pi*)/(s + pi*) — (z,)*
and
(ZI)ZEZI'ZI = (z,}(z1),.-
When ¢, = 0 (4.16) gives
5 (24 )z, + x5 + 2piv)/ls — pis)z, + Yzy€l? — )] €] 1

' 20z —p)af + 220 (ps + 2pi)/ (s — pin)) @) + X07 — ZNzrve)

the transformation law of Minkowski vector. If
x=y=z=1in(4.17), theng, =g, and
-
Z,—> =247

¢, =0

(4.18)

From (4.16) one can find also how z, transforms under

&e»
z & ZI—K"[(ZI)2+C2] . (4.19)
b 1= 20Rz) + R + o)
With respect to the dilatation g,
84
z, —exp(—2{)z,, (4.20a)
while the Lorentz rotation gives
&
z, —(exp A )z,(exp{ — 1)) (4.20b)

Thus from (4.16)—{4.30) one concludes that the Clifford num-
ber z, transforms under the conformal group %" like a vector
from Minkowski complex space-time provided I, = 0.

Now let us investigate how z,, defined by (4.15b), trans-
forms. First notice that t* = (t%), + (¢?),foranyzeT.
Since ¢ ~* for ¢ #£0 can be defined as

tTI=t /= () + (0))7 (4.21)
(L))~ = p(1 +i#), p=" = (2o + ((t2)4i%),, and
z, = p[(1 + i#)t ]-a. We also notice that from ¢ and @ one can
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lc;)nstruct another conformal invariant I,=\(t — at ~'a)

(1 — i»). If 2, undergoes de Sitter translation g, , then one gets
a formula similar to (4.16), provided I, = 0. Similarly, z, sat-
isfies (4.19) under the same condition. Thus if I, = 0 and
R— w0, z, translates by vector 7. It is also easily seen that z,
satisfies (4.20).

Thus z, and z, given by (4.15) provide two possible pro-
jections from the antisymmetric and symmetric parts of the
complex Dirac—Clifford algebra on a complex Minkowski
space-time (M °), provided both conformal invariants /, and
1, vanish.

B.

Let us consider now the Hermitian and anti-Hermitian
parts of the algebra &, preserved under the following ac-
tion*? of ¥ on Z*:

4
K 3D Dm—ogmg'=m'e D . (4.22)

If (B,ca,)im) = + m then (B,%a,)(m’) = + m'. In what fol-
lows we deal only with Hermitian Clifford numbers m €
G, m = (B,0a,)(m). Again, first we find the transformation
laws of all k-vector parts of m € & under any g € %", now
defined as .

D53 (m),—(gmg™ ') D5 (4.23)
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Next we look for a certain combination of {m}, which
would transform like a vector under J%". It will give us an-
other projection from the Hermitian part of & on (M “)".
Equations (4.22) and (4.23) show clearly that the scalar
part s of m is invariant under .¥". Moreover, if g € % then

(go+r+a+pig”ho=0.
The elements of %~ were listed before [see (4.9)]. Thus

we have:
(i) de Sitter translation g :

8
V3v—x?u + le[2pzaix — (y° + 2%)v]e + x(pe-t + zepixieV,

ADa—x’a + Le[2pzvix — (* + 2%)ale + x(z(e-t )i* + yep)ed,
T3t—x’t + xe A (yv — zais)+ Yz — y)eteeT, (4.24)
P3p—{2x* — 1)p + x€ Aya — zvi*) €T.
Ifx=y=z=1in(4.24)and e=r7

(i) Poincaré translation g,

&p
V3v—v + irlaix — v)r + 7t + Tpixel,

A3a—a + Ir(vix — a)r + (11 )i* + Tp €4,
T3t—t 4+ 7N\ (v — ai*)eT,
P3p—p + 7A(a — vi*) €P. (4.25)

Therefore, there are two Poincaré-invariant Clifford
numbers:

Jy=t A\ (v — ai*)” ' and J,=v — ai*. If
x = —y=2z=1in(4.24) and € = K then

(i11) Special conformal transformation g,

8
V2 v—v — (v 4 ai*)k — k-t + kpixeV,
ADa—a — Kla + vi*)k + (Kt )ix —kp e A,
TOt—t — KN+ ai*)eT,
P3Sp—p — £ \(a + vix)eP. (4.26)

It follows that J, = v + ai* remains invariant under g,.
(iv)Dilatation g ;:

&4
V3v—u?® + Vv — 2uvaixeV,
ADa—(u® + v¥)a — 2uwvixed, (4.27)
P3p—peP,
TSt—teT.

TABLE I. Clifford numbers invariant under conformal group %~ = C(1,3).

(v) Lorentz rotation g,:

£
V3v—{(g(v+ag,~ )€V,

ADa—(g,(v+a)g, "), €4,

T3t—{gtg,” ), €T,

PSp—p + (g8~ ')a€P.

Let us now define the Clifford number

z: = (t — pis)(v — ai*)” . (4.28)
Notice, thatz = {z), + (z),,i.e.,zcontains only vector and
axial parts, where

(z), = t{v — ai*) ™' — pix(v — ai*)™", (4.29a)
(2)s = tA( —ai¥) ' =T, (4.29b)
Moreover, (v — ai*) ™' = 7{v — ai*) where 7 is a scalar and
7' = v? — a® — 2{v Aa)i* (m#0 assumed). It can be shown

that the vector part of z transforms like a vector under the
conformal group % (Ref. 43). Let us examine only the Poin-
caré translation g, acting on (z),. From (4.25) we find that

4

z—‘;z-{—v'—%J3

or, equivalently,

g, 8
(z) 1_’(Z>1 + 7and J;—J;,

which simply says that the vector part of z is translated by 7
while the axial part remains unchanged.

Let us summarize briefly this section. The following
Clifford numbers are obtained by three distinct projections,
commuting with J%”, on a complex Minkowski space-time
(M “F from the antisymmetric, symmetric, and Hermitian
parts of the complex Dirac—Clifford algebra & *, provided
the corresponding conformal invariants vanish:

z,=vs+ip¥)~', I, =0, (4.30a)
z,=[(1+i~')a, I,=0, (4.30b)
(2)y=1t{v — ai*) ™" — pix(v — ai®)™", (4.30c)

no condition.

Z,,25, and {z), are all Clifford vectors and their vector

Antisymmetric Symmetric Hermitian
meZ- me’ mep- Invariants
m=s+v+p m=t+a m = (a°f)(m) of
v a t,p dilatation
t, =11(1 — is) Ji=v+aix special conformal
transformation
¢{o0) =5+ pis ¢, =1e(1 + i%) Jy=tA{v—ais)”! Poincaré
¢, = —1'—7 Jy=v~—ais translation
(s + pin)
c(R)= de Sitter
s + pis — (1/R *)(s — pis) translation
IL=s—1v-p° L= s conformal
Yt —at “la)(1 — is) group
¥ =C(1,3)
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coordinates can be written as

(2)), =vuls+p)7" (4.31a)
a/‘(;uv + tyv)

(z), = ———, (4.31b)
tAK(;KA + ttd)

((2))), =7[2t,, 0" —a) —p'v, —a,], (4.31¢)

v

where v = t¥e,, p' = pi*, a" = a’e ix, t =t""e, Ne,, t*
= — t”“,? = f"‘(eu Ne, )ik (? denotes a dual tensor to ¢},

7#0assumed and given above. Invariants are listed in Table
I

At the end of this section we comment on a possible,
geometrical interpretation for /, to vanish. Recall from Sec.
I1, that any vector w € V, | can be written as w = wf,
= Wi* + w,, where 1 = w*e, and w, = w’i*. Thus
w® = (w,)* — ()" If we now substitute w’ = s and & = v
then 7, = 5% — v — p? = (six)?> — v? — (pi*)?
= w? — (pi*)>. I, = O means that w” = (pi*)?, i.e., wlieson a
sphere in V, | with radius pix.

One can also introduce the following basis for ¥, , (see
Refs. 31 and 44). y, = ( — if,.i) = (e, *,*,d), ., b= 1,2,..,6
where e, e, = 7,, = (1,3). The inner product in V, , is de-
fined thenasg,, =¥,-¥, = — f,f, + i( — i). Therefore any
vector £ € Vu'can be represented as & = ( — iw,(pi*)i) =
(v%,s%,(pi*)i) for some 5,0, and p in &°. Moreover,
£r= — s> 4+ * +p*= —I,,and], = Omeansthat{lieson
aconein V,,. If z=1u(s + pi*) "' then z* = £#(£s + &6) ',
which is a standard projection from ¥, ,on ¥, ;, provided
£2=0.

V. WITT DECOMPOSITION OF (T, M |. TWISTOR
SPACE AS AN IDEAL IN CLIFFORD ALGEBRA

For (T, M ) one has a Witt decomposition?'?*
(ToM)=FeF',
where F and F' are two-dimensional, maximal, completely
isotropic subspaces. A Witt frame for (7, M )°is just the well-
known Sachs frame e,; = 0* 3¢, A,B,4,B = 1,2. Explicit-
ly,e,i =e,+e;5,e3 =e, —ie, € Fand ey; = e, — €3, €,
=e, +ie,eF', | = 7| =0, and (e4psecp) = UHABU,;CD

0 1
1 O)' Therefore, in

the Sachs frame, 7 has the matrix form

0 :f‘)
=2 .
K (03 0

2
Let f'be any tensor of F(or F’), i.e., feAF, f> = 0. For

example, in the Sachs frame one can take f = f| or f, where
[ = — éfBCUMAB'UVAC*e’l Ne,. Thus

fo=Ye, — es) A\ (ie, — e,). fgenerates a linear, four dimen-
sional twistor space .7 (f) over C as the left ideal in

L, Tf): = ZPf Consider the linear mapping *:
T3£—x£e7 . Since #* + 1 = 0 (minimal polynomial of *)
then with respect to * a twistor space is the direct sum of two-
dimensional complex eigenspaces of ¥, 7 =S+ &S5 ~,
where*{ * = +if *and& * =41 +i*)éeS *. More-

= 2€,c€5p Where €, = €55 =
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over, 7, S+ CS *,9 S *CS ¥, which means that
7 (f)is also a Z,-graded Clifford module and this important
gradation, known as the Lorentz spinor decomposition, is
solely determined by the orientation * of the tangent space-
time T, M. Change of * will resultin £ *«»& ~.Inthe Lorentz
spinor basis one can write S * Sw = w, €', § D7 = 7TA€A ,
4,7 € C. In the Sachs frame a twistor basis {¢, =u_f } for
J(f) can be chosen as: u, = 1, u, = lej ,u; = lie,;, u,
= lie,je,;. From now on we fix f = f;,. We will write
T)DE=¢"€, = uf.

The representation of algebra & in .7 (f) is then linear
(Refs. 1 and 10).

D3m: T(f)Ds-méecT (f),

where me, = €,7°,(m) (C2y2,(m) = €’|me,), ? € T -
dual twistor space) and determines the matrix representation
of &°. For instance, the Dirac matrices ¥, can be defined as
€€, = €Y, A .. One can say, therefore, that the matrix re-
presentation of algebra &/ is determined by the generator f
of twistor space .7~ and orientation * of T, M up to the
choice of basis in Lorentz space.

Let us introduce now the Hermitian correlation &/ on
(f)=7, called also a general Dirac conjugation, and the
conformal group U(2,2) as the correlated automorphism of
7. Another definition of &/ was given in Ref. 10. Correla-
tion & on .7 is a semilinear map such that

o T D =uf>A ()= —B.[uyf) e T, (5.1)
where yf = fy; 7 is a so-called pure spinor (see Refs. 10 and
22). The essential point for the twistor theory in the Clifford
algebra language is to see how the algebra structure alone
determines the Hermitian (and symplectic, see below) form
on .7 . This beautiful relation shown by Crumeyrolle is based

on the observation that if fand f* are the pseudoscalars of F
and F’ (Witt decomposition), respectively, then

dim(@ frf' D7) = 1. (5.2)

Hence one can always find y € & such that .7 is well de-
fined by (5.1) and, moreover, the Hermitian from 7 on a
twistor space 7 can be defined*® in terms of .o/ as

F T XTI 3 =ufm=vf )= (uf, of f = (uf Wuf. (5.3)

# defined here is invariant under the conformal group J%".
To show this we rewrite (5.3) with a help of (5.1) as

Hluf, of) = vB.(af o, (5.4)

where uf, ufe.7, ¥ = e,, (e, = — 1 and iif means complex
conjugate of uf. Then

Huf, of\f =Bl of Jufy and Fuff) = Ff, uf).
Since the representation of & " in.7 defined earlier was

linear, %" acts on 7 linearly and irreducibly (cf. Ref. 10).
Thus the following diagram commutes:

K Dg: T Duf gufe "
| %
¥ g Auf)>Lguf) =L (uflg ' €7, (55
for «/(uflg~" = — B,(@ayf) = — BAavf)B,°a,(g)
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= o(uflg”"
and (B,%a.(glg = 1 for every ge %" From (5.5} it follows that
X \gufgufVf = . = (guflgvf = o (uf jof = Hufvcf .
Therefore, #° defined by (5.4) is invariant with respect to %~
and one can show that the signatureof ¥ is (+ + — —).
Notice, that {5.3) provides another possible definition
for the conformal group as a group U(2,2) of correlated auto-
morphisms of 7~ which preserves the Hermitian form 7",

U(2.2) = {ge2"| (gt 1gm
=),V ne T},

Therefore (3,°a,)(glg = 1 needs to be satisfied for all

geUR.2ND" or, (B,%a, )X ) + X = O for all Xeu(2,2)nD".
Let us remark here that 7 can also be endowed with a

symplectic, nondegenerate from'%*°9..7” X 7 —C defined as

0 (Wf v )f = B(ufhf.

0 is symplectic because — 0 (uf,uf )f = B (0 (ufuf )f) =

— /B (vjuf = 8 (uf,uf . In.7 onecannow considerasymplec-
tic basis (e, ,e5.), @8 = 1,2, where e, = €,, ¢, = ¢,,

€. = €60 = €, such that (e, ,e5) = 6e,.,e5.) =0, and
Oleq,e5:) =8,5. Thus 7 =7, .7 ,, where both 7, and
., are transverse, Lagrangian subspaces of .77, generated
by (eg.) and (e, ), respectively.

It can also be shown that , given in Eq. (5.7), is invar-
iant under the left regular action of G, (see Sec. IV)on .7 :
G; Dg: 7 Duf—gufe7, for
0 (guf.guf \f = B (uf B (glguf = 6 (ufuf )f. Therefore
G, = Sp(4,C). We will come back to this point in Sec. VI.

Vi. TENSOR PRODUCTS OF TWISTOR SPACES

As we recall from Sec. IV, a twistor space 7 is defined
asleftidealin -, 7 (f): = 2°,ffixed, providing a repre-
sentation space for linear representation of 2. More pre-
cisely, a spinorial representation of the Clifford group G gen-
erated by &, acts irreducibly on .7". We do not intend to
develop this point here but we refer to Refs. 1, 10, and 22
Isomorphisms between £ and 7 @ 7 or & and
J e o (7) will play a crucial role in our present consider-
ations. We give them below'®**for the antisymmetric case,
in agreement with our definitions of symmetric, antisymme-
tric and Hermitian Clifford numbers [see (4.6}] considered as
symmetric, antisymmetric and Hermitian tensors respec-
tively. They allow any m from algebra & to be treated also
as an element of tensor space 7 .7 or 7 @ &/ (T ).
Therefore, one can express the coordinates of k vector parts
of any m € 2° in terms of the corresponding tensor coordi-
natesof m, me? .7 ,orme7 @ (7 ).

(5.6)

(5.7)

A. ANTISYMMETRIC CASE

It is natural to introduce {u,.f® usf} as a basis in
T © 7 while{u,fe ug f}and {u,f® uz f}providebases
in the space of symmetric {7~ ®.7)* and antisymmetric
(7" ® 7)~ tensors respectively, a,f = 1,2,3,4. Then any
m=m*4+m " ,me7 ®7 andm*e(J)*. Wedenoteby
a transposition r(u,f® ugf): = ugf® u,f.

Let B, and a be as before (see Sec. I1I), fbeing fixed. Let
me.7 ®. 7 and meZ . Then the map i
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i:9 7 3 m=m"u,feuyf->m B, (u,)falu,)

=me (6.1)
provides an isomorphism between .7 ® 7 and Z° Ref. 10.
Moreover, the following diagram commutes:

T 8T Duf® unfop, (u, faluyle T
T -8B

T T Dugfe uaf—;ﬁs(uﬂ)fa(ua) €.

From (6.2 we conclude that, if m t (7 ®7)* then
Blilm*)) = Fi(m*), which agrees with {4.6)

Remark: Due to the fact that .7 is endowed with a
symplectic form 6, one can construct a so called symplectic
Clifford algebra over .7 (cf. Ref. 47), C,(€) by means of the
quotient ® 7 /1 (0)~C,(6) where I (@) denotes a two-sided
idealin ® 7 generated by £ @ 7 — nes—0En),Enes.
Zh(t;r)efore, (7 ©T)/118)~V*TCC *(6), the even part of

We explore now the relation between the basis
{u.feusf}of 7.7 and that of 2.

.
T ®73uaf®uﬁf—zl‘aﬁ + e, + 4 e, Ne,

(6.2)

* p . *
+ I e, i+ I giseD, {6.3)
Once the Witt base and fare fixed, the numerical values of I”

coefficients can be uniquely determined. We list them in gen-
eral form

(i} scalar

Lopg =Tig = (41, ®uy \f)o=(u, Nig),, (6.4a)

(1i) vector

Foe =Tl = (U, fOuy fl=(e")0s ) (6.4b)

{1ii) rensor

I =Tig = AeHu fo U f1=(e"Ne) )
16.4¢)

(iv) axial vector

- » L

Fog =Tlop) = — i3 {u fRup fl= — (ie"*) ),
(6:44)

(v) pseudoscalar
* *
L= r{aﬁ 1= U‘”la fe Ug 1f)05(i‘(“a /\uﬁ))()'
(6.4¢)
In(6.4b), (6.4c), and (6.4d) a dot - denotes the inner product in
the Clifford algebra &7 ". Now one can express the coordi-
nates of any meZ ¢ in terms of the tensor coordinates of a
corresponding (symmetric of antisymmetric) tensor m from
@7 . Since (4.31a) and (4.31b) give the (vector) coordi-
nates of two Clifford numbers which are of special interest to
us, we rewrite them in the following form:

[aB]
(), = — oo (6.53)
1 - y .
C o mT 4 i, Aug)o
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(ZZ)V

m'*E et » Jag) [M"in (e, Ne, Jvey +mNe, Ae,) e ]
m(aﬁ”(e'/l A ex)(aB) [m(ys)( ixle, Ne, ))(/t&) + m'<® )(ex Ae, )(ee; ]

(6.5b)

Remark. With the help of (6.4} one can express I, {see
Table I) in terms of m'*?1: I) = le 5., m'*?Im!'7"), where
€.p,, 1S totally antisymmetric tensor, €,,5, = 1. If m is de-
composable, i.e., m = £ ® 7 for some £,7€ .7, thenI, =0
and (6.5a) provides the well-known Penrose projection.’™

B. HERMITIAN CASE

In7 @ & (7)) we introduce {u_f® M(u,if)} as a ba-
sis, where o (u,.f)=u,.f= — fyB,(i,) (i, is the complex
conjugate of u,, ). Then any tensor me.7” ® &/(.7") can be

wntten asm = m-“ uaf ® uyf, and its Hermitian conjugate

=m%u,feu,f

Let me7 @ &/(7 ) and m € 2. Then a linear isomor-
phlsm o between .7 ® &/(7 ) and & is given as
T ® AT )Dm = mPu fouf . mPu, fyB,(ugy)
=meY-, (6.6)

B.ug)=(B,°a,)(uy), ¥f=f¥, ¥ = e, in our basis. Then, the
following diagram is commutative:

T ®d(T)D m=mbu fou,f ——P m=mPu,fvfus) €D

‘h l Bsea,

1]

T e (T )3m =m ug feu, f—~(B.oa,)m)=m

—f (B.°a,)(y) = — y. From (6.7) one con-
m, then B {m) =m, in

for (B,0a,)(f) =
cludes that if m" = m and w{m*) =
agreement with (4.6).

Let the basis of 7~ ® .7 (7") be related to the basis of Z°
through the I' coefficients defined by
T o AT )\Du.fe A usf)l=u.feusf

=Ty + Ttse, + 3 e, Ny + Tlglie, )+ I op ise .
(6.8)
Taking inner products of u,,f® u,f with each element of the

Clifford base in & ° and then projecting the results on sca-
lars, one can calculate all I"’s and express them in general

form.
(i} scalar:
raﬁ = r[aﬁ | = (u.fe ulif)o. (6.9a)
(1) vector:
o = €U feusf)=le")ug, (6.9b)
(iii) tensor:
“eo= (e N\ (u fousf)=(e"Ne),s . (6.9¢c)
(iv) axial vector:
‘ o= — (i) ufoupf)=—(€1%)p (6.9d)
(v) pseudoscalar
I.‘a,; = I:(GB) = (i*(u fO®usf))o=u,us; (6.9¢)

Therefore, the vector coordinates of (z), [see (4.30c)] can be
written in terms of the Hermitian I” forms as:
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(6.7)

P up frBlus)e

I (2), = 5{m'aﬁ)(ev/\e“)(aﬁ) [m(rs’(ev)(rs) + m'? ’(evi*)',g,]
— P in{u 8 ugf)) [mP(e )
+m (%51}, (6.10)
where
5" = m e s (e)
+ m P m e %)y (e, i*)gs)
—om'es )m(rél(e.u)(am(e” ,-,)WS)’

m'“?' = {m** 4+ #P% and T, denotes the Hermitian part
of I’a,,- .

The interrelation between the three projections derived
above will be discussed in the near future. In particular, the
new identities between the Dirac bilinears will enable us to
show in the case of the decomposable tensors, that all three
give the same point in (M ).

Finally, we mention that there is a well-known connec-
tion between the supersymmetry theory and the twistor for-
malism (Ref. 48 and the references therein). This results in
introducing the fermionic twistor variables instead of the
Penrose bosonic twistors used in the present work. The spin-
orial charges then are the Jordan roots of the conformal gen-
erators. We think that it might be a great deal easier to calcu-
late the Casimir operators of the conformal group and its
subgroups with a help of the formalism developed here, in
particular, through the I" coefficients (see Sec. VI).

The subgroups OSp(4,1) and OSp(8,1) have been intro-
duced*® in the supersymmetry theory. The primary groups,
however, to start with are Sp(4) and Sp(8), the real forms of
Pin(7) for & (see Secs. IV and V) and Pin (g) for C“(g), the
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complex Clifford algebra over ¥, , (see Sec. IV). The Witt
decomposition for V'35, enables one to introduce an eight-
dimensional, complex spinor space .S as an ideal (left or right)
in C*(g), in analogy with 7. Therefore, the twistor space .7~
can be indentified with the even part of S. Moreover, since
SeS~7 .7 © 7 ~C*(g) and Z" is isomorphic with the
real, even part of C “(g), the components of any m € 2 could
be expressed in terms of the trilinear forms in twistors. This
will make it possible to replace the bilinear forms in (6.5) by
the trilinear ones, in the case of the decomposable tensors.
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APPENDIX A

We use here notation from Sec. II1. C, denotes a vector
subspace of k-vectors in C(Q), k = 1,2, s =dimV. Qisa
quadratic, nondegenerate form defined on a vector space V
{real or complex). - and A denote wedge and inner products,
respectively, in C(Q). If m,n e C(Q), m;e C;, m;e C; and
m,€ C,, then the following formulas hold"?

I .
mm; = 2 (mimj>gt'vjl vl =W +)— 1 —Jjl),
k=0

(mn), = (= 1" B (n)B (m),,
m; Am; =(—1)'m; Am,,

mem; = (— i~ Ym,m,, i<j,
m(m;my) = (m, Am;)}m,, i+j<k, ij>0,

m;-(m;-my) = (m;-m;}m, fori+ k<j.

APPENDIX B

Below we give the list of used notations:
M real, Riemannian space-time,

oM tangent space to M at point peM with bilinear
form 7, of signature (1,3) and basis e, },
p=0123,¢e,¢e, = Wyons

K '=C{(1,3} conformal group acting in T, M,

M- real, affine Minkowski space-time homogen-
eous with respect to the Poincaré group,

c(Q) Clifford algebra over real vector space V,
dimV =5, endowed with quadratic, nonde-
generate form Q,
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B symmetric, bilinear form defined on ¥V X ¥,
associated with Q,

AV k th exterior product of ¥, k = 0,1,2,--,s with
wedge product A,

C, = AV linear subspace of k-vectors of C (Q ) invariant
with respect to Clifford group G,

(m), k-vector part of m € C (@), i.e., {m), € C,,

. inner product in C(Q),

VA set of all invertible elements of Z, center of
C(@),

a,p unique automorphism and antiautomor-
phism of C (Q),

9=C(n) real Dirac-Clifford algebra over T, M,

* orientation of 7, M or unit pseudoscalar of
D, ¥ = — 1,

D, (MY,

(T,M) complexifications,

V. de Sitter space endowed with bilinear form g
of signature (4,1) and basis { £, },
a= 1’2’3’4’57}‘; fb = LZab>

2=C{(g) real de Sitter-Clifford algebra over de Sitter

space V,,

Tf)=Z °f twistor space as left ideal of & °, generated by
JEZ © and endowed with Hermitian form 5%,

{u;,f} twistor and basis { £, }, @ = 1,2,3,4,

(/] symplectic form in .7,

{eqsep+} symplectic basis in 7, a, 8 = 1,2,

T “=4/(7) conjugate dual of 7~ with respect to ¥
where 7 is generalized Dirac conjugation in

7,

i pseudoscalar of = or imaginary unit,
2
= -1,

i

complex conjugation of f.
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An explicit formula is presented for a (conditional) Wiener integral, the integrand of which is an
exponential of a general quadratic functional of the path. The functional integrals arising in non-
Markovian Gaussian approximations to various problems of statistical physics (e.g., theory of the
large polaron, theory of disordered systems) are easily recovered as special cases.

PACS numbers: 02.50. + s, 05.40. + j

1. INTRODUCTION

The purpose of this paper is the explicit evaluation of a
certain class of Gaussian functional integrals or path inte-
grals which are frequently encountered in problems of statis-
tical physics.

The class of integrals considered is given by

I8 1¥.0): = [ RO(RIB) — x16 (R (0) = x)e 1%
(1a)

B .
S[R]):= J; dr[(¥/2)R *(7) — R (T)ni(7)]

+ %J;B dr J;B dr' K (r,7)\R(T)R (7). (1b)

Following the convention of most physicists' we have used
the symbolic notation

f SRS(R (B) — x)5(R (0) — x')exp[ ~ %f: dr R 2(r)]

to indicate (conditional) Wiener integration®™ over paths
R (7) of one-dimensional (pinned) Brownian motion with dif-
fusion constant 1/2y starting at time O from x’ = R (0) and
arriving at x = R (#) at time 3 > 0. The dot denotes (formal)
differentiation with respect to 7. The functions () and

K (r,7') [ = K (',7), without loss of generality] may be quite
general but are, of course, subject to the condition that the
integral exists.

Apart from a pure mathematical interest much of the
motivation for considering the integral (1) comes from the
fact that it naturally arises in Gaussian approximations to
various physical problems with a nonadditive “action” func-
tional® (being characteristic of non-Markovian behavior).
Problems of this type are: the calculation of the energy and
mobility of the large polaron,®'® the density of electronic
states in disordered systems, '":'? the propagation of waves in
random media,'? etc. In these circumstances K (r,7') typical-
ly is some (approximate) memory kernel and #(7) serves as a
source function to generate the corresponding Gaussian
averages via functional differentiation.

*Permanent and present address: Solid State Physics Department, Acade-
my of Mining and Metallurgy—AGH, 30-059 Krak6w, Poland.
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The physical interpretations and dimensions of the var-
iables entering the integral via the quadratic “action” func-
tional S [R ] depend on the problem one wants to study. For
example, in quantum statistical mechanics y#” is the mass of
some particle and 1/8k the absolute temperature (274
Planck’s constant, k: Boltzmann’s constant).

Despite the common dictum that Gaussian functional
integrals can be done, we have found no reference where the
above integral has been done in sufficient generality and ex-
plicitness. Either special cases are considered from the very
beginning®'? and/or the result is contained in theorems,*
which look nice but leave the evaluation’s hard part to the
user if he wants to particularize.

For all these reasons we have found it appropriate to
present a closed-form expression for the “value” of the
Gaussian functional integral (1) from which previously
known explicit results are easily derived as special cases.

In some sense this paper is complementary to a recent
work'* in this Journal on the explicit evaluation of path inte-
grals with a general quadratic but single-time action.

The plan of this paper is as follows. In Sec. II we show
that the computation of the integral can be reduced to that of
the minimal value of the action functional. In Sec. III we
establish the general form of the minimal action and of the
resulting expression for the integral. By restrjcting ourselves
to “‘B-periodic” kernels K in Sec. IV we are able to turn the
general expressions into explicit ones. Finally, Sec. V is de-
voted to an example, which contains as limiting cases some
of the explicit results available in the literature.

Il. REDUCTION TO THE MINIMAL ACTION

In this section we will reduce the computation of the
functional integral (1) to the computation of the minimal
action S (x,x’), which is the action functional S_LR ] evaluated
at its stationary or the “most probable” path R (r) from x’ to
x.

We start from

22 B —
— VYR (1) + J dr'K (r,7)\R (7') = q(7), (2a)
R(0)=x', R(B)=x, (2b)
Sixx):=S[R) (3)
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Since S is (at most) quadratic in R, the linear substitution
R(r)»R(r)—R(7)
transforms the integral (1) into a corresponding one with

*“vanishing boundary conditions” and vanishing source
function, i.e.,

I, (x,B |x',0) = e~ 5=<[ (0,8 |0,0). (4)

Identities of this genre and their derivations along the some-
what formal lines indicated are of course well known."'?
Here we want to point out that Eq. (4) and also the subse-
quent equation can be rigorously justified (under certain
technical assumptions), e.g., in the framework of the usual
(sequential-limit) definitions'® of Wiener integrals or within
DeWitt—Morette’s approach'” via the Fourier transform of
an appropriate prodistribution.

In the remainder of this section we assume S (x,x’) to be
known, in particular as a functional of K and 7.

As is suggested from finite dimensional Gaussian inte-
grals, the remaining integral in Eq. (4) is essentially the
square root of an infinite dimensional determinant. Here we
want tostress that it can be derived from 5 (0,0). To show this,
we replace K by AK, 4 being a positive parameter. Accord-
ingly, S changes to S, . Now consider the quantity

J,(A):=1n1;,(0,300) (5)

with K and £ fixed as a function of A and a functional of 7.
According to Eq. (4) we will only need J,,{1) in the final stage.
Writing
' )

Tty =501 + [ an 2k
we have to specify the “initial” value J,,(0) and the derivative
dJy(A )/9A. From the normalization factor of the transition-
probability density of the Wiener process or, equivalently,
from the canonical density matrix of a free particle, it is well
known'? that

(6)

Jof0) =1In (y/27B3)'"2. (7)
Concerning the derivative we will use the identity
aJ,(4)
a4

1 3 B J 52 i
= _—f er_ dr' K(r,rje " ———— ",
2Jo o Sn(r)én(r')

which is an immediate consequence of the definitions (1) and
{5). From Eq. (4) we have (with K—~AK and x = x’ = 0)

el — o 530,0) ool ) (9)
Since J,(4 ) is independent of 7, we finally get

Ay _ 17 (7., ,
9 —2J(; d:J(;dTK(Tf) ~
[ 5°5,(0,0) _85,(0,0) 65,(0,0) ]
on(rién(r)  Snir)  6n(r)

(10)

7=0 .

l1li. GENERAL FORM OF THE RESULT

According to Sec. II the basic quantity to calculate is
the minimal action S (x,x’) defined by Eqs. (2) and (3). In this
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section we will first establish the general form of the solution
R (7) of the variational problem (2) and then that of the result-
ing minimal action. As a consequence we will get a prelimi-
nary expression for the value of the integral (1) which gives
the general structure and is in ““closed form” but is not yet
fully explicit.

We start by observing that R (r) may be written as

_ 3
Rir)=pulr) +J; dr’ C(r, 7' m{7"). (11)

Here p(7) is the solution of Egs. (2) for the homogeneous case

17 =0, and C (r,7’) is the corresponding reciprocal kernel or

Green’s function with ‘“‘vanishing boundary conditions”:

a 2
—C (7 +f dr" K(r,7")C(r", 7)) =8{r — 7'

Y33 (r,7) (r,7")C (", 7') = & Js
(12a)

cory=CB,r)=0. (12b)

For the time being we get from Egs. (2) and (3), upon
integrating by parts,

— = e ﬁ —
Sixx) = (y/2)(xR (B) — xR (0)] — —-H dr p(nR (7). (13)

Multiplying Eq. (2a) by u(7), integrating the resulting
equatlon with respect to 7, integrating the term containing
R (7) two times by parts, and using the symmetry
K (r,7') = K (7',7) and the fact that y(7) solves Egs. (2) for
7 = 0, we find the identity

(7/2)[xR(B) — xR (0)]

3
= (¥/2)[xi( B) — x'u(0)] — %L dr niru(7). (14)

Now Egs. (13) and (14) combine via Eq. (11) to the gen-
eral form of the minimal action we are looking for

S(x,x")
3
= /2) x4 B) — x'4i(0)] — f dr u{y(r)

B )
) J dr f dr' Clr,7m(rnir). (15)

For later purpose it is convenient to have those terms,
which are independent of 7, rearranged in accord with

(v/2)[xp( B) — x'1i(0)]

] B
= (/28 = xF + 4 dr [ d K halriats),
0 0
(16)
where
pol) i = X"+ (x —x')(7/ B) (17)
is u(r) for K = 0. Equation (16) follows from the defining
equations for u(7) and from Eq. (17) after integrating two
times by parts.
Having established the form (15) for the minimal action,

it is easy to give probabilistic interpretations of the functions
u{7) and C(r,7'). Consider the expectation value

(A}::f&R SRB)—x)6(R(0)—x')P[R]JA[R] (18)
of a general functional 4 [R ] with respect to the “probability
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density” functional

P[R]:
exp(—S[R])

f5R 8(R(B) — x)5(R (0) — x)exp( — S [R ])

19
The associated generating functionai "
Zin: = Ceso [ dr R i) (20
is found to be
Zly] = Iy, x, B|x',0)
Ixo(x B |x',0)

= exp| [[artoinir) + [ ar [ a Clrrmiome]
{21)
according to Eqs. (1), (4), and (15). Hence, P controls a Gaus-
sian stochastic process with mean

(R ()>=5—Z —,U(T) (22)

8n(7) 1

and covariance
(R(IR (7)) — (R(T(R (7))
- &z — prulr’) = Clr,7). (23)
Sn(r)én(r') 140
The boundary condition (12b) is a reflection of the fact that
the fluctuations around the average path vanish at both end-
points and are independent of their respective values.

For many purposes (mainly in quantum statistics) one
considers instead of the above average (-) over paths with
both endpoints fixed a “trace-like” average (-) _ over closed
paths. It is characterized by the following generating
functional:

~ Jdx I (x, B lx,0
Z["]] D= K,r]( | )
Sdx Iiolx, B |x,0)

In order to perform the integations over x in Eq. (24), we
exploit the fact that u{7) for x’ = x varies linearly with x, i.e.,

(24)

u(r) =xp(7), for x' =x, (25)

where p(7) is the homogeneous solution of Eq. (2a) subject to
the boundary conditions

plO)=p(B)=1. (26)
From Eqs. (4), (15), and (25) we see that I, (x, B8 [x,0)is a
Gaussian of x. Under the assumption

plB)—pl0)>0 (27)
we can perform the corresponding integrations and end up
with

Z[n] = exp[ J drf dr' C (r,r'\mirm(r )] (28)
where

_plp(r)
v AB) —p0)
=(R(MR (7 )>~- {29)

In the two types of averages considered above the actual

C(T,T) =C(r,7")+ — !
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value of the “remaining integral” I (0, 5 10,0) in Eq. (4)
played no role. It dropped out as a sort of normalization
factor. Nevertheless its computation according to the recipe
given in Sec. II can be carried one step further. In fact, mak-
ing use of Eqs. (15) and (25) the functional derivatives of the
minimal action in Eq. {10) can be taken to yield

B
Add) _ _ irdr f dr' K(rr)Clrr. (30)
A 2Jo o
Here C, is C for K replaced by AK.

It is instructive to exhibit the general structure of the
right-hand side of Eq. (30) at a formal, algebraic level. Let us
interpret 8 (r — 7'), K (7,7'), and C, (r,7') as kernels of (sym-
metric) integral operators 4%, K, and C;, respectively. Then
we can formally write

C, =(— P +iK)! (31)
and
A4 ) 1 ana
Fo) . 4 KC
EY) 7 T
=19 m(— 92+ AK) (32)
2 4
1 3 -
= ————Indet(— y3 + AK
T et( — yd* + 1K)
so that
Jo(1) = J4(0) — % In det(1 + KC,). (33)

Employing the definition (5) and Eq. (7) we eventually arrive
at

Io(0, B10,0) = (y/27 B) /[ det(1 + KC,)] /2.
(34)

Here 60, according to Eqgs. (31} and {12), has the kernel

Co7,7') = (1/¥)min{r,7'} — 77'/B). (35)
While C,, is the covariance, u, [see Eq. (17)] is the mean of
(pinned) Brownian motion.

Taken together, Egs. (4), (15), (16), and (34) give the gen-
eral form of the value of the functional integral (1):

I, (x, B |x,0)

_ L 172 AA —n2 _ _L Y
= (27rﬂ) [det(l1 + KC,)] exp[ 2B(x x')

1 (? ]
- —f drf dr' K (7,7 \puol (s
2Jo o

+ %der -fdr’ C ('r,r’)n(v')n(f')]. (36)

Clearly, this is the result one can guess at from formal anal-
ogy to finite dimensional Gaussian integrals.

Concerning the infinite dimensional determinant in
Eqgs. (34) and (36) we want to remark the following. All that
we actually have done is to use the left-hand side of the
equation

3
i f dr ulrir)

AA 1 B B
det(l + KC,)) = exp{j dA f dr| dr' K{r,7")C, (*r’,*r)}
0 0 0
(37)
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as a suggestive abbreviation for its right-hand side. This can
be seen by comparing the expression (34) for I 4(0, 5 10,0)
with the expression directly obtained from Egs. (5), (6), (7),
and (30). Although it is possible to give an “intrinsic” defini-
tion of the determinant,'® the problem often remains to find
a more explicit expression for it. We will accomplish this in
the next section for a large class of kernels K by computing
the right-hand side of Eq. (37).

V. EXPLICIT RESULT FOR 3-PERIODIC KERNELS

The closed-form expression of Sec. III becomes fully
explicit, when the most probable path R (7) or, equivalently,
the mean u(7) and the covariance C(7,7’) are explicitly
known. Clearly, for general kernels K (7,7') this is not possi-
ble, because nobody can explicitly solve the most general,
though linear integral equation. However, we can proceed
for arestricted class of kernels which is large enough to cover
many applications in statistical physics and, in particular,
those mentioned in the introduction. This class is formed by
kernels of the type

(T,T’) = f(T - T'); (38)

where fis areal valued, even function in the interval [ — 3, 5]
supposed to fulfill

flr=B)=flr), for r€lo,B] (39)

The last equation represents a necessary condition for
the action functional S (with §4 d7 () = 0) to be invariant
with respect to constant translations

R(r}|—>R (1) +

which implies that the functional integral (1) depends on x
and x’ only through the difference x — x'. Conversely, trans-
lation invariance follows, if Eq. (39) holds and additionally

fﬂdr fin)=0. (40)

In the remainder of this paper we will derive explicit
results exclusively for kernels of the type (38). While Eq. (39)
is imposed throughout, Eq. (40) may hold or not. We will
refer to these kernels as 3 periodic, because Eq. (39) renders
possible an extension of fto the real line, which has period f3.

For S-periodic kernels it is possible to solve Egs. (2) by
Fourier analysis. We have found it convenient to write R (7)
in the form

const,

B

R
YnzoV

Rir)=plr) = Joortr =) +

n HT

RN

(41)
where the sum goes over all integers n except zero, f,(7) is
defined in Eq. (17), and

v, i = 2mn/B (42)

denote the nth Fourier frequency. Obviously, the ansatz (41)
obeys the boundary condition (2b). For the unknown coeffi-
cients B, Eq. (2a) requires

3 o
B, =1, —f,,J dre "R (1), (43}
(4]
where
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v, T

“n(7),

Bf Yl =f

are the Fourier coefficients of 7 and f; respectively. We can
determine the coefficients B, explicitly by inserting Eq. (41)
into Eq. (43) and performing the integration over 7 term by
term. The result is

3
M, :=-—1 dre
B Jo

(44)

Bfo
()1+
[ r;u')/vrl+/3f;1
1 Mn
= ()_Bo["" +X)= ¥ 45
no — B, 2(x x') ”;)W%Lﬁﬁ’ (45)
and for n£0
Bf x—x' ﬁf;t
B, |1 B, 46
[+w2] 77"+fvnf"+wi (46)

From Egs. (41), (45), and (46), for R (7), we can infer
explicit expressions for the mean u(r) and the covariance
C(r,7'). According to Eq. (11}, u(r) is simply R (7) for = 0
and C (r,7) equals the functional derivative 8R (7)/87(r').
Since the resulting expressions are somewhat lengthy, we
leave it to the reader to write them down. However, at the
cost of having a priori no longer pointwise (let alone uniform)
convergence for 7 = 0 and 7 = 3, we can turn these expres-
sions into fairly compact ones by using the Fourier expan-
sions of u,(7) and 7(r — 3 ) and rearranging the infinite series
after one or two partial fraction decompositions. In this way
we get

L A+ BADE
ulr) = 2(x+x)l+[3’2f(,D(O) +(x —x')yD(7) (47)
Clirry=D(r—7)+D{0)—-D(7) - D(7)
Bl (p@w—DO)]D)—-DO
1+/33ﬁ,D(0)[ (7) O)]1[D(7) 01,
(48)
where we have introduced the function
iv,(r— 1
Dir—7):=1 e (49)

B "#07/1,31 + Bfn ’
which is basic for B-periodic kernels.

While in Eq. (48) the boundary conditions (12b) are
manifest, the boundary conditions {2b) are obeyed by Eq. (47)
only a posteriori, because D (1) == D ( — 7)is not differentiable
at 7 = 0 (and 7 = 8) due to a cusp. But, of course, the
interpretations

DB—0)= —D(+0)=1/2y (50)
are natural and sufficient.

If we distinguish explicitly between f;, = O (translation
invariance) and f, #0, we can further simplify Eqgs. (47) and
(48). The simplifications occurring for f;, = 0 are obvious.
For f,#0 we can write

plr) = tx + XD (/D O] + (x —xWD(r),  (51)
C(r,r)=D(r—1')—= D(r)D(r'}/D(0), (52)

where
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Dir—17): =D(~r—7") +1/8%,
w A7 — 7
1 53)
sz + Bf, (

is the sum in the definition (49) with the term corresponding
to n = O included.

The expressions found for ¢ and C are explicit in the
sense that they are reduced to the single function D. The
more explicit our knowledge of D is, the more explicit is our
knowledge of £ and C.

In order to complete the particularization of the general
form (36) for S-periodic kernels, it remains to specify the -
independent terms in the exponent and the determinant. The
former can be found either directly from Egs. (41), (45), and
(46) or from Eqgs. (16) and (47). In any case one gets

%[x/i(ﬂ) — x'11(0)]

f3 3
~Lix—xp e f dr f dr' f(r — ol il

y o B,
=-1(x —x’) [1 + —-——-—]
2 ,3 ngo 7’1’2,, + Bfn
2

2 ﬁzfo . (54)

1+B8/D(0)
For the determinant one obtains from Egs. (37) and (48) by a
straightforward calculation

dett + RE) = 11+ p0on| (1 + f’; ). s

n=1

1
+—x+x'
g )

Equations (47)—(50), (54), and (55) in combination with
the general formula (36) constitute the explicit result for 3-
periodic kernels which we want to present.

From the above expressions one can read off the follow-
ing necessary and sufficient conditions for the existence of
the functional integral (1) in the case of B-periodic kernels
(and appropriate source functions n):

1+ Bf,/yvi >0, n#0 (56a)

1+ B°/,D(0)>0, (56b)
B, l

rgo yvz (56¢)

These conditions are in agreement with those given in Ref.
17.
We close this section by specifying the covariance
C(r,7') for B- -periodic kernels. From Eq. (54) we see that the
condition (27) becomes equivalent to the requirement f, > 0.
Specializing Eqgs. (51) and (54) to x' = x we find from Egs.
(29) and (52)

Cirr)= Dir—7). (57)
Hence, although we have introduced D (or D ) mainly as a
convenient abbreviation, it has a direct probabilistic
meaning.

V. EXAMPLE

For illustrative purposes and in order to make contact
with some of the explicit results available in the literature, we
use this section to particularize the expressions of Secs. I1I
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and IV for a special class of B-periodic kernels. This class is
characterized by

flr—7)=e + E38(r — 7') — yE*M, {7 — 7). (58)
Here €,E, and W are three positive parameters. The overall
constant y is present for dimensional reasons. The function
Wecosh(B/2 — |7 -7 )W

2 sinh (BW /2)

serves to model “memory effects” on a “time scale” of the
order 1/W. Note the properties

Myr—1):= (59}

6
J- dr'M,(r—7)=1, (60a)
0
Iim M, (r—7)=1/8, {60b)
wio
lim M, (r—7')=6(r— 7). (60c)
W oo

The kernel (58) leads to the following quadratic terms in the
action functional (1b):

%jﬂdr fﬂdT'f(T — 7')R (T)R (')

B B B
= %yezf dr R¥1)+ WyE ZJ dTJ dr’
0 0] (¢]
XMy (1~ 7R (1) = R (')~ (61)

The first (translation noninvariant) term induces the (condi-
tional) Uhlenbeck-Ornstein or harmonic-oscillator process.
The second (translation invariant) term has been extensively
used in Gaussian theories of an electron, which is either
coupled to optical lattice vibrations®'® (““polaron”’) or moves
in a random potential'"'? (“disordered system”). In the lat-
ter case mainly the extreme non-Markovian limit W—0 has
been considered. '

Let us now come to the particularization of the expres-
sion in Sec. IV for the kernel (58). We start from the Fourier
expansion

W2 eiv,,(r — 7
B Z Vit W
which is in fact a generalization of the Mittag-Leffler expan-

sion of the hyperbolic function coth (3W /2). From this rela-
tion we can read off the Fourier coefficients of f;

My(r—7)= (62)

o, =ye 4 LE (63
v+ W2
By a partial fraction decomposition we find
_r
i + B,
B 1 w2 —-w? WwWl_w?
WL —wr ( V4 W2 + V4 W )
(64)
where the positive numbers W, and W _ are defined
through
2w
=€+ E2 4+ W2y (e +E?+ W2 — 4 W2]\2
(65)
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Asan immediate consequence of Eqs. (62) and (64) we get the
D function associated with the kernel (58):

Dir—7)= !
WL — W)

oo
+(;’: - I)MW (r—r')]. (66)

According to Egs. (53) and (63) it is related to the D function
via

D(r—7)=Dir—7)— 1/yB€. (67)
While D becomes singular in the limit 0, D does not.
Noting that W_ W _ = eW, one finds

limD (r — 7
€l 1 W2

= 7V2(1— Iz )[M (== _]

1 B
| 55—l =1-p1+ £
(68)

where

Vi={(E*+W?)' (69)

Inserting Eq. (66) [resp. (67)] into Egs. (51) and (52)
[resp. (47) and (48)] we get the mean u and the covariance C
associated with the kernel (58). The covariance C is directly
given by Eq. (66) according to Eq. (57).

It remains to specialize Egs. (54) and (55) to the kernel
(58). Because of B *f, = ¥Be* Egs. (66), (67), and (59) give for
r=7"and €>0:

1+ B%,D(0) = yBe’D (0)
= o ! — [(os2 - W2 )BW+ coth BW.
+ (W2, —62)/3’;/_ cothﬂw‘]. (70)

Similarly, from a partial fraction decomposition analogous
to Eq. (64) we find

It Y =

n#0 '}/Vz +Bf
- {(W?+ —wy B con B
w2 — w2 2
+(WrP-Wwr )ﬂW* cothﬂ\:‘ . (71)
Finally we observe
1+ W? N+ W2 /2
1y Lo AW T M) ke, )
Ve 1+ W2/,

so that by the Weierstrass—Hadamard factorization of the
hyperbolic sine we get

ﬁ( n>_ 2 sinh(ﬂWf/Z)sinh{BW_/Z). 73)
= 2 pe sinh(BW /2)
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Equations (70), (71), and (73) inserted into Eqs. (54) and (55)
complete the particularization of the general expressions for
the kernel (58). The resulting value for the corresponding
functional integral, although already considerably special-
ized in comparison with Sec. IV, still includes the limiting
cases E—0 (““harmonic oscillator”’) and e—0 (*‘polaron”,
“disordered system”) considered in the literature. In par-
ticular, for the latter case we find by collecting the above
results:

f&Ra(R (B) — x)5(R (0) — x) exp[ — —Z—JﬁdT R (1)

— WE def dr' M, (r — 7)|R (1) — R (7)|?

f dr R (tin T)]

(&) Wi ool
X ?//22 +(l 3 )BV cothﬁv]

3 ig /3
+ f dr plrini) + ) f dr j df'cv,r'mtrmv')], (74)
with

pir) = Yx + ) — dx —x)

X[(l— lr://z)sinh(ﬁﬂ—r)V 4 w? (1_ 2_7')]

sinh(BV /2) v? B
(75)
and
2
Clrr) = -2—(1 ¥ ) CoSh )7 = TV G 7=
144 y? smh(/j’V/Z) 2
Wt T
Xsinh {3 — 7, )V (7—-—). 76
nh §(3 .T+)+7VZT 3 (76)
Here Vis defined in Eq. (69) and
7, :=max{r,7}, 7_:=min{r7} (77)

denotes the larger and the smaller one of the two times 7 and
7', respectively.

For results in the literature corresponding to Eqs. (74)-
(77) see Refs. 9 and 11. The limiting case W—0 (with 77 = 0)
has also been computed in Refs. 5, 12, and 19. The subse-
quent limit ¥—0(i.e., E-0) gives the “‘free particle” case,
which is determined by Egs. {7), (17), and (35). As it should
be, this case can be obtained alternatively and more directly
by letting V—W.

VI. ADDITIONAL REMARKS

Most of our results have an obvious generalization to
the case of Wiener integrals over paths R (7) in multi-dimen-
sional space. Moreover, they can be formally turned into
results for Feynman path integrals by going over to imagi-
nary 7.
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Random walks on lattices. The problem of visits to a set of points revisited
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A general method is outlined for calculating the statistical properties of the number of visits to a
set of points in a random walk. In illustrative examples, known results and new results are easily

derived.

PACS numbers: 02.50. 4+ s, 05.90. + m

I. INTRODUCTION

Montroll and Weiss' analyzed the problem of finding
the distribution function of the number of visits to a given
lattice point in a discrete n-step random walk. At about the
same time, Rubin,” in a study of the adsorption of a chain
polymer at a solution surface, derived statistical properties
of a one-dimensional random walk in which the number of
visits to one or a pair of lattice points in the presence of an
absorbing point was of interest. In this paper we present a
formalism with which to calculate statistical properties of
the number of visits to a set of points § = {R,},i=1, 2,
...,m. The formalism can be derived in two ways, the first
related to the analysis of Montroll** on random walks in the
presence of traps, and the second related to the analysis by
Rubin. As Montroll® has noted, the method had been used
earlier in studies of properties of harmonic crystals contain-
ing defects.>® Spitzer’ has also discussed closely related
problems in a much more complicated (but also more de-
tailed) way.

Il. GENERAL FORMALISM

We will assume that the random walker is always ini-
tially at r = 0. Let the single-step transition probabilities be
plr)and let P, (r|l,, I,,...,/,,) be the probability that the ran-
dom walker is at r at step n having visited point R; /; times,
Jj=1,2,...,m.One can write an obvious set of recursion rela-
tions for the P, {r|!}, 1,,...,0,)

P, (e[} = Yp(r — p)P,(p[l), réS, (1a)

Py (R[N = SR, — )P, (plly, L]y — 1el,),
’ j=1,2.m.  (lb)

These equations are valid when 0 does not belong to S. To
resolve these equations it is expedient to introduce the gener-
ating functions

Q.rx)= 3 o 3 PLrlly, Lyl gl (2)

=0 1,=0

in terms of which Eq. (1) can be represented as

Qn + 1 (r’x) = zp(r - p)Qn (plx)’ réS’ (33)

Q. 1R |X) =x, 3R — p)Q, (px), j=12,...m. (3b)
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The reader will notice that this last relation can be written
rather simply in terms of matrices if we define Q,, (x) tobea D
dimensional matrix whose elements are the Q, (r|x), p to be
the matrix of single step transition probabilities, and w to be
the diagonal matrix

f-.. B
1
1
X\
w= 1
X
xm
L J
(4)

with x; the entry in the position corresponding to R;. The
matrix equivalent to Eqgs. (3a) and (3b) is

Q.. =wpQ, (5)

or Q, = (wp)"Q,. In this form the resulting expression con-
stitutes a generalization of the formalism of Rubin. To make
contact with Montroll’s formalism we can write Egs. (3a)
and (3b) as

0, . \(r1= X[plr — 010, (6 + 3 5.0, — it — 10, ]
. T )

where, for simplicity we have dropped the argument x. This
equation suggests the use of a Green’s function technique as
used by Montroll for random walks in the presence of traps
and by Rubin® for the vibrational motion of particles in a
harmonic crystal containing m isotopic defects. Equation {6)
is valid when none of the R; is equal to the starting point 0. If,
however, R, = 0, we can take the change into account by
writing Q, (r|x) = x,8, o rather than Q,(r|x) =8, 4.

To solve Eq. (3) or (5) we eliminate the space variables
by going to a Fourier representation. For this purpose intro-

duce the generating functions
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G.(bx)= ZQn (r|x)explir-), 7

rgxz= 3 G,0xz" (8)

n=20
By hypothesis G,(b,x) = 1 (except, as noted above, when
R, = 0, in which case Gy(d,x}) = x,). It is also convenient to
have the generating function

§exd)= 3 0, (| o)
We note that I" (¢,x,z) can be written in terms of £ (r,z) as
I (¢xz) = Y& (r, z)explir-¢) (10)

or

Emz)=(2m) " J: ”...fl"(cb,x,z)exp( —ir-d)d?¢.(11)

In addition to these we also define the structure factor

A () = ) plrjexplir-d). (12)
)

where
x, 4+ (1 —x,)P(0,z)
(1 —x,)P(R; — Ry,z)
Dix)=

(1—x,)P(R,, —R;2)

and D, is obtained from D by replacing its jth column by
PR,z
P (R2iz)

P(R,,.z)
It follows from Eqgs. (11) and (15) that
D;(x)
J

£(rx,z)=P(rz) — 2(1 D) P(r—R;z), r#R,
& (17a)
=x;D,(x)/D(x), r=R,. (17b)

If one is interested in statistical properties of the occupation
time of the set S, then Eq. (15) can be used directly to gener-
ate moments. For example the mean occupancy of S during
an n-step walk has the generating function

i I'(0,x,x,..x,z)
ox

ulz) =

x=1
=(1_z)_l 2 P(Rj9z): (18)
j=1
as is otherwise obvious. Somewhat less obvious is the expres-
sion for the generating function for the second moments

3 d
’VS(Z) = (F + a—)r(ﬂ,x,...x,sz:,

=t-a-{epPo.a-11 3 PR

j=1
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(1 —x,)P (R,
X5+ (1 —x,)P(0,2)

—R,,z)

(1— x,)P(R,, — Ry2)

Equations (3a) and (3b) are then equivalent to
F(¢,x,z) = [1 —zA (d’)] !

)1+ 3 (1 —x "

=

R;,x,zJexp(iR;-d)}.

(13)

If we take Eq. (10) into account, we find that the £ (R;,z)
satisfy a set of simultaneous linear equations which can be
solved formally.

The solution to these equations can be written in terms
of the quantities

P(rz)=(2m)~° J“ ”...J‘[l —zA (¢)] ~'exp( — ir-d) d Pd.
(14)

which are generating functions with respect to step number
for the state probabilities. The solution can be written

I (é.x.z2)
—[1—zz(¢)r'{1+z(x

j=1

1)(D,/D Yexp(iR, -¢)], (15)

(1 —x,)P(R, —R,2)
(1 —x,)PR, —R,2)

X, + (1 —x,,)P(0,2) (16)

+23 PR S PR, —

ji=1 k=1

Kk #j
These results can also be obtained from the theory developed
by Darling and Kac.® It is also possible to derive generating
functions for moments and correlations of the occupation of
multisite sets starting from the expression for " ($,x,z). For
example the second-order correlation function for two sites

R, and R, has the generating function
a 2

Ix,9x,
= —2(1-2)7'[1 = P(0,2)][P(R,,2) + P(R;2)] (20)

and higher-order correlations can be dealt with in a similar
manner.

Rj,z)]. (19)

I(0,xy,x,2)],,

=X,=1

lIl. APPLICATIONS

We now consider applications of the foregoing formal-
ism in several special cases.

(i} m = 1. If the set S consists of one point, namely R,
and if R is not the starting point 0, then

xP(R,2)

R = i nPg 2l
and
_ (x — 1)P(r — Rz)P(R,z)
§in2) = Pira) + L= TR A (22)
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If R = 0 is the starting point and the initial weighted prob-
ability is

Qo(r|x) = x84,
then Egs. (21) and (22) remain valid

_ xP(0,z)
§0a = P (23)
and
Elrg)= —2P2) (24

x + (1 — x)P{0,2)
The generating function for the probability of returning to
the starting point for the first time at the nth step is the
coefficient of x? in the expansion of (23) in powers of x,
namely

1 — 1/P(0,2). (25)

The generating function of the probability of reaching R#0
for the first time at the nth step is the coefficient of x in the
expansion of (21) in powers of x,

P(R,z)/P(0,2). (26)
Finally, the generating function for the probability of reach-

ing r at the nth step having visited Rsr (or 0) exactly s times
is the coefficient of x° in the expansion of (22) in powers of x,

P(r—R2ZP(Rz [1_ 1 ]“‘ s>1 (27a)
(P(02)]° CE N
Plrz) Pir—RzPRz) o (27b)
P(0z2)

These generating functions have been obtained by Montroll
and Weiss.'

The generating function for the probability-distribution
function of a random walk with an excluded origin'? can be
obtained from Eq. (24). It is the coefficient of x in Eq. (24)

P(r,z)/P(0,z). (28)

If we compare (28) with {26) we recognize the obvious, name-
ly the probability-distribution function for first arrival at R
from 0 is identical with the probability-distribution function
for going from 0 to r without revisiting 0.
(ii) m = 2. If the set .S consists of two points, R, = Q.and
R,, and the random walk starts at 0, then
& (Ryz) = x,x,P (Ry,2)/D, (29)
where
xi+ (1 —x))P(0,2) (1 —x2)P(~ Ry2)
D=
(I —x))P(Ryz2)
and from Egs. (15) and (17),
0.z =(1—2z"x{x, + (1 —x,)[P(0,2) — P(R,,2)]}/D.
{30)

Xs+ (1 —x,)P(0,2)

The coeflicient of x| x, in Eq. (29) is the generating function
of the probability-distribution function for a random walk to
go from 0 to R, with no visits of intermediate steps to either 0
or R, (a generalization of the excluded-origin random walk)

Mg f2) = P Ry2)
OR: [P(0,2)]> — P(Ry2)P(~ R,z2)

(31)
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The probability of starting at 0 and ultimately arriving at R,
with no intermediate visits to 0 or R, is obtained from the
expression for /1, z (1). In the case of a symmetric random
walk,

Iy g, (1) =g, (1)
_ 172 _ 1/2 32)
P(0,1) — P(R,1)  P(0,1)+ P(R,,]1)

The probability of ultimately arriving at R, in case there
are no restrictions on the number of visits to 0 is well known
to be equal to one in the case of one- and two-dimensional
random walks. This will no longer be the case if restrictions
are placed on the number of visits to 0 and/or R,. For exam-
ple, in the case of the nearest-neighbor symmetric random
walk in one and two dimensions, the structure factors are

A(d)=cos ¢

and

A (&) = Ycos ¢, + cos ¢,),

respectively. The corresponding perfect-lattice random-
walk generating functions follow from Eq. (14). In the one-
dimensional case, there is the explicit result

PRz)=(1 _22)~1/2<1_i:£2_)£)\kl, -
z

so that the probability // 5, (1) has the value
Mg, (1) = [2|R,]] " (34)

The form of P (R,z) is more complicated for the plane square
lattice. However, it is known' that

P(R,z) = P(0,2) + g(R,z), (35)

where g(R,2) is not singular at z = 1. Therefore, it follows
that

g, (1) = [28(|R[,1)] " (36)

Van der Pol'' has given an explicit formula for the nonsingu-
lar part of P(R,z} in case R is a diagonal point such as (m, m).
In our notation, van der Pol’s result is [ for R, = (m, m))

4 11 1
gliR:|,1) = —~(1+ —+—+-+ ————)
| T 3 5 2lm| + 1

= Ly 42z vliml + 3, (37)
T

where ¥(x) = (d /dx)In I {x} is the logarithmic derivative of
the gamma function and where ¥ = 0.5772... is the Euler-
Mascheroni constant. Therefore, in the limit of large |m]|,

M, ()=m[41n(im])] " (38)

Thus, the probability of ultimately reaching R, from 0 with-
out returning to 0 decreases to zero logarithmically with the
distance |R,|.

It is a simple matter to generalize the result given in Eq.
(32)for Iy g, (1). For example, one can calculate the probabil-
ity of starting at 0 and ultimately arriving at R, with s inter-
mediate visits to the set of points 0 and R,. This probability,
IT 3% (1), can be obtained from Eq. (29) by first setting
X, = x, = x and then determining the coefficient of x* * *in
the expansion in powers of x. The first few probabilities are,
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first from Eq. (32),
”&?,)nz(l) = ”O,Rz(l)’

then
1 — _ P(O,l) (0}
3 1= 21 = o e JT (1, 69)
and
o y— laf1 - P(0.1) >
fan = {4(1 [P(0.1))* — [P(R,, 1)) ) :
2P(0,1) — 1

0)
[P(0,1)]* ~ [P(R,,1)]? ]”""‘2(”' o
In contrast to the applications gonsidered thus far, where the
x,; have all been treated strictly as counting variables, we
consider a final application of Eq. (30), where one of the x; is
given a thermodynamic significance. In this last application,
we treat a random walk model of polymer chain adsorption
at a plane solution surface. Each random walk configuration
of n steps is weighted by a Boltzmann factor exp(n6 ) where n
is the number of visits of that configuration to the surface
layer and where the reduced energy, 6, equals /K7, where
the energy, € > 0, is the energy gained for each step in the
surface layer. In the simplest version of the model, configu-
rations are regarded as nearest-neighbor one-dimensional
random walks between lattice planes parallel to the solution
surface. For random walks which start in the surface layer
(labeled « = 0), we only wish to consider configurations
which avoid the lattice plane x = — 1 (outside the solution).
Thus, in this model, the special set of pointsis R, = — 1
with associated weight x, and the other point is R, = 0 with
associated weight x, = exp 6. Then, the generating function
for the weighted probability of random walks which start at
R, =0andnever visit R, = — 1is given by the coefficient of
x3 in Eq. (30). This coefficient is simply determined by set-
ting x, = 0 in that expression

_ 1=z "e"[P(0,2) — P(1,7)]

ro2), o= : 4
: e+ (1 —e®)P(0,z) P(l2)
(1—e’\P(lz)  P(0,2)
253 J. Math. Phys,, Vol. 23, No. 2, February 1982

If the nearest-neighbor single-step transition probabilities
for steps between layers are
plt1l)=1la
and p(0) = 1 — @ with p( 1 | j|) = O for | j|»2, then the
structure factor is
Alg)=1—a+acosg,
and the random walk propagator in the perfect lattice is
Pirz)={(1 —2)[1~(1 —2a)z]} '
(1 — _ _ (1 _ 172 \|r|
x( 1—(1—ajz—{(1 —=2)[1 = (1 — 2a)z]} ) R
az
If Eq. (42) is used in (41) for I"(0,2)| ., _,, one can obtain the
result
oz, -
B 14 [1—(1—2a)z]"2(1 —z)~ 2
{=z1=(1=2a2]1}*—1—(1—2a)z+ 2" °’
(43)

which is identical with the one obtained by Rubin [Egs. (22),
(24), and (26)],> who used a similar method to count visits to
layer O when layer — 1 was treated as an absorbing layer.

‘E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

’R.J. Rubin, J. Chem. Phys. 43, 2392 (1965),

*E. W. Montroll, Proc. Symp. Appl. Math., Am. Math. Soc. 16, 193 (1964).

*E. W. Montroll, J. Phys. Soc. Japan, 26, Suppl. 6 (1969).

E. W. Montroll and R. Potts, Phys. Rev. 100, 525 (1955).

“R. J. Rubin, Proc. Intl. Symp. on Transport Proc. in Stat. Mech., Aug.
1956, edited by 1. Prigogine (Interscience, New York, 1958), p. 155.

'F. Spitzer, Principles of Random Walk, 2nd ed. (Springer, New York,
1976).

*R. J. Rubin, J. Math. Phys. 9, 2252 {1968).

°D. A. Darling and M. Kac, Trans. Am. Math. Soc. 84, 444 (1957).
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Hypervirial calculation of integrals involving Bessel functions

F. M. Fernandez, A. Mes6n, and E. A. Castro

INIFTA, Seccion Quimica Teorica, Sucursal 4—Casilla de Correo 16, La Plata 1900, Argentina

{Received 5 August 1981; accepted for publication 4 September 1981)

A general and simple procedure is presented for evaluating matrix elements that involve Bessel
functions. The method is based upon hypervirial relationships for systems subjected to Dirichlet

boundary conditions.

PACS numbers: 02.70. 4+ d

The quantum mechanical study of physical systems en-
closed within spherical or cylindrical surfaces' requires
quanties of the following kind:

I(])xNJc(jc.ix)Jc(jc.kx) dx
(560 2 jes) dxg s 2 jeux) dx) 72|
where J,(x) (c>0) is a Bessel function, and}j,; the correspond-
ing ith zero. Suprisingly enough, the current literature on
this subject *~7 does not record a single simple formula that
enables one to calculate the integrals (1).

The purpose of this communication is to present a gen-
eral and easy procedure for evaluating the matrix elements
(1) for N odd, through the use of a recursion formula. The
method is based upon hypervirial relationships for systems
subjected to Dirichlet boundary conditions, and which were
recently deduced.*""

Let us start from the stationary unidimensional Schro-
dinger equation

H¢,=Ep,, H= —D?*/2+Vi(x), D=d/dx, (2)
with the following boundary conditions
$.(0)=¢,(b)=0. (3)

From the hypervirial relations, Eq. (4) can be deduced with-
out any difficulty®:

IN(N — 1N = 20" 1) + N (E, + E,)ilx"~"[j)
— 2N (| |y = M YL)

Iikle) =

(1)

(Ei—Ej)2 N by N[aEi an}l/z
I =pN{—L L1, 4
S A b b “
When
Vix)=t/2x% 1> —} (5)

Eq. (4) is transformed in a recursion relation for the matrix
elements of the x powers:

0E;, dE\'?
Ay e = L o2 2)
E —E,) 3b b

+ (N — 1)(t — I_V_(iVZ:Z_))A 7= eb)
~N(E; +E)d ]~ '(t.b)], (6)
where
A (b )=(|x" 7). (7)
Equation (2) for the potential function (5) adopts the form
1., t
— ")+ Sbix) = Eidilx) ®)
The change of variables
254 J. Math. Phys. 23(2), February 1982
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x=py p =(2E)'"? ©
transforms Eq. (8) into
¢ ey)+ [1 =t /v)ilpiy)] = 0. (10)

Obviously, the solutions of this last differential equation are
related with the Bessel function J,(y) in the following way ;

$.py) =y ), e={t+Y'" (11)
The boundary condition (3) associates eigenvalues E, with
the zeros of J, through the formula

E =}/ (12)

The substitution of Eq. (12) in the recursion relationship (6)
for b = 1 allowed us to obtain

A% ) |
- (—j‘}i&‘—’)u s —yfe— =2
ci Jek
xA Y0 = Sz + R xf'(t)]. (13)

From Egq. (11} the following equality is deduced at once:
AR@)=T%" (o) (14)

The starting point for the recursion relationship (13) is the
orthonormalization condition

Afj(t):&ij. (15)
The two first matrix elements are
ALY =8, jor N2 — o) =T} c), (16)
12072, +24)
A ?k(t) = 16jc,ijc,k (1 - _‘—C-'_
(2 — 724
X (2 = Jax) =15 (e). (17)

When { = k, Eq. (13) cannot directly be used. However, by a
simple rearrangement we get

P+ N=1[t—N(N—-2)/4147 (t)

AN )= 18)
and consequently we obtain

2

Jait2r-3) 2/c? ~ 1
A = B =1+ A=) =ria 09

and so forth.

The finite induction principle allows us to prove that
recursion formulae (13) and (18) permit the caiculation of
any matrix element (1) for N odd and ¢30.

While studying the magnetic properties of small quan-
tum systems, Dingle'? used the integrals (16) and (19), which
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he obtained from Straubel’s work* and Schafheithins formu-
1a,? respectively. Both results can be deduced as particular
cases from our earlier more general equations.

'R. B. Dingle, Proc. R. Soc. London Ser. A 212, 47 (1952).
‘R. B. Dingle, Proc. Camb. Philos. Soc. 49, 103 (1953).
*G. N. Watson, Theory of Bessel Functions {Cambridge U.P., Cambridge,

1922).
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bridge U.P., Cambridge, 1963).
’G. N. Watson, 4 Treatise on the Theory of Bessel Functions (Cambridge

U.P., Cambridge, 1966).

*F. M. Fernandez and E. A. Castro, Int. J. Quantum Chem. 19, 521 (1981).
°F. M. Fernandez and E. A. Castro, Int. J. Quantum Chem. 19, 533 (1981).
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Poincaré-Cartan integral invariant and canonical transformations for

singular Lagrangians:An addendum
D. Dominici
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The results of a previous work, concerning a method for performing the canonical formalism for
constrained systems, are extended when the canonical transformation proposed in that paper is

explicitly time dependent.
PACS numbers: 03.20. + i

In a previous paper' we discussed in the framework of
the Poincaré—Cartan integral invariant, a method for per-
forming the canonical formalism for constrained systems.
The basic idea consists of considering a canonical transfor-
mation which brings the constraints into a subset of the ca-
nonical variables. Thus the physical variables can be easily
obtained by means of a reduction of the phase space. Our
method is different from the path-integral approach of Fad-
deev? (see also Ref. 3), which use in addition a set of gauge-
fixing conditions, one for each first-class constraint. Two
applications of our procedure concerning action-at-a-dis-
tance relativistic models have been recently studied.*

In this note we extend the method by considering a
time-dependent general canonical transformation, such that
all the constraints acquire an explicit time dependence.

Let us consider a dynamical system described in terms
of 2n degrees of freedom in the phase space g,,p, (s = 1,...,n)
and constrained to the hypersurface S defined by

2,(¢p) =0 T— W) (1)
24qp)=0 B=T—-W+1,.T), 2)
where £2_ are T — W first-class® and £, W second-class con-

straints. In order to guarantee the stability of S during the
evolution, the £2, are required to satisfy

(2,,H.} =0, (3)

where H, is the canonical Hamiltonian. The notation *“~
means equality on the hypersurface S (“weak” equality).

Now, given the set {2}, according to some theorems on
function groups® and involutory systems’ it is possible, at
least locally, to find a canonical transformation

(@=1,..,

(g0, s=1..n}—>{QLP!, s=1,..n], (4)
such that the equations
Q;=P;=0 (f=n+1L..n)n,=n—W7/2), (5

define the same surface as Eqgs. (2) and the following
equations,

[Q;’P;’ } = 5:5”
are identically (and not only “weakly”’) satisfied.
If we denote the generating function by F, defined as
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p.6q, — H.6t =P .6Q; — K b6t — OF, (7
the Hamilton equations for the new variables are given by

Q:={Q.K(Q:LPLt)}, Pi=(PLKQLPL1)} (8)
where X,

~~ [ = 30,
—2,Cps | [£25.K.} + af » (9)
is the extended Hamiltonian with 1, arbitrary functions.

.()a 5 are obtained from Egs. (1) and (2) by substitution of
variables, and CBB is defined by

Bﬁ'{ﬂﬁ'vﬂﬁ~}~5aﬂ"~ (10)
In I we have shown that it is possible to write the equa-
tions of motion for the reduced set of variables

= {Q/,P},j = l,...,n,} which are free with respect to the
second-class constraints (5) in a simple form

Q;=(Q/K)a Pj=(P/K]x: (1)

K=K(Q},Pt)=K.(Q}P)t) +1.2,(Q},P}1t) (12)
where { , |z denote the Poisson brackets defined on the
space R "and K, and 12, are obtained by setting equal to zero
the variables Q , and P g corresponding to the second-class

constraints, in K, and 2, of Eq. (9). AsshowninI the 2, so
obtained are first class, i.e.,

(2,2, } g =0 (13)

and, as a consequence of (d /dt )2, (g,p) =0, satisfy the stabil-
ity condition
d a. = an, 7K
dt ot
In Eq. (14) we have now supposed the 1, explicitly time
dependent, unlike what we did for the sake of simplicity in I.
A similar procedure of reduction of the phase space can
be performed also for the first-class constraints. In fact, a
theorem on involutory systems’ guarantees that it is possi-
ble, at least locally, to replace the £2, by an equivalent set of
equations

P(Q[P/t)=0

(n, = n — T + W /2), which are in involution. For instance,
the set (15) can be obtained by solving the equations

K=K +1,4,

. =0. (14)

e=mn,+ 1,..,n,), (15)
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2,Q,P)t)=0 (@=1,.,n,—n) (16)
with respect to an equal number n, — n, of momenta. With-
out loss of generality we suppose Eq. (16) be solved with
respectto P.le=n, + 1,..,n,), or

|8£2,, /3P | #0. (17)

Let

E=P; _f;:(Q::vQ;csPI’wt) (k= L..,m) (18)
be the expression of the equations in involution. The stability
of the hypersurface (18) can be easily proved. In fact, from

2,(Q01,Q0PP.=1Q:,Q.P,1)1)=0 (19)
we get
n, o0, 4f. _ 4N, 3P, 20)
a ~  ap. o 9P, ot
— o, a0, 3f, N, P,
—{P;’na}R'= ’ =~ ’ ’ == ’ ’
aQ; oP; dQ; oP; dQ;
—~ n, an, af, a0, JP,
{Q;na}R' = a [ - ’ ’ - ’ ’
P; dP; dP; AP, IP;
(21)
Therefore, from Eq. (14) we get
0, [ 3P, _
2 * +{P,,K | |=0, (22)
op: L a { I
and using Eq. (17)
P, _
+ {P,.K }p =0. (23)
ot

As a final step we make a transformation

{Q;’Pj”j = L.,m}—={Q:.P.0.,P. .k

=l.,n,e=n,+1,..,n,} (24)

with

{Qk’Pk'} =8kk" {Qe’Pe'}=5ee'7 (25)
where part of the momenta are the set of functions in the
involution (18) which are equivalent to the first-class
constraints.

If we denote the new canonical Hamiltonian by K ! and
the new expression for the constraints by

2,(Qu,P, 0. P, 1)
= 2,(Q Qi P Qe Pt P Q1 P QP )it),  (26)

the Hamiltonian equations are given by
[Qk z{Qk’Ké + Ia"()a }R

. A 27
Pk:[Pk’Kc'-+Iaﬂa}R 27)
.E: e’Ké+la§a
{Q 2 B} 28
Pe:{Pe!K;+la'Qa}R

wherenow { , } denote the Poisson brackets with respect to
the set

R={Q\,P..Q.,P k=1,.,n,e=n,+ 1,.,n,}.

With respect to the stability of the hypersurface ﬁa =0,
after the canonical transformations (24) we have
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On the other hand, due to the equivalence between ﬁa and
P, we may write
B(QurP s QerPert) = 8o (Qu P Qe Post P, det] g0,
(30)
where we introduced the strong equality notation “=" fol-

lowing Sudarshan and Mukunda.?
Thus from Eq. (30) we have

0, + (2,K )z =0. (29)

a0,
£ =0, (31)
ot
and using Egs. (30) and (29) in Eq. (28), we get
. K
P, ={P, K] = = =O0. 32
e = { J 0. (32)

In other words the variables Q, are ignorable variables.
Finally, the remaining .equations (27) and (28) become

[Qk ~ {riKé}R (33)
Pk Z{Pk,KZ-]R
and

0. ={Q.K!}r +4,, (34)

where A, = g, [, are arbitrary functions.
We can now consider the reduced space [Q,,P:.Q. ]
where Q, and P, satisfy
ox,

O = ET N

X,
3Qx

k=1..n), (35)

k= —

with

‘zfc = ‘z/c(Qk»Pk:t) = K;(Qk’Pk’Qe’PthP,zO' (36)
where the Q, dependence disappears due to Eq. (32) and the
Q.’s are gauge-dependent variables
K
dP, |p -0

In conclusion, we have isolated the set of the gauge-
dependent variables Q, from a set of physical (gauge-inde-
pendent) variables Q, ,P, .

0, = +A, (e=n,+1,..m). (37)

'D. Dominici and J. Gomis, J. Math. Phys. 21, 2124 (1980); from now on we
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Solution of a Schrédinger inverse scattering problem with a polynomial
spectral dependence in the potential
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The inverse scattering problem for the scalar Schrodinger equation

y' + |E— 2": (E'?")Pu,(x)| y = 0, xeR, is considered. It is solved by reduction to the inverse

=0

=
scattering problem for a matrix Schrédinger equation: Y'' + [El — (U{x) + E!Q{x))] Y =0,

xeR.

PACS numbers: 03.65.Nk, 02.30. — f

I. INTRODUCTION

The inverse scattering problem (ISP) associated with
the scalar Schrédinger equation

V' '+ [E— (ux)+ E'qix))] y=0, xeR, (1.1

where the complex parameter E is the “energy” and u, ¢ are
the “potentials”, has been extensively studied.' Indeed the
square root E ! being an analytic function on a Riemann’s
two sheet surface, it is convenient to set E = k *( k€C) and to
represent E by “ + k> or“ — k ”.(1.1) is then replaced by a
pair of equations

yE kP —(ux) £ kgx)) ]yt =0, xR  (1.2)

in which the indices + correspond to each other. There are
other ISP in physics, especially in absorbing media which
can be reduced to this ISP.? Furthermore a family of nonlin-
ear evolution equations has been exhibited® which can be
solved by the method of the Inverse Scattering Transform
(IST) for (1.2), and a Hamiltonian formulation can be given.*
~ There is a one-to-one correspondence’ between these equa-
tions and those derived from the IST for the Zakharov-Sha-

bat system.%® This transformation is canonical.’

In this paper we are interested in the following general-
ization of {1.1):

V'+|E— Y (EY")u,lx)ly=0, xeR, (1.3)

p=0

where the complex parameter E is the “‘energy” and
Ugldy,.., U4, arethe (n + 1) “potentials”, supposed to be suffi-
ciently regular complex functions decreasing fast enough as
|x|— oo . In Ref. 10 the Gel’fand-Dikii method has been ap-
plied to an equation more general than (1.3)

n—1
y'+ |E—~ 2 (E'")u,(x)ly=0, xeR (1.4)
p=0
and a family of nonlinear Hamiltonian equations has been
derived'! which can be solved using the IST for (1.4) pro-
vided that the ISP for (1.4) can be solved. It is the aim of this

¥This work has been done as part of the program “Recherche Coopérative
sur Programme No. 264: Etude interdisciplinaire des problémes
inverses”.

®'Physique Mathématique et Théorique, Equipe de recherche associée au
CNRS, No. 154.
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paper to solve the ISP for (1.3) and thus to continue the work
undertaken in Ref. 11. This paper contains proofs of results
announced in Ref. 12.

Il. EQUIVALENT REPRESENTATIONS OF EQUATION
(1.3)
In Eq. (1.3) the (2n)" root E '/*" is an analytic function

on a Riemann’s 2n sheet surface. A simple way to take this
intoaccountistoset £ = A *"(AeC Jand torepresent E '*" by
Ae"™" where I can take the values / = 0,1,...,2n — 1. Equa-
tion (1.3) is then represented by the 2n scalar Schrodinger
equations:

n

S AP u,(x)|y, =0, xeR,
=0
’ 1=0,1,.2n — 1.

i + 4% -
(2.1)

Let us remark that Eq. (1.2) corresponds to the case n = 1
and A = k. Itis worthwhile to note that we are led to consid-
er the whole system of 2n equations and not just only the
single equation corresponding to / = 0 in order to get a well
posed inverse problem.

Clearly if u, =0forp = 1,2,...,n — 1, (2.1), reduces to
(2.1), foreven/andto (2.1)_ forodd /, withA " = k,u, = u,
and u, = ¢. This leads us to the conjecture that it is also
possible in the general case to put (2.1) in a form which is
“analogous” to (1.2} in some way to be specified. Once this
conjecture will be verified, the ISP will then be solved in
analogy with Ref. 1.

To prove this conjecture we first separate Egs. (2.1) for
even / from those for odd / and group each block of equa-
tions. Explicitly we obtain a pair of matrix Schrodinger
equations, which can be viewed as another “representation
of (1.3),

131

Y 4+ AP —V+Ax)]Y* =0, =xeR

VEda) = 3 u,lotd)]? = ¥ FheT " x), (2.3)

p=0

(2.2)

where 1 is the 7 X n identity matrix,
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Y2 y?
+ : Y = H ;
Y Yar ’ Yar v
yZ(n'— 1 Yan_1
1
a 0
+ - i
ot A)=4 o
0 Tt
(2.4)
a=¢e¢""" o A)=0o" (Ae™™). {2.5)

It is important to remark that o*(4 ) and 0~ (4 ) obey the
identity

[0* )] =A"T, [o~(A)]"= —A"L. (2.6)

At this step we note that there are other matrices & *(4 ")
and & {4 "), whose dependence in A is only expressed in
term of A " and which are also, respectively, the n " root of

A"Tand — A"
0 O 0 4"
1 0 0
01 0
g+ An = »
( 0
0 0 0 1 0

[6tA"))'= +A"L 2.7)
Clearly, 0¥ {4 )and 6 * (1 ") are equivalent matrices, i.e.,
there exists a matrix P £ (4 ) such that

cEUAN =[PEA)] oA )P £A). {2.8)
Wefirst calculate P +(1 ). To thisend, we introduce two bases
inR":(e,,...,e,}and (¢’ ,...,¢’,) and we note the linear applica-
tion fsuch that its matricial representation in the basis

{e1,..,€, 1 is o™ {4 ) and its matricial representation in the basis
(€ per€’n)isGT (A7), 16,

fle)=2Aa' e, (2.9)

fl€)=¢€,,, i=l.,n—1,f(,)=4", (2.10)
We recall that if ¥/ {j = 1,...,n) are the components of ¢’; in
the basis (e,,...,e, ) then x/ (j = 1,...,n) are the elements of the
ith column of P *(4 ). Substituting ¢’; by Z7_ , x/e; in (2.10)
and using (2.9) we obtain, for all /

i=1,.,n

i 3= 1.0
x5 = Aa'~ 'x}

x, =Aa’'~ ‘x;_ » P=2,..,n (2.11)
xi = (A"a'~")x
If we choose x! = 1,i=1,...,n, we find
P*A)=M(@D{) (2.12)
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where
1 1 1 1
1 a a® a" !
1 al a4 ... a?.(n -1
Ma)=] - . . . A
1 an—l a2(u—|) a(’l‘”2
1 0
A
DAY= Az (2.13)
0 UL
A glance at (2.3) allows us to write
P-(A)=P™*(Ae™"), 2.14)

Using properties of @, for example, 1 + @ +a* + ... +a" !
=0, it is not difficult to calculate [P (1)}~ "

(PFAN "= (/m) DA Y M@ ). (2.15)
Setting now
YEt=[P*A})]7'Y =, (2.16)

we deduce from Eq. (2.2) another representation of Eq. (2.1),
V" 4 [k —V(kx)]¥* =0, xeR (2.17)

Vikx)=[PEA)] " VEAXP tA), k=A"
(2.18)

Substituting ¥ * (4,x) by (2.3} in (2.18) and using (2.8), (2.7),
and cyclical properties of & * ( k ), we finally obtain

VEkx= S w60 (k)P =Ulx) + kQx)

2.19)
where
Up
u, U 0
U= u, Uy U s
Uy 1 U ul‘ Uy
U, U, U,
un
Q= {2.20)
0 u

u

n

To sum up, we have obtained three equivalent “repre-
sentations” (2.1), (2.2), (2.17) for Eq. (1.3). We now have to
verify that these equivalences are ‘““canonical”, i.e., they
“preserve” the scattering data information, so that we can go
easily from one formulation of the ISP in a representation to
another. The “natural” representation is the first one, {2.1).
The family of nonlinear equations obtained in Ref. 11 origi-
nates from it. The “good” representation to solve the ISP is
the third one, (2.17), because of the analogy with (1.2). Note
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that going from (2.2) to (2.17) we have lost the diagonality of

the potential ¥ {4,x) but we have won an easier dependence in
A.

lil. COMPARISON BETWEEN THE SCATTERING DATA
FOR (2.1), (2.2), AND (2.17)

First we remark that in order to define the scattering
data for a matrix Schrodinger equation we have in general to
make use of matrix solutions (for the energy-independent
case and for the solution of the corresponding ISP, see Ref.
13). Nevertheless, because of the special features of the ma-
trix potentials in (2.2) and (2.17), it is sufficient here to make
use of vector solutions. This will greatly simplify the solution
of the ISP.

A. The right and left Jost solutions

We suppose that the potentials u;, (i = 0...n) satisfy the
following conditions D, and D,:

D,:Fori=0,..,(n — 1), 4;(x) (xR} is continuously dif-
ferentiable, and x u,(x), ';(x) are integrable on R.

D,: u,(x) (x<R) is twice continuously differentiable, and
u,(x), u',(x), u",(x)are integrable on R.

The right and left Jost solutions fiidx) and Z(A,x) of (2.1),,
respectively, = (4,x) and F * (4,x) of (2.2) . , respectively,
F *(kx)and F *(kx)of (2.17) , , are defined as follows:

FilAx) ~ €2 filAx) ~ e #*™ (3.1)
F*Ax) ~ e (1, 1), F*Ax) ~ e “%1,.,1),
o " (3.2)
F*(kx) ~ &V, F*lkx) ~ e “V,k=1"
T - (3.3)

where T means “transposed” and V' = (1,0,..,0)".

f;(A,x) and f;(4,x) are defined equivalently as the solution in
the class of continuous functions for real x of the following
integral equations:

£ =eiinx+£ sm/l/l():—x)

x [ 32 pe"ﬂ"/"u,xy)}/,u,y)dy, (3.4)
-« o * ind "(x —
flax)=e * ‘+£w St P /1(" |

% [ goi Peiplwnup(y)],(fz(ll,x)dy. (3.5)

fi{A.x) and ﬁ {A,x) are (for fixed x) defined and continuous for
0<arg A<m/n, analytic for 0 <arg A <7/n and obey the
bounds

|fild.x)| <e ™ *%e?™, O<argA<7/n, b=1ImA">0,
(3.6)

|f £ (A.x)| <ee?™, O<arg A<m/n, >0, (3.7)
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where
dw=2[ b—x+1 3 |u»]d, 3:3)
iw=2f &=yt S |u,n. 3.9

It is clear that F *{4,x) and Fe {A,x) are also defined and
continuous for 0<arg A<#/n, analytic for 0 <arg A < 7/n
and verify

F=(Ax)=e*"™(1,..,.1)7 + Jw ﬂn’l—f:ﬂ V (4,x)
X F £ (A,p)dy, ) (3.10)
Frdx)=e ™1, 1) + f -S""l—/l(x—_l’— V £ (A,x)
X F £ (1,p)dy. - (3.11)
Using the formulas (2.15) and (2.17), we have
F* (k)= eV + r e
XF *( kx,y)dy, (3.12)
F *(kx) =e“”‘"V—+—f‘ 5‘1‘—"—(:;}’) 7+ (ky)
W E = (kyp)dy. (3.13)

It is not difficult to prove that F * ( k,x) and Ft ( k,x) are
defined and continuous for Im &0, analytic for Im &£ > 0,
and admit the following bounds:

| F *(kx)||<e "™, xeR, b=Im k>0,
| F + (k<o xe, 530,

where

h(x)=2f[ty—x):§; i+ 3 111 [,

(3.14)
(3.15)

(3.16)

=2 Je=n'S w0+ 5 u0l]s,
) - - (3.17)

@)l = max [v; s (Wsernr0, ) TER™ (3.18)

B. Reflection coefficients

ForA>0,f,(A,x)andf, _, (A¢™" x) form a fundamental sys-
tem of solutions of (2.1),. So, for all / and with the convention
f—1 =/ _ 1, we have the relation

FilAx) = bR) fAX) + @A) fi (AT x), A>0

(3.19)
where

a,A) = (/24 "YW [ fildx), fiAx)], (3.20)
bid) = — (124 YW [fAX),_, (Ae™"x) ]; (3.21)

W [ f.g] is the Wronskian of fand g.
We see from formula (3.20) that the function a,(4 ) admits a
unique continuous extension a,(4 ) (0O<arg A<7/n) which is
analytic for 0 <arg A < 7/n. [For A = 0, by using supple-
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mentary conditions on potentials it is possible to get over the
difficulty. For the greatest accuracy, see Ref. 1. (case xeR)].
Because of the convention f_, = f,,_,, we have

[f2n —1 (’i'rx)’fl(ﬂrx)r""fzn -3 (’Lx)]T
= ~+(1)[fl('19x)"".f2n -1 (ﬂ"x)]T)
where (1) has been defined in (2.7).

It follows from (3.19) and (3.22) that diagonal matrices
A *{A)and B *(A) exist and verify

F*’(/l,)c) =B*A)F*Ux)+4 T A)G (1) F " (Ae™ " x),

(3.22)

A>0 (3.23)
F=(Ax) =B ~(A)F ~(A,x) + A ~(A)F *(1e"™" x),
A>0 (3.24)
and have the form
ay(A ) 0
ATA)= ay(4) R
\ 0 An — 1;(1 )
(a,(/l ) 0
A~ A)= ay,14) R
K O . aZn —1 (/1 )
(3.25)
byiA ) 0
B*A)= bu(d) \
0 bzm - 1)(4 )
b1} 0
B-A4)= by 1 (A)
0 . by _1(A)
(3.26)

Clearly, A * (1) can be defined and continuous for

0O<arg A<7/n and analytic for 0 <arg A <7/n.

Starting from relations (3.23) and (3.24), taking into account
the formula (2.16) and the equality

[PHAN 6% ()= [P~ (he™ ], (3.27)
we obtain
Fr(kx)=B*(k\F*(kx)+4 *(k)F*(—kx),
k=A", keR (3.28)
where
A*(k)=[P*A)]"'4 *A)P £(A),
Br(k)=[P*A)]"'B*A)P 1) (3.29)

The function A = & '/" being continuous for 0<arg k<,
analytic for 0 <arg k <, A *( k) is continuous for Im k>0
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and analytic for Im k > 0. The reflection coefficients (to the
right) 7,(4 ) for (2.1),, respectively, R *(4 )for(2.2) , ,respec-
tively, R *( k) for (2.17) 4+ » are defined and connected as
follows:

riA)=bi)Vall), A>0, (3.30)

R*A)=[4=A)]7'B=(), 1>0, (3.31)

R *(k)=[4 *(k)]7'B *(k)
=[P*A)]"'R*A)PtA)k=A" KkeR.(3.32)

ri(d)and R *(4)are continuous functions for 4 > 0. And so,
R *( k) is continuous for keR and B *( k) too.

C. Bound states

The “bound states” of (2.1),, i.e., the square integrable solu-
tions, correspond to the zeros 4, (j = 1,2,..,J;) of a,(1 ). We
impose the condition Dy;
The zeros 4,;0f a,(A ) are simple, in finite,
number J;; 0 <arg A,; <m/nand 4,; #4,.;,ifl #1’,
have the same parity.
The “bound states” of (2.2) , [respectively, of (2.17) , ], i.e.,
the square integrable vector solutions, correspond to the ze-
rosd,,, (m* =12,.,M *)of det 4 *(4 ) [respectively, to
the zeros kpny =AY (m* =12, M*)of
detd *(k).
It is clear that
P ™ =12, M} ={4y;;1=0,1,..n — 1;

j=12,.J} (3.33)
Po-m™ =12, M }={y, 1 ;;1=01.n—1;
i=12.J.} (3.34)

To each zero A,; of a,(4 ), respectively, A, , of detd *(4),
respectively, k,, . of 4 *( k), we associate a constant scalar
¢, respectively, matrix C,,, | :

=1 Jmh =l g 5
0 0
0
C..=n(i, ) ! o)
0
0 0
if A, =24y,
0
0
C, =n(d,-)""~ ! Cary 1y (3.36)
0
0 0
if A, =4y,
C..=[P*@,.)]"'C,.Px@A,.), k,.
= (A,. )" (3.37)

We define the scattering data s for (2.1), respectively, .% for
(2.2), respectively, .7 for (2.17) by
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§= {rl(’1 )’(A >0);'1[j;cl,i(j = 1)2v'-r‘,l)’ (l = 071’-"2” - l)}y
(3.38)
F={R=A)A>04,,.:C,. (m* =12,,M )},
(3.39)
t=12..,M*)}
(3.40)
Clearly, the scattering data s, %, and 7 are equivalent. So

are the corresponding ISP for (2.1), (2.2), and (2.17). There-
fore, later on we just consider the ISP for (2.17).

7 ={R *(k),(keRjk,,.;C,. (m

IV. STUDY OF THE ISP FOR (2.17)

First, we start from Eq. (2.17) with the potentials satis-
fying the conditions D, and D,. In Sec. 4.1, we show that
F *( k,x) can be determined by two functions f * (x) (scalar)
and 4 *{x,t) (R" vector), through an integral representa-
tion; f * (x)and 4 * (x,/) are solutions of a partial differential
equatlon system. In Sec. 4.2 we deduce some properties of
A £(k), B *(k),and R *( k). In Sec. 4.3, we establish the

“inversion integral equations” with a coupling condition.
Finally, in Sec. 4.4, we show how to construct the potentials
from the scattering data .%

A. The Jost solutions

We recall the F *( k,x) respectively, F * ( k,x), is de-
fined equivalently as the solution in the class of continuous
functions for rgal x of Eq. (3.12), respectively, (3.13) and
F *(kx)and F *( k,x) are (for fixed x) continuous for Im
k>0 and analytic for Im k > 0. By applying the successive
approximation method to Eq. (3.12) and (3.13), we find the

behavior for large values of | k | of thege functions. If

F ¢ ( kx),....F ;= k,x), respectively, F & (kx),...,

E F £ (k.x) are the components of F *( k,x), respectively,
F *( k,x), we can write the results whose proofis givenin the
Appendix:

n ikx eikx 1
Fi(k,x)=e fi(X)V-‘-TW(X)-’-O F ,
Im k>0, | k |—o0, (4.1)

Frlkx)=e *Frpp4E W(x)-{—O(%),
Im k>0, | k |—o0, (4.2)

— ikx

where
s =exp| £+ [Tyt | 43)
Frw=ew| 4 [ uioar) 44)

W (x) and f’l_’(x) are R" vectors.

Consequently, F *( k,x) — e f % (x)¥, for fixed x, be-
longs to L,(R), and admits a Fourier transform. In fact, simi-
larly to the case n = 1 (cf. Ref. 1), F * ( k,x) has the following
representation:

oo

F*(kx)= e"""fﬂx)V+f A *(x,t)e™dt,
© Imk»0,xeR, (4.5)
where Jf *(x) has been defined by the formula (4.3) and

E(x,2) = (A gF (x,t )ye.d E_ 1 (x,t)) is the R"-valued func-
tlon solution of the partial differential equation system:

;?22 : U(x)TrtQ(x) A *(xt)=0, t>x, (4.6)
[y -2 %A *(x,x) FiQ (x4 *(x.x) — Ulx) f = (x)V =0, (4.7)
and the condition 4 *(x,0) = 0. (4.8)

Indeed, we start from Eq. (2.17) in which we substitute ¥ = by F *( k,x) given by (4.5). After different integration by parts, we

obtain

[20f £ (x)V Ff *(x)Q (0)V Thee™ + [f*'(x)V— 2%A * (x,x) FiQ (XM * x,x) — U(X)f*(x)V]e"’"‘

o az az
(122
x ax2 312

and then we deduce the formula (4.3) and the relations (4.6)
and (4.7). It isimportant to remark that, if we seek Uand Qin
the form given by (2.20), we can construct them from f*+,f ~,
A *,and A ~.Using the formula(2.20)in (4.6) and taking into
account the relation (4.3) we obtain the triangular system
with (n 4+ 1) equations and (n + 1) unknown values

Ul 1seeisll

Fi"S M xx) — ) £ )
=22 430 +£ )
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U ) FiQx) g; ]A = (.t eidt = O;

(4.9)
—
n—p 1
Fi' 3 UM ) — u,x)f * )
i=0
=24 4 Exx)y p=12n—1), (4.10)
dx
[
u,(x) = +2i——
fEx)
Clearly, uy(x),...,u, (x) are uniquely determined by the system
(4.10).
B. Some propertieg of )
A*(k), B*(k), A*(k)!, andR *(k)
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First, we precise the form of the matrices 4 *( k) and
B *( k). We remark that the matrices [0 * (4 )]?, respective-
ly, [c7(4)]%, p =0,...,n — 1, being respectively, the nth of
A" and ( — A "), form a basic system in the space of the
diagonal matrices. So, we can ﬁnd unique scalar 2, (4 ) and
B F(4) such that

At()= za,i(,i)[ai(/l)]", A>0 (4.11)
p=0

n—1
tA)= DY BLA)etA), A>0. (4.12)
p=0
Applying the formula (3.29) and by analogy with the compu-
tation of V *{ k,x) from ¥V *(A,x), we obtain the matrices

A = (k)

75" ( k) (£ AIEE (K perermnn (£ KNG (k)
= B (k) - oy z
R Gkl (£ k)d, (k)
) k) dE (k) G (k)
Bt(k)

Bit(k) (kB (k) -'(ik)ﬁli(k)
= Blf(k) .".".B'j:(k'). Te.,

oVE L (j:k)ﬁn_u(k)

3 (k) LBER) T B (k)

(4.13)

afA)LBE(Kk)=BFA)\p=0,.,n—1)
Let usnote that [4 *(k)]~'and R *(k)can have a matri-
cial representation as 4 * (k).

We also need to know the estimate for | k |— o0 of
A*(k),B*(k),[4*(k)] ', andR * (k) Tothisend,itis
convenient to rewrite Eq. (3.13) thus:

F'T*(k,x)—e""‘[V jx %Vi(ky)ii(ka}’)@’]
+ e""‘[ f £ ( k,y)dy]
(4.14)

Looking at the formulas (3.28) and (4.14) when x—» o, we
obtain

whered (k)=

A'fc(k)V:V—f %?i(ky)ﬁi(ky)dy, Im k30
B (4.15)
Bt(kyW= f Vi(ky)Fi(k,y)dy, keR. (4.16)

Using different mtegratlons by parts and thanks to the
bound (4.2), we find

lii(k)V (a (k)’ ’an—l(k))r
w 1
=FHwl+ Zr0( ) k0, k|,
(4.17)
BE(k)W =B (k)05 (k)T
=Fo(k)’ keR, | k |—»co, (4.18)
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where W is a constant R” vector.

Thanks to the matricial representation of 4 *( k) and
B *( k), we derive the following results for | k |->o0:

A~i(k)=fi(oo)I+T+0(%), Im k30 (4.19)
[4 (k)] =FF () + T’+0<%),
Im k>0, k £k, ., (4.20)

where T and T’ are constant superior triangular matrices
with zeros on the diagonal, and

Ei(k)=%0(1), keR, (4.21)
Ri(k)=—i—0(1), keR, (4.22)

detd =(k)= [fi(w)]"+o(%), Im k>0 (4.23)

det [4 *(k)]~' = [?ﬂm]uo(%),
Im k>0, k £k, .. (4.24)

Let us remark that R * ( k ) has a Fourier transform in L,(R).

C. Inversion equations and coupling condition

In order to establish these equations, we start from the
formula (3.28) written in the form

[4 (k)1 'F(kx) — [4 £(k)]7'B =(k)F =(kx)

=F¥(—kx), keR (4.25)
and in the equivalent form, for fixed x,
Gi(k)—HZE(k)=FF(—kx)—e "™fFx)V
=fwA F(x,t)e ~ *dt, (4.26)
where
G(k)=[d *(k)]"'F*(kx)— e~ F F(x)V,
(4.27)
HE(k)=[A4*(k)]7'B *(k)F *(kx)
=R *(k)F *(kx). (4.28)

Let us evaluate the Fourier transform of these two functions.
The function G  ( k) is continuous for Im k30, k #k,_ .,
and analytic for Im k> 0, k #£k_ . . It is obvious, from the
formulas (4.3) and (4.4) that

12 (X (o) =f T (x), (4.29)
and then G F{ k) can be expressed as
Grlk)= LI(A i(k)]" — ¥ (o) ]
X [F*(kx) fi(X)e V]
+[[A (k)] oo)I]f (x)e ~*V
+FF () [F = (kx) —f £(x)e =™V ]. (4.30)
Using the bounds (4.20) and (4.2) we obtain
e L
Gx(k)=e o(k), Im k>0, k #k .. (431)
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We now consider the integral (-G * ( k) ¢* dk (¢t > x) where
I is the closed path in the upper half of the complex & plane
and consisting of the segment [ — p,p] and of the half-circle
| k| = p. Thanks to (4.31) we can apply a Jordan lemma to
prove that the integral along the half-circle vanishes for £ > x
and p— oo . S0, we have

0
lim | GZ*(k)e™ dk
P~ J_p

M*

= 2ir z

mt =1

It is clear that
Res([4 *(k)]7'F t(kx)e™k, . )
=Res([4 *(k)]7'B *(k)F *(kx)e* k_. )

Res([4 (k)] -‘f( kxje™k, . ).(4.32)

= klim (k—k,. )[4 *(k)]7'B £(k)F £ ( kx)e™
—k
{4.33)
Resorting to the formulas (3.29), (3.36), and (3.37), we finally
find

+R
lim G Flk)e™dk = 2mA T (x,t)
R—w J_R
M*E

=Y C . Ftk,  x) " (4.34)
=1

m* =

i+

To obtain the Fourier transform of H *( k), we write thus
HE(k)=R *(k)[F*(kx)—f*(xle*V]
+ R (k) f *(x)e™V. (4.35)

Recalling the formulas (4.22) and (4.5) and taking into ac-
count the result (4.34), we obtain the “inversion equations”

A*rxt)=fFx)S Fix +)V
+ wa Ft+y4 Fixpdy, t>x, (4.36)

where

1 . £ i
S*tx)= ——Lim| R *(k)}e*dk
T p=oJ._p
M ~ I Ix
+ Cmie(k"”),
mt =1

(4.37)

and l.i.m. stands for “limit in mean”’.

To the system of coupled Fredholm integral equations
(4.36) and (4.37) we add a coupling condition. We start from
the last component of (4.7), and (4.7)_. We find

u,_x
— + -1 __ _d_ + _ 7 -+
— L] [ 2L A o) zun(xmn_l(x,x)]
- [f‘(x)]"[ 2% 4 o) + i, () "*Al(x,x)];
dx
| (4.38)
recalling that u,, (x} = + 2/ f= (x)’ we obtain
e
£ {—A ) £ ()
X
=) 7‘1"‘ S ST x) (4.39)
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and using the condition (4.8), we have the coupling condition
frxd S xx) =T (x4, (xx), n>1,x€R.(4.40)

D. Construction of potentials from scattering data .

In the ISP for (2.17), the scattering data % [formula
(3.40)] is given and we seek the matrix potentials U (x) and
Q (x) written with n + 1scalar potentials 4, (p = 0,...,n) asin
the formula (2.20), U (x) and Q (x) admitting . as scattering
data. To this end, we construct S * (x) from .% through the
formula (4.37). If we suppose that (4.36) has a unique solu-
tion (4 *(x,2),4 ~(x,t)) for given f *(x) and f ~(x), we seek to
make the dependence of 4 * (x,t) on f *(x) explicit. Let
C *(x,t) be the solution of Eq. {4.36) corresponding to
S *(x)=1and D *(x,t) be the one corresponding to f * (x)

= land D * (x,t) be the one corresponding to f *(x) = Fi.
Let C *(x,t)and D+ (x,2 ) be the functions defined for
(t>x,x€R) by

éi(x’t)= Ci(x,f)—T;iD *(x,t) |
D*(x1)= € *ixt) i;D “ot) 4a1)

It is easy to find the relation

A xt)=F£*x)C = (xt)+fFT(x)D *(x,t), t>xx€R,
(4.42)
which we can also write
A S et)=f(x)C 7 (x,t) + £ F (0D (x.t),
p=0,.,n—1 (443
whe;re ¢ Sxt), respectiveAly, D Fx,t),is the p'" component
of C *{x,t), respectively D * (x,t). Using (4.43) in the case
p =n — 1in (4.40), we have the equation
¥D o bex) ~ (13D (xx) = C o xx) — € (),
y=I[0/"x1 (444)
whose solution gives y [note that for n = 1, instead of (4.44),
we obtain a Riccati type equation—see Ref. 1]. Hence f *(x),
S (x),4 *(x,t)and 4 ~(x,?), U, and @ in the form (2.20) are
then obtained (the proof has been given in Sec. 4.1).
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APPENDIX

We want to estimate the behavior of F * (k,x) for
| k |—> 0. We start from Eq. (3.12) which we write

F*(kx) = e*v + f LY =2 g g ki
+ f sin k (y — x)Q W)F * (kpldy, (A1)
for b = Im k>0, xeR.
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We consider the Neumann series of F * (k,x), more especial-
ly the Neumann series of each component F * (k,x) of F *
{k,x), which we define

Frlkx)= S F#(kx), s=0..n—1 (A2)
p=0
where
Fi(kx)y=e*, F*(kx)y=0, s=1,..,n—1,
(A3)

) . ki ]
Fx(kx),, =£ ﬁ—%—"—)vw)w(k,y),,dy

. f " sink(y — xJQUIF k), dy.
) (A4)

Throughout the proof, we use the following results which
are easily established:
if u(x) satisfies the condition D,, so

o - ikx
£ M%:’i) uly)e™dy = 5];— a(x);

o)< [ ubl . (A5)
J;w sin k (y — x)u(y)e™dy
o L [Cuy] + 2 [ 1 g wae

where |3 (x)] <Jw |u'(y)|dy.

We give explicitly the computations for F * ( k,x), and

F S (kx),, forall,s, s =0,...,n — 1. We first start from the
relation (A4) for p = 0 in which we substitute £ * ( k,y) by
the formula (A3) and U and Q by their representation (2.20):

*sink(y —x)

Foi( k,x), =J; X uo(y)eikydy
+ on sin k (y — x)u, (y)e™dy, (A7)

FX( k,x), =J s_19_k_(:—_x) u (ye®dy, s=1,.,n—1.
’ (AS)
Applying the results (AS5) and {A6), we have
£k =] + 1 [Tu,biay]

e [ U, (x)

+ % + 4 +ﬁ(,1(x)+v01(x)], (A9)
F‘f(k,x),:e—:ivsl(x) s=1,..n—1 (A10)
where
|oy(x]] <f°° |, (1), (ALl
lat|< [ 3 Jle)|dr = pix). (A12)

x p=0
Let us now consider the relation (A4) for p = 1. Thanks to
(2.20), we obtain, fors = 1,...,n — 1,
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F(kx), =f b =) u s ko)
+ fwsin ky—x) S w2 kphdy,
x p=1
(A13)
F(koxly = f i imL(,flf‘—’ S u,(IF £ kyhdy
x p=0
£ [T sinky xS up s W ko)
(A14)

We remark that, in every component F = ( k,x),, we find all
the values of u,(y) and F * ( k,y), once and only once. But, we
have F i ( k,p), in the second term only in the expression
{A13) which we rewrite thus:

I_:,Oi(k’x)z___J"” sink(:—x)

X

uo(y)ﬁoi( k.y)dy
+ f sin k (y — x)u, ()F ¢ ( o) dy

L n—1 ~
£ [ sinkty-2"S w00 £, (ko)dy
x =1
i (A15)
Thanks to (AS5), (A6) and (A9), (A10), we can write

ikx

f S—"ﬂkyl"—’ oI ¢ ey ==

wy(x) + O ( % )
(A16)

where |u,fx)| < [ uablldp |~ [u,(0)]ds (A17)

+ f sin k (y — x)u, W)F ¢ ( ko) dy

= 4 Jw sink (y — x)u,,(y)[ + éJ‘mun(t )dt ]e”‘ydy
N )
(A18)

where
+ jwsin kly— x)u,,(y)[ + %J‘ u,(t)dt ]e”‘”dy
x ¥

= £ L[ o] /2

ok [i u,,ix)(i_t;L”un(y)dy)+w2(x)], (A19)

%

s [TIkO =0, gy D) oy = 7

k
(A20)
kx

+ f SREVS k": —"'—X) u, (ywol(y)eikydy = ek

walx); (A21)

where |w,(x)| <5Jw |, (v) |dyJ‘gc |u, ) |dy, =234
(A22)
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* < k — . ikx
£ Ay ey = e, a2y
where st(x)wa (A24)
£ [Tsinky—x)"S w01 )y

x p=1
«© n—1 iky
— & [ sink(y—x) 'S M)
eikx

= k We(x), (A25)
where Jual <[ ('S [u, 0] Jrviy (a26
Adding (A17), (A24), and (A26), we obtain

[V62(X)] = |w;(x) 4+ ws(x) + welx)| <¥*(x)/2!.  (A27)
We deduce from {A22) that

|B02(x) | = |wylx) + ws(x) + wylx)| <oixjpix),  (A28)
where ofx) = f |u',(t)|de. (A29)

Collecting all these results, we can write that

£ [ wom /2
)

+ k [ + i}"i ( £ f "4, (v)dy) + Boalx) + vm(x)]

co(s).

It is easier to evaluate the behavior of F S kx)y
s =1,..,n — 1. Let us start from (A 14) and consider each
term of these relations:

f e 3w = ks

Fi(kx),= e”"‘[

=f -Si"—‘,f‘—’us(v)ﬁoﬂk,y).dy

ofit)

- f S‘Lkg’_:i) us(y)[ + % J:Ou,, (t)dr ]e""Ydy

1
+0 ( = ) (A30)
g 1
. w7(x)+0(7), (A31)
where )| < [ (.01 [yl (A3

+ f “sink (y — x) S e O (Kb

= [ SREESATS bl ey

p=1
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= ek welx), (A33)
where [wyx)|< [ (S Ju,0)] i (A34)
x p=1
If we add (A32) and (A33), we obtain
Fx(kx),= e;: vu(x)+ 0 ( %) s=1,.,n—1
(A35)
where |v, (x)| <7%(x)/2L. (A36)

One can prove similarly, by recurrence, that we have, for
p>2,

ikx

- ikx { ® ’ €
Fertho, =] £ [Cuan [/ i+ S

x[i el [ —J u (t)dt] /(p—l)'

+ Bop (¥) + vop(x)}

1
+0(F),

(A37)

Fx(kx), = % v,y (%) + 0(% ) s=1.n—1 (A38)
. (7lx))? 2

where |i,, (x) | <ox)r(x) —m)!—, (A39)

|USP(x) I < (y(x'))py s = 0’-'-1’1 -1 (A40)

oi{x) and y(x) being defined by (A29) and (A 12), respectively.
For that we are obliged, in particular, to use the inequality
p—2+ ! —+—L<1, p>2.
p—1 (p—12¢0 27
. It is clear that, similarly, we can estimate the behavior
of F*( kx)for | k |— 0.
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Generalized second-order Coulomb phase shift functions
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Some specific properties and the evaluation of the generalized second-order Coulomb phase shift
functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The
dependence on the three momenta k,,k,k,, corresponding to the final, intermediate, and initial

states is illustrated.

PACS numbers: 03.80. +r, 3440. +n

1. INTRODUCTION

The expression of the unitary scattering amplitude for
particle-atom collisions derived recently' includes second-
order phase shift functions. The theory is valid both for elas-
tic and inelastic collisions. In the derivation of this ampli-
tude the summation over the intermediate states is per-
formed by introducing a finite, mean excitation energy of the
atom. Consequently, both the amplitude and the phase shift
functions depend on three momenta, k,,k,k,, corresponding
to the final, intermediate, and initial state, respectively. We
name these phase shifts the generalized phase shift func-
tions. There are four contributions to the generalized phase
shift functions: The two particle-nucleus and particle—elec-
tron double scattering processes, the particle—electron—nu-
cleus, and particle-nucleus—electron processes. The last two
processes are simply related to each other but difficult to
deal with analytically. On the other hand, the phase shift
functions of the two double processes are proportional to the
generalized second-order Coulomb phase shift functions.
The discussion of the latter and its evaluation is the subject of
the present communication.

The generalized second-order Coulomb phase shift
functions are defined by

8Pk ke kea) = Tk ki ko) + 1 Pk ), (1)

where

V= — EZJ. rdrj,(k,r)n,(Er)J rdrj(kr')j,(kr'),
0 0
()
19 = — B[ vttt [ rarn it
) r

Here j, and n, are spherical Bessel and Neumann functions,
respectively. Note that I'\V(k ,k,k,) = I P(k,,k,k,). In Sec. 11
the two integrals " and I'? are calculated in a straightfor-
ward way, for / = 0. However for higher angular momenta
this method becomes extremely unmanageable. A different,
very simple, but indirect method based on the partial wave
expansion of the second-order amplitude is discussed in Sec.
II1. This method gives the phase shift functions of Eq. (1), but
it does not give the two integrals of Eq. (1') separately. The
phase shifts are calculated for k, = k = k,, as well as for the
general case when all three or two of the momenta are differ-
ent from each other.
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1. S-WAVE PHASE SHIFTS

We shall calculate the s-wave phase shifts directly. We
distinguish between six different possibilities.

(i) k, = k = ky=k. In this case the two integrals of Eq.
(1') are equal. We have for k #0,

PP X 21 s
I = 12 J sm2kxde' sin {cx dx'. )
2k Jo X o X

Introducing the new variable k' by kx" = k 'x, this becomes

_ 1 J-eo _4—x_ k dk i

4k 2 o Xx Jo k'

X [sin2kx — Isin2(k + k ')x — 4sin2(k — k ")x].(3)
Next, introducing an upper, finite limit 7, it is permissible to
reverse the order of integration

I 1 Jdk J' dx
0_-4/(2 T—»w 0

x [sin2kx — isin2(k + & "}x — 4sin2(k — k ')x].
(4)

0

Integration by parts of the last two integrals yields

1 s gy Sin2(k + k)T
= tim(Tink + | inkdk SRS T
fo= r‘fl( g +f 2k + &)
sin2(k— k )T)
Ink 'dk SBEXT X )T
J 2k — k') ©)

where we have made use of the step function

f smax

equal® to
1, a>0
=1{ 0, a=0. (6)
—1, a<0

Now, let us take advantage of Dirichlet’s limit formula?

f(x+k)Md )

f (k)= 11m
whlch holds for arbltrary positive values of o; the function f
is supposed to be sectionally smooth. The same result is ob-
tained if the integral is taken from — a to 0. Applying Eq. (7)
to Eq. (5) shows immediately that the second term is zero,
and the third term is equal to }7Ink. It follows that

I,=0 (8)
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i.e., the s-wave phase shift function is identically zero for
every k 0.

We have also proved by the same kind of analysis that
the p-wave phase shift function is zero.

(ii) k, < k < k,. The first integral of Eq. (1) becomes,
after putting kx’ = k 'x,

TW(k, k) = 1 j sinklxcoskxjdx
Kk, Jo .

o Sink 'x sin(%k ’x)
[
o k

which becomes, as is easily verified,
g dk (T dx

)

1 . .
IV =——1lim lim
1 2T ro0 €0 Jg

X z [sin (f; (k .k k sk )x)—sm(f(k,,k — kyk)x)], (10)

where

Silkykokosk ') = ke (= 12 4 (= (1 — ko R

(10)
Integration by parts of each of the above eight double inte-
grals gives

J<k_ dkl
kl

r o
—sin(f(k ) = Ink f Sfilk R
0 Q0 X
k : ’
J‘ sinf;{0 . j Ink ‘dk fi{k") sinf{k )T,
o filk)

(11)
where we have put £, (k,,k,k,;k ')=f,(k ') for short. We then
find that among the first four integrals of Eq. (10), the second
and the third cancel each other, and among the last four
integrals, the first and the fourth cancel each other. As to the
remaining four integrals, they are easily worked out, making
use of the definition of » and the limit formula, Eqgs. (6) and
(7), respectively. We then find for /) from Eq. (10),

k—k,

Ik, ko k) = (1 —nlk; + &, — 2k)]In

1 1"v2 2

— 11 =y = 2 — kI, (12
-

The second integral 7 P(k,,k,k,} of Eq. (1} is related to I ' by

I8k ko) = Ik koky). (13)
Going through the same analysis as above, we find
IQkpk k) = — I5'(Kk K Ky). (14)

In other words, we have proved that the generalized second-
order s-wave Coulomb phase shift functions, 82'(k ,k,k,) are
equal to zero for all values of k,,k and k, which satisfy the
inequality k, < k < k,.

(iti) (k, <k, < k). We find

_ k+k
Sk, k) = — [ k, — k) — 1]in| 2222
5k, 2) 8k k, [n(k, 8 Jin ik,

k+k’}
k,— k) — 111 . (15
+ [l 2) ]nk_kl (15)
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For the particular case k, = k,=k, this becomes

- k+k
8k e k,) = — ——IneT X
o (K 15k,ko) 4k 2 nk—k

(15')

It thus has a logarithmic divergence when k—>k. However,
for k = k, we have 87’ = 0 according to (i). For k, <k, and
k—k, + 0, we get according to Eq. (15),

T lnk2—+-kl

8k, k, + 0,k,) = — —— .
o '(k1ks 2) akk, k,—k,

(157)
Approaching k, from the left, k—k, — 0, we have
83k .k, — 0,k,) = 0 according to (ii). The function there-
fore has a discontinuity at the point k = k,.

(iv) & < k,<k,. In this case the phase shift function is
obtained from Eq. (15) by multiplying it by — 1 and inter-
changing k with &, in the logarithmic functions.

(v} k, <k, = k. We find

- k, + k
8k, k,) = — — 2T 51 16
o (k1 K,K ) TS — (16)

Hence the value of 82 at k = k, is half the value one obtains
by approaching k, from the right.

(vi) kK = k, < k,. The phase shift function is equal to Eq.
(16) multiplied by — 1.

lil. PHASE SHIFTS FOR ANY ANGULAR MOMENTUM

The calculation of the generalized second-order Cou-
lomb phase shift functions for any angular momentum / by
the method of Sec. Il is obviously not feasible. Even the cal-
culation of the p-wave phase shift by this method is a consid-
erable task. On the other hand, to obtain the generalized
phase shifts through the second-order amplitude is straight-
forward. The only disadvantage is that this method yields
only the phase shift functions 8@'(k,,k,k,) of Eq. (1), but not
the two integrals 7!" and I \* separately.

Let us start with the second-order scattering amplitude

dq
k 2
Generally, the magnitude of the three momenta k,,k,k, are
not equal to each other. We assume that at the two vertices,
act two different, spherical symmetric potentials functions
V\(r) and V,(r). Here f\" and f{" are the corresponding first-
order scattering amplitudes. They are given by i = 1,2,

FO, Kk = Ej;ffa“(kl - — /Yl — k(17

Fk, —k,)= — —Lje ~®rp(r)e™dr. (18)
47

The partial wave expansion of these functions is easily de-
rived. We have

—k,) =

UK, N(2 + 1)Py(cosy ., 16Uk 1 ,ks),  (19)

\/k "2 1
where the first-order generalized phase shift functions are
given by

80k k) = —\/klkzfwfdrj,(klr)r/i(r)j,(kzr). (20)

0

Putting these expressions of the first-order amplitudes back
into Eq. (17), and making use of the integral representation of
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the radial Green’s function

gilrr) = —f alar) —— i)

which is equal to ikj,(kr _ )h ‘,”(kr> ), we obtain, for the real
part of the second-order amplitude, the expression

Re f?(k,,kk,) = %2(21 + 1)P,(cosd ;. V62K k.ky),
1
(21)

where the second-order generalized phase shift functions 6
are given by

5',2)(k,,/€,k2) = - Ez[ J‘wrzd’jl(klr) Vl(r)nl(Er) J;r'zdrj,(Er')Vz(r')j,(kzr')
o

+ rrzdrj,(klr) Vi ) f wr'zdr'n,(Er»Vzv'v,(kzr')]. 22)

We shall now specify the form of the functions ¥; by choosing them to be the Yukawa potentials e ~

first-order amplitudes [Eq. (18)] are then given by
[Pkoky) = —1/(A7+07),

*’/r. The corresponding

where Q = k, — k, is the momentum transfer. Substitution of this expression into Eq. (17) gives

dq

(Z)kl’kk
Sl 27’2f [k, —q?+A42]¢* —

—ie)[lg—k)P + 42

(23)

Now making use of the well-known Feynman techmque,“ Eq. {23) is easily transformed into an one-dimensional integral, the

real part of which is given by

Re £k ,k.k,)
1 2 2 2
_—— J _ k*—P2—A 2, (24)
1 A[k?=P*— 2)2+4k2A2]
where
A?=101 =)+ AT +A3) + (A3 —21)z, (24)
and
AP 4 PP =4 (kP 4 k2 + A4 A2) + (k3 —ki+43 —AT)z
. (24”)
The expression [Eq. (24)] can be converted by a simple transformation into the integral
s 2
Re/ Mkl = — — o P 23)

Ry (ZQ")[W ATV Q420742 + AT

Here the coefficients a, 3, ¢, and ¢, are known algebraic
functions of 4, and A,, the three momenta k,,k,k., and the
momentum transfer Q.

As in Sec. 11, here also we shall discuss the six different
possibilities (i)~{vi) one by one.

(i) k, = k = k,=k. Here we put A, %0 and A, = 0. We
then find
~(A1/7@HAt +03, B=0.
and
H=A/0 t= . (26)

The real part of the second-order amplitude thus becomes,
according to Eq. (25),

Re [Pk, kk,) = [2k(Q7 + A 1)] " "tan~ '(2,/2k). (27)

Applying now Eq. (21) in order to calculate the phase shifts,
we get in conjunction with Eq. (22),

f rdrjikrie *"J‘ rdr'n,(kr'),(kr)
(8]

,

+f rdrj,(krje =% 'n,(kr)J. rdrikr)

A J' . (28)
4k? 2k -12k2(1— )+ﬂ.2
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The integral on the rhs is known to be equal to & ~?Q,

(1 +A431/2k?), where Q, is the Legendre function of the
second kind. Now in the limit A,—0,

O, (1 +A1/2k*)— —In(A,/2k);
thus the rhs of Eq. (28) vanishes when A,—0. Now, the two
integrals on the lhs of Eq. {28) are both continuous functions
of A,. Therefore, the processes of integration and of taking
the limit 4,—0 can be interchanged. To show that the inte-
grals are continuous in A, we have to prove that they con-
verge uniformly (in 4,) in an interval which includes A, = 0.
To prove this for the first integral of Eq. (28), consider the
expression of the remainder for 4ks 1,

R, = J rdrjikrle %" f rdr'n,(kr)j,ikr). (29)
A r
Making use of the asymptotic expansions for j, and #,, this
becomes
=1— 1)’-[ ﬂsinz(kr ~ T e~ *rsi2kr), (29))
- 4 r 2
where si(x) = — f sintdt /t is the sine integral. The domi-
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nant term of si for x> 1 is — cosx/x; hence,

k4R, | = —4—3{- %sinz(kr - —g—l )e = Areos2kr| < Z—/i;
(29")

From the fact that the rhs does not depend on A, follows the
uniform convergence of the integral. The uniform conver-
gence of the second integral in Eq. (28) can be proved along
similar lines, as

frdrj,n,e“*"f rdrj? jrdrj,J- rdrjne*". (30)
0

To summarize, we have proved that for all k £0, and al/

angular momenta /= 0,1,2,...,

J r drj,(kr)n,(kr)J rdrjikr)=0,

1.e., all the second-order Coulomb phase shift functions are
identically zero.

For all the other possibilities we take A, =4, =0, i.e,,
Vi=V,=1/r.

(ii) k, < k < k,. We find

a=k*—k2, B=k?-
1, =0, (32)

Hence, the real part of the generalized second-order ampli-
tude of Eq. (25) is determined by the expression

(31)

2
ki,

t, = 0.

i
= k?— k3 + (k2> —k3)?)dt
Refm(k,,kk,)—— __1_ [ 2_+( ) ]_ ) (33)
Q [kz k§+(k2—k2)t2]2+4k2Q2t2

This integral has been dealt with extensively in the litera-
ture.’ We find that subject to the above condition on the k ’s,
the above integral is identically zero. We therefore conclude
by Eqgs. (21) and (22) that the generalized second-order Cou-
lomb phase shifts are identically zero for every angular mo-
mentum /, and all values of k,k,k,, provided k, < k < k,.
Thus, according to Eq. (1}, we have

85 (kikko) = Ik ko) + Tk kk ) = 0. (34)

(iii) k,<k, < k. The coefficients a and /3 are the same as
in (ii). According to Ref. 5 we get
Re /K, kk,) = — (7/2Q)

X [k°Q% + (k

LAl HIR

(35)
Hence the phase shift functions are determined by
85k kokes) = Ik yokokey) + (koo k)

P (u)du
~1Q[k?Q2 + (k?*—

k

kik? —k3)
(36)

where Q2 = (k, — k,)* + 2k k(1 — u). Itdoes not seem tobe
possible to express the above integral in terms of known
functions. However, for given / the evaluation is simple. In
particular, for / = 0 calculation of the integral yields the re-
sult of Eq. (15). For /> 1, the above expression is generally
rather cumbersome; yet, for the particular case when

k, = k,=k, it is easily estimated by making use of the ei-
konal approximation P,{u)=Jy(bQ ), b being the impact pa-
rameter (/ + 4)/k. Thus for /> 1 and 4k /k<1 with

Ak =k —k,

o Fa. TR (" JobQ)
61 (klyk!kz)'*-' 4k2 [EZQZ + (EZ _ k2)2]l/2dQ
~ IKo(bAK ), (37)

where I, and K|, are the modified Bessel and Hankel func-
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s
% ]1/2

tions of zero order, respectively. Comparison with Eq. (15')
shows that even for s-states the above result is very
satisfactory.

(iv) k < k,<k,. As the coefficients a and S are the same
as above, but negative, the phase shifts are given by the same
expression as in (iii) multiplied by — 1. Hence,

7rk (ﬂ)d#
—k3)k?

2)(kl9kk)_ _kg)]llz'

(38)
Suppose now that &, and k, are the two roots of the quadratic
equation (k2 — k 2)(k? — k2) = k 2k 2, where k, is an arbi-
trary, but nonvamshmg momentum; then the two expres-

sions of Eqs. (36) and (38) are equal and of opposite sign.
Hence,

10 [k?Q% +

5(12)(1‘1,1-‘-1»/‘2) + 5(12'(/‘1’](_2,1(2) =0. (39)
or in terms of the I-integrals of Eq. (1),
I'I”(kl!lgl’kz) + I{Il)(kz’k_lykl) + I(I”(kI’k—Z’kZ)
+ 1k ko k) = 0. (39)

In other words, to every k, > k, at which the phase shift is
given by the expression of Eq. (36), corresponds a &, <k, at
which the phase shift is equal but of opposite sign. In particu-
lar, to the point k2—>k2 + 0 corresponds the point
k,—k, — 0, and to k,— o corresponds k,—0.

(V) k, <k, =k Inthiscasea =0and B =k — k2.
Thus, by Eq. (25) we get

Re Pk, kk,) = — 7/4kQ?2,
and the phase shifts become
Sk ky) = — (m/8K K)Qu(1 + (ky — K\)/2K K,).
(40)

Comparison with Eq. (36) shows that this is half the value
one obtains when k—k, + 0.

(vi) k = k, < k,. The phase shift function is equal to mi-
nus the value of Eq. (40).
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IV. SUMMARY

We have calculated the generalized Coulomb phase
shift functions defined by Eq. (1). We have to distinguish
essentially between two possibilities: (i) all the three mo-
menta involved are equal to some k. Then for all values of &
different from zero and a// angular momenta / the phase shift
functions, proportional to the two-dimensional integral
I,(kkk ) of Eq. (1'), are identically zero. (ii) The momenta k,
and k, are different from each other, say &k, < k,. Then con-
sidering the phase shifts as functions of k, we find that for
k, < k < k, they are equal to zero, again for all angular mo-
menta /. Thus in terms of the integrals of Eq. (1°) this is
equivalent to the interesting relation I V(k,,k,k,)

= — I'Mky,k,k,). For k> k, and k < k,, the phase shift
functions are determined by Eqs. (36} and (38). It is relatively
easy to evaluate these expressions for any given angular mo-
mentum /. For /> 1 and the particular case k, = k,=k with
|k —k |7k <1, a good approximation is provided by the ex-
plicit expression Eq. (37). When & approaches & from the
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right or from the left the phase shift functions (for k, = k,)
diverge logarithmically like + lnlk_ — k |. The value of the
phase shift for & close to k is essentially independent of /.

When k, < k,, the phase shifts are finite everywhere, howev-
er, they have discontinuities at the points k, = kand k, = k.
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Einstein’s equations can be expressed in the tetrad form so that coordinates do not appear
explicitly. Tetrads, however, are usually defined on a manifold, which means that coordinates
have been introduced. The notion of a manifold without coordinates (a pre-atlas manifold) is
described here and it is shown that Einstein’s equations can be expressed in this setting without
introducing coordinates at any stage. Conditions on a pre-atlas manifold are given which ensure
that a C ®-atlas can be generated. The motivation for this formulation is the desire to incorporate
the philosophy of relativity, which asserts that the mathematical laws of nature are essentially
independent of observers or coordinates. “The introduction of numbers as coordinates...is an act

of violence.”—H. Weyl
PACS numbers: 04.20. — q, 02.40. + m

I. INTRODUCTION

An n-dimensional differentiable manifold is usually de-
fined' to be a pair (M,.c”) where M is a topologized set (the
manifold topology is one possibility) and .o/ is an atlas pro-
viding the differential structure. The atlas consists of n-co-
ordinate pairs (¢, U ), where U is a subset of M and ¢ is a 1-1
map of U onto an open set in R ". It is possible for different
atlases to give the same differential structure, in which case
they may be called equivalent. The manifold may be thought
of as (M,[.&]), where [.«/] is an equivalence class of atlases. It
should be noted that a given topological space can have ine-
quivalent atlases.”

A semi-Riemannian manifold is a quadruple
(MM, .g,.«/), where for each peM, M,, is the tangent space at
D, g, isthe metric defined on M, X M, and ./ is the atlas. A
second metric ¢ gives a second semi-Riemannian manifold
(MM, g, ), which is defined to be isometric to the first one
if g, and , are related by the usual change of coordinate
formulas. A given manifold (M,M,,<7) can generally have
many nonisometric metrics (e.g., g and § may be conformally
related).

For the application of differentiable manifolds to the
theory of general relativity, Einstein’s equation have to be
incorporated. In the usual treatment, these are written as a
set of partial differential equations in coordinate patch of an
atlas, thus presupposing the existence of an atlas. These are
tensor equations and thus covariant under a change of co-
ordinates. But it would conform more closely to the objec-
tive philosophy of relativity if these could be expressed with-
out even using coordinates. In this paper we find such
formulations of Einstein’s equations by defining the notion
of a pre-atlas differentiable manifold (M,M 8,7 ).

We also consider the question of how to define the atlas
./ operationally if (M,M,,g,7 ) is known. Synge® has shown
one way to do this using geodescis and clocks. The concept of
a pre-atlas differentiable manifold is also useful here to give a
rigorous foundation for these attempts. In this paper, we find
conditions on such structures which guarantee that a C* atlas

“Both authors belong to the Theoretical Science Institute, S.F.U.
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can be defined operationally. It is an open problem whether
these conditions guarantee a C * atlas. However, the major
open problem that remains is how to integrate these equa-
tions in a coordinate-free manner.

2. PRE-ATLAS MANIFOLDS AND EINSTEIN’S
EQUATIONS

An atlas serves to determine which functions on the
manifold are differentiable and which are not. The approach
here will be to turn this around by starting with a family .%
of real valued functions, all of which are to be smooth, and
deriving the atlas from them. (This might be called a basis for
a smoothness structure in the terminology of Milnor and
Stasheff*). Furthermore, these functions should all be phys-
ical quantities that can be determined by experiment. Some
examples would be the eigenvalues of the energy—-momen-
tum tensor, radar coordinates,” etc. A collection of such
fields, which are smooth functions of the proper time of the
observers, could be used for the family .

Definition 1. A family # of real-valued continuous
functions defined on open subsets of a topological space M is
called an algebra of functions if the following properties

hold:
(1) If 4 is an open subset of the domain of £, JEF, then

fliisin F.

(2)If A = UA,, and fis defined on 4 with f |, €7, thenf
isin 7.

(3) If fand & belong to # and are both defined on an
open subset 4 #¢, then

(a) af + bhe.# , for all a,beR,
(b) fheF , and
(c)f+~he7,ifh #0on 4.

These operations all preserve smooth functions. # can-
not be closed under the extraction of roots because this does
not preserve smoothness.

Definition 2. A tangent vector at p is a real valued func-
tion X, on.# , = {fe ;pedom f} such that

Xph (fl’fz) = h’lprl + h!szfz’

whenever £}, £L,€7 ,, h ( fi( p), fol p))e ,, and A is a differen-
tiable mapping from R ? into R.
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The following properties of tangent vectors can be
deduced:

X,(f+h)=X,(f)+X,(h), X,of=cX,f,
X,(fh) =X, fih(p) +f(p)X,h.

Definition 3. The tangent space to M at p, denoted by
M, is the set of all tangent vectors at p.

It can be considered as a vector space over the reals if we
set X, +Y,)f=X,f+Y,fand (bX,)f=b(X, f)

Definition 4. A pre-atias differentiable manifold (PDM)
is a triple (M,M,,, ) with # and M, as defined above.

Definition 5. A vector field X on aset A C M is a mapping

that assigns to each point p in 4 a vector X, in M,,.

A vector field X is smooth on A if A is open and for each
JeF thefunction fy defined by £y (p) = X, f belongsto .# .
In this case we see that Xf, (which may be denoted
Sxx)s Xfxx, ete., will all be in % . In this way the functions of
& are infinitely differentiable with respect to a smooth vec-
tor field.

Note that the existence of a smooth vector field X guar-
antees a certain form of consistency of & . For example, sup-
pose thereisa function fin.# , withf(p) = Oand X,f = ¢ 0.
Then the function A =f"'/? cannot belong to . ,, for it if it
did, then by Definition 2, when ¢ is near p, but not equal to p,

X h=1fX,f.

As g approaches p, X f—c and f*/*—0, so X, h cannot be
defined continuously at p, and hence does not belong to % .
Thus 4 does not belong to .# .

In the following, we suppose that (M,M,,# ) isa PDM
and 4 is a subset of M.

Definition 6. A metric field g on A specifies a mapping
8,:M, XM,—R for each peA such that g, is bilinear, sym-
metric, and nondegenerate. It is smooth if for any two
smooth vector fields X, ¥, the function taking p to g,(X,,,Y )
belongs to % . It will be assumed that g is smooth in the
following.

Definition 7. A covariant differentiation operator on
(M,M g, ) is an operator D that assigns to each pair of
smooth vector fields X and Y with domain 4, a smooth vec-
tor field D, Y, with the same domain; and if Z is a smooth
vector field on 4 and f&. %, then D satisfies the following six
axioms:

)D(Y+Z)=D,Y+ DyZ,

2) Dy, v\ Z=DyZ + D, Z,

(3) DVX) Y=/D,Y,

(4) Dy (fY) = (Xf)Y + /D, Y,

(5)DyY — D, X =[X,Y],

(6) Zg(X,Y) =g(DX,Y) + gX,D, Y).

Definition 8. The curvature operator R of a covariant
differentiation operator D is defined by

R(XY)Z=D,D,Z—-D,D,Z — D\xy ,Z,where X,Y, and
Z are smooth vector fields.
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Definition 9. The Riemann—Christoffel curvature tensor
field is defined by K (0,X,Y,Z )=w(R (Y,Z )X ), wherew is a
dual vector field and X,Y,Z are smooth vector fields.

An open set 4 is said to be framed ! if the space of
smooth vector fields on 4 has a basis of smooth vector fields
Xy, i = 1,...,n. (This implies that dimM, = n for all ped ). If
the tensors defined above are evaluated at a point p of a
framed set, the values obtained will depend only on the val-
ues of the vectors fields at p. In the following, it is assumed
that we are working on a framed set. Then we may write
Dy X, =TI"%, X, where the I""s are real valued func-
tions on A. One can check that these all belong to .7 . Note
that the order of i and  gets reversed, and that () does not
denote symmetrization.

Axiom (5) implies that [X;,X; ] must be a smooth vec-
tor field, so we may write [X,,,.X,, ] = 7,5%'Xx,. These are
related to the I"’s by the formula 7, =% , — r®

If g is a smooth metric, then the real functions
8=8X,,X;) belong to ¥ and det[g,;, #0]. Thus one can
define g = (g7 '), and one can prove from the above axi-
oms that

U/

% = 8""X080m + Xp&rm — X8 ]
+ 4P + 74 = 7] (1)
Indices are raised with g%
Let us define

(k) ;
[(ij) =" [ X181 + X8y — Xn8in ]

and

Poa=="" + 7% — a™']-
Thus Eq. (1) becomes

(k)

F(k)(iﬂ = [(ij) - 7’”()(:‘17- (2)
One also finds

?A’nfﬂ(k] = )(fj) - 7Ak ’w)'

Using a dual basis 0, i = 1,...,n, for M ¥, ped, one has®
R\ =K (@)X, Xip X))

) bl
—~ X7+ Xy ¥y + P ¥y — Vi Vi

- [((:;”’M"‘“ =7 {(E'Z))] * [((r:rli))]w“” Y [23}

- {t;:lll}(y(n)‘”" = Pup) + 7 () — 7 )

Definition 10. The Ricci tensor is defined by’

Ric(X,Y )=(tr"*K )X, Y )= 2 K (0™ X,Y.X,,)-

k=1

One can check that this definition is independent of the par-
ticular basis used.
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In terms of a basis we may write R ;, = Ric(X,,X,;) =

R e =Xy [((il;c))] -t ((Iz;'))]

(k)

+ {zfj;] {(E'Z)) B {(nk)

i

- uﬂ’(k iy + Xy ]uj) + ¢ ’(,,,,f"’(,k, — 7P 7"

(n) (k)

B [E:j;] 7 =1 [(ik )] * [(nk )]’M"‘f’ 7 e [EZ”

(k)

B [(in)](f"'(/k» = W)+ P (V") = )

Definition 11. Let (M,M, g,.# ) be a PDM with smooth
metric g. An open set A CM is called special Einstein pro-
vided that for all X,Y on 4

Ric(X,Y)=0. (3)
Condition (3) can be expressed as

R, =0. (4)
A third equivalent form of these equations is

R (,")(ijk] = C" s ()

where C'™ | is the Weyl conformal curvature tensor.

In case dimM,, = 4 and the signature of g, is — 2 (or
else + 2) any of the above three equations represent Ein-
stein’s vacuum equations. In case an orthonormal basis set is
chosen,

[(k)

()
coefficients. The complex linear combinations of (5) give pre-
decessors of the Newman-Penrose equations. In case a co-

ordinate basis is chosen, ¥**,, = 0, and the

((k)

)
the standard vacuum equations.

] =0, and the ¥}, are the usual Ricci rotation

] are the usual Christoffel symbols and Eqgs. (4) are

3. CONSTRUCTION OF COORDINATES IN A PDM

To construct coordinate patches on a PDM (M, M, ,.% ),
the following assumptions are used.

(a) Each point has a neighborhood on which there exists
abasis of n smooth vector fields X ',.X 2,.... X "(locally framed).
(b) Local path connectivity hypothesis: For each point 7 and
each neighborhood .+ of r there is a neighborhood % C.#~
of r such that for any two points p,q, p#4, in % there exists
in % acontinuous curve o{t ), 0<¢< 1, joining p to g. Further-
more, for all fin % ,,,

%f-a(t) =0 Xl (f),

for some constant vector o = (0;) of Euclidean length 1.

Theorem. If a PDM (M,M,,. ) satisfies (a) and (b), then
C° atlas exists.

Proof: Let reM. It will be shown that there exist # func-
tions f; in &, such that the matrix J Y=X | f; is nonsingular.
By way of contradiction, suppose that for every n functions
this matrix were singular. Expanding the determinant along
the last column, we find a, X *f, = 0, where the a,’s are co-
factors. Since £, is arbitrary and the X *’s are independent,
all the a,’s must vanish. In particular,

(6)
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0=a, =det[X], i,je{1,2,...n — 1}, so we can expand
again along the last column. Continuing in this way we find
X 'f, = Ofor allf,. This contradicts the linear independence
of the X *s,

Let us write J(g,0) for the vector with components

o0,J Y. Since this depends continuously on g, one can show
that there is a neighborhood % of r such that

lJ(q9U) - J(r,o)| <%‘J(r7°')|

for all p,q,€% and all a. Let the neighborhood % be chosen
small enough’ so that in addition (a) and (b) hold. Let
m = min[|J(r,0)|:|o| = 1}.

If ¢: % —R " is defined by

¢ (q) = (/i(@)/2(q)s-- /. (@),

then (¢, %) will be a coordinate patch on M. It suffices to
show that ¢ is 1-1. Let p and g be distinct pointsin %, and let
o be the path joining them, given by (b). Then

8(q) — 6 (o) = d-o(l) — po(0) = f 2 ot i

= J:J(a(t ) o)dt

and
16(q) — 6 (p)] = } f 3oyt + f [J(o(t),c)~J(r,ondt[

> J:J(r,(r)dt ’ — ‘ J:[J(O’(t ),o) — J(r,0)]dt ‘

>|J(r,o)] — 4| J(ro)|>m/2.
Thus ¢ is 1-1.

4. PHYSICAL INTERPRETATION OF THE
COORDINATES

Let M be a topological space and let 8 be the set of all
curves o: (a,b =M representing the world lines of observers
with C * acceleration, where the parameter ¢ of o{t ) corre-
sponds to the proper time (or any C * transformation there-
of). Let # be the collection of all scalar functions fon M
such that f'can be experimentally determined and f-olt ) is
C ©. Then # is an algebra of functions. Let 6, the set of
these curves which pass through p; i.e., 6, = {oefp = oft)
for some t€(a,b )} .

The tangent space M, can now be defined. If fe.# ,,
then f-o is C , so one can define a function o*: ¥ ,—R by
the rule o*( f) = (d /dt }f-o(t)|,. It can be shown that o* is a
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tangent vector, and we define M, to be the vector space gen-
erated by the o*’s; i.e.,

MPE[Zn:laiJf:O}EGP and neN |.

It is assumed that dimM,, is four for a pre-atlas semi-Rie-
mannian manifold of space-time events.
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We show that asymptotic projective twistor space .7 * is an Einstein—Kahler manifold of
positive curvature. We then use the Chern—Moser theory of hypersurfaces in complex manifolds
toshow that the Kahler curvature of 2.7 * is closely related to the CR curvature of its boundary.
We also give a proof that the Kéhler potential function defining the boundary satisfies the

complex Monge-Ampere equations.

PACS numbers: 04.20.Cv

INTRODUCTION

During the past few years a great deal of work has been
done in the applications of complex manifolds to the theory
of general relativity. In particular, much attention has been
paid to half-flat space—times; that is, four-dimensional com-
plex manifolds with Ricci flat, self-dual curvatures.'™ It has
been shown by Newman and his coworkers? that given an
asymptotically flat space—time (.#, g), there exists a natural-
ly associated half-flat manifold called an # space.

It is also possible to construct from (.#/, g) an asymptot-
ic twistor space .7 (.#) and a corresponding projective twis-
tor space Z.7 (.#).” In the presence of gravitational radi-
ation the space 7 is a curved four-dimensional Kahler
manifold of signature (+ + — — ). The Kahler potential
L (2%, Z°) is a real valued function built out of a solution to
Newman’s good cut equation.

The equation L = O defines in 2.7 a five-dimensional
real hypersurface Z.4” with a nondegenerate Levi form of
signature ( + — ). The hypersurface bounds a region
P+ = {L >0} which has been suggested as representing
a nonlinear graviton of positive helicity.*™

It has been known for some time that the Ricci tensor of
the Kahler metric of .7 vanishes, while the full curvature
tensor contains information about the radiation field of the
original space-time.’

Aside from the facts just mentioned very little is known
about this Kdhler structure. There have been suggestions
that this structure is well suited to the implementation of a
scattering theory of nonlinear gravitons,” but this goal is far
from complete. It also seems likely that there is enough in-
formation coded in the CR structure of & .4 to extract an
intrinsic definition of the elusive concept of asymptotic flat-
ness of %~ spaces, but how this is to be done is still an unan-
swered question.

With this motivation in mind we study in this paper the
Kihler structure induced on the projective twistor space 7.
We show that 2.7 is an Einstein—K4hler manifold of
positive curvature. We then apply the Chern-Moser theory
of pseudoconformal geometry of real hypersurfaces in com-
plex manifolds’ to conclude that the Kéhler curvature of
P9 is closely related to the Chern—Moser invariants of
the boundary. We also give a short proof that the function

*Part of this work was done at the University of California at Berkeley.
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defining .4 satisfies the complex Monge-Ampere
equations.

The reader is assumed to have some familiarity with the
spinor formalism and with the 3 operator of Newman and
Penrose.”™ The paper will be arranged as follows. In Sec. 1
we briefly review the construction of % spaces and asymp-
totic twistor spaces. In Sec. 2 we discuss the Kahler structure
of .9 * and in Sec. 3 we relate this structure to the CR
structure of the boundary.

I. HALF FLAT SPACES
A. %-space

Let (.#, g) be an asymptotically flat space-time with
complexified null infinity C.# *. Let { and § denote the ste-
reographic coordinates on the complexified two-sphere and
introduce the quantity

Py =41 +¢£). (L1.1)

Bya *“good cut >’ onemeansacrosssectionu = X (£, £)of
C# satisfying the equation

32X = X, ¢, £). (1.2)

Here, the operators § and its dual 3 (edth) acting on a
function 7 of spin weight s are defined by

d
on = 2P<‘>'58—(P617), (1.3)

9
. ]
dn=2P T ——(Ps°n),
Ui o ag( o M)

and 6° is the asymptotic shear of a Bondi family of null sur-
fao:es;2 In a Bondi coordinate system the commutator of 3
and J is given by

(33 — 33y = 2s7. (1.4)

The nonlinear differential equation (1.2) has a four-pa-
rameter family of solutions for §° sufficiently close to zero.
The manifold of such solutions is the #"-space associated
with (4, g).

If 6° = 0, the solutions to (1.2} are of the form

X = (0° + w')/2P,, (1.5)
with
o® = u + x¢,
(1.6)
o' =y -+
The four quantities (u, v, x, y) parametrize the ¥ space
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which in this case is isomorphic to complexified Minkowski
space CM ;.

B. Asymptotic twistor space

Denote by :* the spinor field pointing along the gener-
ators of C.# . By a hypersurface twistor with respect to
C.# * one means a pair (74, I}, where I" is a complex curve
in C.# * and 7 is a spinor field on I satisfying

(a) £9=o47® is tangent to T,
(b) A7V 37 =0 on T,
[c) m;#0 on 1. (1.7

Here 0“AB are the usual Pauli spin matrices. Condition (b)
states that 7; is parallelly propagated along the curve I”
which is referred to as a twistor curve. Condition (c) is added
to avoid the possibility of having I" coincide with one of the
generators of C.# .

The collection of all such pairs (7, "} is a four-dimen-
sional complex manifold associated with C.# * known as the
asymptotic twistor space 7 of .# . The projective asymptotic
twistor space 7 is obtained by taking the quotient of 7~ with
the equivalence relation (7, I'y)~(p,4, [,) iff 'y =T, and
7; = cp, for some number ceC*.

In a similar fashion we may define the space .7 * of dual
hypersurface twistors to be the space of pairs (7, ")
satisfying

(@) F'=0" z7"i® is tangent to I,
(b} A%V 3. =0 onT, (1.8)
(c) 7,%0 on I

The space .7 * also has a projective structure defined exactly
as above. We will denote the corresponding dual asymptotic
projective twistor space by & 7 *. The curves T are called
dual twistor curves.

It turns out that if .# is taken to the Minkowski space,
then the definition of the asymptotic twistor space given here
coincides with the usual flat twistor space T. Furthermore, it
has been shown? that the space 2.7 arises as a deformation
of the complex structure of a region on the flat projective
twistor space PT~CP;.

The relation between the asymptotic twistor spaces and
the & spaces associated with a space-time .# is contained
in the following theorems.

Theorem 1.1: (Penrose”). If /7.7 is a sufficiently small
deformation of PT, then there exists in #2.7 a four-com-
plex-parameter family of compact holomorphic curves with
the same homology class as a sphere S 2. Furthermore, the
manifold parametrizing these curves is isomorphic to %"

Theorem 1.2: Each point of .7 corresponds to a twis-
tor curve in C.# * and the good cuts of C.# * are ruled by a
CP,’s worth of twistor curves.

Define two points in #tobenull separated if the corre-
sponding holomorphic curves in #2.7 intersect. This en-
dows % with a conformal structure and we have:

Theorem 1.3. The conformal structure of & is half-flat.

For the convenience of the reader we breifly explain the
correspondence between 2.7 and #°. Consider a particular
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surface ¥ = X (£, £ ) in C.# * satisfying Eq. (1.2). For a fixed
value of { = £, the good cut equation becomes an ordinary
differential equation and the solution is a twistor curve I
lying in X (£, £). In fact, it is not hard to see that the twistor
curve is a null geodesic in C# *. The curve may be parame-
trized by three numbers (0°, @', £,), where we may think of
" = {0° w') as the constants of integration of the differen-
tial equation. The quantities (0°, @', £,) define the twistor
line up to proportionality, and thus they may be regarded as
the local coordinates of a point in .7, As the value of £
varies along the good cut we get a curve in .7 which is
holomorphicsince X (£, £ )isassumed to vary holomorphical-
ly with respect to both ¢ and £. The curve so obtained is an
element of the four-parameter family of curves whose exis-
tence is guaranteed by Theorem 1.1.

Il. KAHLERIAN STRUCTURES
A. K&hler structure of .7

In the space of asymptotic twistors it is possible to de-
fine a scalar product and a Kéahler structure using the ideas
of local twistors.** Consider two arbitrary hypersurface
twistors (I, 7)€ and (f , M4 €7 * respectively. In general,
there exists at most one generator y of C.# * intersecting
both of the twistor curves I" and I'. Supposing that such a
generator exists, we represent the hypersurface twistor
(I, 7 ;) by a local twistor (w”, 74) = (0, 7;) at P and the dual
hypersurface twistor (I, 77,,) by a local twistor (5, 0) at Q,
where P and Q are the corresponding points of intersection
of I"and I” with the generator .

The scalar product between (I, 7;) and (T, ) is de-
fined by propagating the local twistor Z * = (0*, 73 ) up the
generator ¥ using local twistor transport

VBV oS (x) = — imi (x)S, (2.1)
VP 5 7e(X) = — iPpic0”, (2.2)

and then taking the local scalar product with Z, = (7, £ %)
at Q. Thus, the scalar product is given by

L(Z%2Z,)= (0", +mi£ ) Q) =0"n,(Q)  (2.3)

We could, of course, propagate the dual twistor Z,,
from Q to Pand take the local inner product at P, but this will
clearly yield the same answer. It may happen that there ex-
ists no generator y intersecting both of the twistor curves. In
this case the twistor scalar product is not defined.

The Kabhler structure of asymptotic twistor space is ob-

tained by viewing the scalar product as a potential for a
Kihler form on .7 defined by

¢ = [0°L(Z*Z,)/32°02° |dz* NdZP, (2.4)

where Z, is the dual asymptotic twistor associated with the
complex conjugate of the curve defining the twistor Z ¢, and
z% (@ =0, 1, 2, 3) are local coordinates of .7 . The curvature
properties of the Kahler metric of .7 have been computed by
Penrose, Newman, and Ko’ using local coordinates z*

= (0", w', £, 1), where A is essentially the component 7;
taken with respect to a conformal rescaling K # of the spinor
¢, the conformal factor being taken so as to make the in-
duced metric G# ¥ become flat. In the paper just mentioned,
it was found that in local coordinates the scalar product can
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be expressed in terms of the good cut function X (0°, &', £, &)
as

L(Z* Z,)=iAA(1 + EENX — X), (2.5)

and the curvature tensor is expressible in terms of the ¥,
¥ and Im¥ Y components of the Weyl tensor of the space—
time .# . In this sense the Kihler structure codes into the
asymptotic twistor space the information about the gravita-
tional radiation field of the space-time.

Remark: The scalar product (2.5) agrees with the usual
flat twistor scalar product when we consider the space of
asymptotic twistors of Minkowski space. To see this write
the solution to the good cut equation as in (1.5). Choosing
coordinates

2 =12 (o' + ),
' =W 2 (iw' —¢),

(2.6)
w= 210",
s=A.
We get the inner product in the form
L(Z,Z)=|2° — |2'|* + i{(w5 — siD). (2.7)

Note that these coordinates are homogeneous in A.

B. Kidhler structure of 7.7
Since the quantities z * = (w”, £ ) are good inhomoge-
neous coordinates in .7, we can replace L by

K =2iPX — X), (2.8)
and we get a Kihler metric in the region .7 * defined by
K > 0 by taking

ds? = 2g.5 dt “dt? = 4&InK /3t°0tP)dre dtf. (2.9)

Using subscripts to denote the derivatives of X (i.e., K,

=JK /3t°,Kz = 9K /3t? K, = IK /dw",etc.)wecan write
the metric tensor as

8.5 =K "UKK,; — K. Kjz). (2.10)
Setting ¥ = X — X and observing that ¥V, = X, Vg = Xz,
and V5 = 0, we find a more explicit form of the metric
. -2V, Vg/V? AVV, e =V VY V?

WAVVg — V V/ VAV e =V VE/VE+ \P?
2.11)

Following the conventions of,® we find that the only
nonvanishing components of the connection are

T =g.:,8% Tts=I%=g,53:8" (2.12)
where g*” is the matrix inverse of g,z (i.e, 838" =67%).

The Riemann curvature is given locally by the
expression

8o =

Ris=T"%5 (2.13)
and the Ricci tensor defined as
R.z=R%4; (2.14)
can be obtained from the determinant g of the metric
62
R;= — ——Ing. (2.15)
d at*ath
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A long but straightforward computation using (2.10) and
(2.13) gives the following formula for the Riemann tensor.
R.5/5
= — }(8up8y5 — 8as8ys) + 2K KK 5,5 — Ko\ K 55)
+ 2K “*g"KK .5, — K, K VKK 55 — Kz5K,,).
As a consequence of this we have
Proposition 2.1: The space PT™ is an Einstein—Kahler

manifold of constant holomorphic sectional curvature equal
to 1.

Proof: In this case the solution to the good cut equation

(2.16)

is
X = (2P, (@ + §o'),
so that
K =i + o' — &° — @),
It follows immediately from (2.16) that

Raﬁ-ys = %(gaﬂ_gys - gasgyﬁ)’ (2 17)
which is the form of a Riemann tensor of constant holomor-
phic curvature equal to 1. That the space is Einstein then
follows trivially.

Remark: The metric on PT™* has signature (+ — —)
and is the semidefinite analog of the Fubini-Study metric of
CP°.

Proposition 2.2: The Kahler structure of PT* is invar-
iant under the action of SU(2,2), and, up to a scalar multiple,
it is the only one with this property.

The proof follows from the fact that the action of
SU(2, 2) preserves the Hermitian form ( + + — — ) as well
as the complex structure of C*.

The analog of the Weyl tensor for a Kihler manifold of
complex dimension # is given by the Bochner tensor

Cupys = Ragys +(n +2)7"
X (R:58,5 + R,58a5 + 8asRys + 85 Rus)
—Rn+ 1) n+2)" €585 + 8y58a5):
(2.18)
where R is the scalar curvature R = g"ERag.
Proposition 2.3: The Bochner tensor of PT™ vanishes.

Proof: Contracting the expression for the Riemann cur-
vature with the metric tensor we get

Raﬁ_ = Zgaﬁi
R =6.

Substituting into (2.18) and making further use of (2.17) we
find

Cogrs = Rogys — Rugys + Raps = 0.

Theorem 2.1: The space Z.7 * is an Einstein-Kahler
manifold of constant scalar curvature equal to 6.

Proof: First, we notice that the upper left corner block of
the metric (2.11) has vanishing determinant. Thus, expand-
ing the full determinant g of the metric by minors along the
bottom row, we find after some cancellations that g can be
expressed in the rather simple form

g="V"pp,

p = €PX Xp;. (2.19)
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The proof then follows by a long computation using (2.15)
and the good cut equation. The details are found in the Ap-
pendix. Theorem (2.1) states that the nontrivial part of the
curvature is contained in the Bochner tensor. This tensor
may be calculated using (2.16), (2.18), and the lemma in the
Appendix. We will spare the reader the long details of the
computation and we just remark that the tensor is express-
ible in terms of space-time Weyl components ¢35, ¢35, and
Im 3. In other words, the gravitational radiation data of .#
is coded into the bochner tensor of 2.7 +.

Ill. CR STRUCTURE

A real hypersurface on C* * ' inherits from the ambient
space an intrinsic structure called a pseudoconformal or CR
structure. That is, there exists a 2n-dimensional subbundle
of the holomorphic tangent bundle having a complex vector
space structure on each fiber. The theory of pseudoconfor-
mal structures has been used by Chern—Moser’ to study the
invariants of strongly pseudoconvex hypersurfaces (i.e., hy-
persurfaces with positive definite Levi form) under biholo-
morphic mappings. The known invariants at present consist
of a curvature tensor and certain real curves called chains.

Pseudoconformal geometry is important in complex
analysis because one often has to deal with domains in C*+'
and the boundaries of domains are real hypersurfaces. In this
context, biholomorphic invariants have also been indepen-
dently studied by Fefferman® by constructing a defining
function for the hypersurface which is an approximate solu-
tion to the complex Monge-Ampere equations. The invar-
iants found by Fefferman have been related to those of
Chern-Moser by work of Burns and Shnider® and
Webster. '

Most of the known results on the subject until now
make use of the assumption of strong pseudoconvexity and
they do not apply to situations where the hypersurface does
not have positive definite Levi form. Although the case of
2 .4 isnot a favorable one in the sense that its Levi form has
signature ( + — ), it is still possible to extend some of the
known results to our situation.

The CR structure of .4 is important on several
grounds. First, we need to understand the boundary to clari-
fy the notion of positive frequency of nonlinear gravitons.
Secondly, the CR structure contains important information
about the space—time. In fact, it seems plausible that all of 77
space may be recovered by studying the chains in Z_/4". Fi-
nally, the results of this paper (in particular Theorem 3.2)
together with the observation that the good cut equation is
the Dolbeault version of twistor deformations'' brings into
play powerful machinery of complex theory which hopefully
can be used to gain further insight into the structure of the
half-flat Einstein equations.

The theory of pseudoconformal structures is perhaps
not well known to mathematical physicists and unfortunate-
ly it is impossible to present a detailed description of the
geometry in these few pages. Thus, we will content ourselves
with drawing a quick sketch of the ideas involved by evoking
our knowledge of the theory of surfaces in Euclidean three
space. For a more complete account, the reader is referred to
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the extensive work in the literature.” '’

The simplest and most important surfaces in R are the
planes. They are the prototypes of flat surfaces in Rieman-
nian geometry. The theory of surfaces in Euclidean spaceisa
generalization of the geometry of planes. To be specific, let
us consider a smooth surface which near the origin is defined
by an equation of the form

z=fx), i=12. (3.1)

The local properties of the surface may be understood
classically by expanding the function fin a Taylor series
around the origin:

z =24+ bx + (1/2)b,x% + -, (3.2)

where the coefficients b, -, denote the value of the partial
derivatives of fat the origin. If we neglect all but the linear
terms of the series we get the equation of a plane. This is the
osculating plane which best approximates the surface at the
origin. The quadratic coefficients b, represent the compo-
nents of the second fundamental form. By applying a linear
transformation, if necessary, we can rotate the surface so
that b, = 0; in other words, we can choose our frames such
that the osculating plane becomes horizontal. With this
choice, the determinant

G = |b, (3.3)

Y
is the Gaussian curvature of the surface at the point in ques-
tion. The fundamental theorem of geometry states that al-
though the second fundamental form depends on the embed-
ding, the Gaussian curvature is an intrinsic property of the
surface and it is a bending invariant.

The geometric structure of the surface may also be
viewed in terms of a principal fiber bundle with a connection.
Classically, the fiber of the bundle at a given point on the
surface is the tangent plane at that point. The unique Levi-
Civita connection defines a law of parallel transport which
allows one to construct the tangent space of a point in terms
of that of a neighboring point. The curvature of the connec-
tion, defined by the second structure equations, has only one
independent component which is the Gaussian curvature of
the surface.

The situation for real hypersurfaces in G* * ' is, of
course, more complicated but we can get some feeling for the
geometry by trying to emulate the discussion above. It may
be helpful for the reader to keep in mind the following lexi-
con of corresponding concepts.

Surfaces on R® Real hypersurfaces on C" *!

Planes Real hyperquadrics
Riemannian structure Pseudoconformal structure
Fundamental form Levi form

Group of motions Biholomorphic transformations
Bundle of frames Pseudoconformal bundle
Geodesics Chains.

Suppose that near the origin the hypersurface is gven
locally by a real valued function

"z, % =0. (3.4)

We assume that not all of the partial derivatives of »
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vanish at the origin. In particular, if we define

w=z"""=u+iv (3.5)
we may assume that

r, #0. (3.6)

By a linear change of coordinates, Eq. {3.4) may be put
into the form

v="Fiz,Z u). (3.7)
What Chern and Moser do is to take the last equation and
write it in normal form; that is, they express Fin terms of a
power series in z and Z with coefficients depending on u.

Then, by applying appropriate coordinate transformations,
the power series is reduced to the simplest possible form.

v=o(2,2) + Npo + Z N (3.8)
k+1>5
where
(z, Z) = haﬁlz"‘_'zé', (39)
N22 = ba,aﬁ.ﬁzza‘zazzl;lzgz’ (310)
Nu = ba,...a.ﬁ--A-E,Z"‘---Za"zﬁ'---zﬁ_'. (3.11)

Here, the quantities N,, and N,, are symmetric on the
a’s and B’s, and they satisfy some trace conditions that we
will not discuss.

The equation

v={z2) (3.12)

represents a real hyperquadric of signature (p + 1, ¢ + 1),
where (p, g) is the signature of the quadratic form 4, 4 , also
called the Levi form of the surface. It will be assumed that
the Levi form is nondegenerate. Equation (3.8) states that
any nondegenerate real hypersurface in C" * ' may be oscu-
lated to high order by a quadric, whose Levi form is of the
same signature of that of the given surface. For this reason
real hyperquadrics are of fundamental importance in the
theory. In fact, transformations of a surface into normal
form are unique only up to the group of matrices which pre-
serves the quadric, as well as the origin. The group H of such
transformations is the isotropy subgroup of SU(p + 1,4 + 1)
which leaves the origin fixed. The group H plays a role in
pseudoconformal geometry analogous to that of the orthog-
onal group in Riemannian geometry.

The quartic coefficients b, , 7z depend on the first four
derivatives of the defining function r. They may be regarded
(up to a constant factor) as the components of the so-called
fourth-order Chern—Moser tensor. The tensor is an intrinsic
quantity and it is invariant under the pseudogroup of biholo-
morphic transformations. There are, of course, higher order
invariants associated with the fifth- and sixth-order coeffi-
cients but we will not be concerned with those here.

As in the Riemannian case, there is a coordinate-free
formulation of pseudoconformal structures in terms of a
bundle with connection. For a given point on the hypersur-
face, the fiber is a homogeneous space, namely, the tangent
hyperquadric. The fundamental theorem of Chern—Moser is
that on the bundle there exists a torsion-free Cartan connec-
tion 7 defining a notion of “parallel transport” among tan-
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gent hyperquadrics of infinitesimally close points. The pseu-
doconformal invariants are defined in terms of the
connection via Cartan’s structure equations

de+7mAm=1I. (3.13)

CR structure of V4

As before, we let £ = {r“} be the natural coordinates in
an open set U, of 2.7 *. The forms {6, 67}, where 6 ¢
= dt“, then define a basis for the cotangent space over U,.
In terms of this coframe the Kéhler metric (2.9) and the cor-
responding Kihler two-form = can be written as

ds? = 2g,;0°0°, (3.14)

3 = —2ig;0°N6”. (3.15)
From Eq. (2.9) it follows that we can also write the

Kahler form as

Z = —4iddInK (1%, t%). {3.16)
Consider now the real valued function r on .7 defined
by the equation

r=ssk{t% 1% —1 (3.17)
=L-—1 (3.18)

The real hypersurface 4 given by
r=20 (3.19)

P

is then a circle bundle over #/. *. The hypersurfaceisa CR
manifold whose Levi form is simply the lift of the Kahler
form (3.15) to the bundle. This kind of hypersurface is exact-
ly of the kind studied by Webster'”* except that in his paper
he was only concerned with the the positive definite case.

To get an idea of what kind of bundle we are dealing
with, we consider the situation when the base manifold is
taken to be the ““flat” projective twistor space PT ™. This
manifold admits a homogeneous space representation of the
form

PT* = U(2,2)/(U(1,2) x U(1,0)). (3.20)

It follows from this observation that the corresponding
circle bundle .4 is just the Steifel bundle
U(1,0)

U(2,2)/U(2,1) — PT* (3.21)

of frames of type (1,2) in 7, with fiber U(1,0)=S".

To understand the nature of the circle bundlein (3.21) it
is helpful to compare (3.17) with (2.5). It follows at a glance
with the surface N associated with PT™ is nothing else but
the hyperboloid of twistors of unit helicity in T. The topol-
ogy of this hyperboloid is S * X R * as can be seen from the
equation

L =|2°2 — |2'|2 + Li(w5 — siw) = 1. (3.22)

In view of this it becomes evident that the nontrivial part of
s
the bundle (3.21) S * X R *— S X R * is just the usual Hopf
-

fibration S*—S 2.
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Introduce a new variable z*€C, and “homogenize”
(3.17) by letting s—s/z*. Then, z%—2°/z* and t %—¢ . In
terms of these quantities we get a “projective” version 7.4~
of the surface ./ defined by the equation

sSK (1%, 1% — |2¢] = {3.23)
The manifold of null projective twistors @./V thensits as the
submanifold of 227" defined by setting z* = 0.

To gain more geometrical insight into what is going on,
we will again look at the flat N. Inthis case, the coordinates z'

give an embedding of C* as an open set in CP* and we get the
following diagram

PN—CP*

e

The expression (3.23) then becomes a Hermitian form of sig-
nature (+ + — — ), and it defines a quadric Q(2, 3) in CP*.
The quadric has topology S*x.S* and it is, of course, the
compaciiﬁcation of N=S3xR* The map (s, o*, {, 2}~
(s, w4, £, 0) gives a natural embedding of CP* into CP*. The
induced embedding gives PN as the submanifold defined by
the intersection of PN with the plane at infinity {z* = 0}.

The interesting fact is that there exists a theorem of
Webster ' which can easily be extended to Kihler mani-
folds with indefinite signatures to give the following

Proposition 3.1: The Bochner tensor of .7 ™ is equal
to the fourth-order Chern—Moser tensor of /.

On the manifold .4 one can find certain distinguished
real curves called chains defined by the differential system
7_, = m, = 0."> Chains are the analogs of geodesics in CR
manifolds. Very little is known about these objects, but they
seem to carry a lot of information about the intrinsic geome-
try of the hypersurface. In the case of PN, the chains are
obtained by the intersection of complex secant lines with the
quadric. The chains have topology S ' and there is an eight-
real-parameter family of them. The space of chains has the
structure of a complex manifold which can be identified with
CM, ;.

In a general CR manifold the space of chains is not so
nice. In fact, it seems that generally there will exist a large
number of chains which will spiral into a pomt In the situa-

tion here the base manifold of the bundle N —»9’ F * has

constant scalar curvature. This is necessary and sufficient
condltlon for vertical curves to be chains. Furthermore, on
V" we have a free S ! action and no spiralling occurs.

The final result in this paper is the following.
Theorem 3.2: The function K defining the null twistors
satisfies the complex Monge-Ampere equations.

Proof: Define a new function R on U X C, where Uis an
open setin Z .7 * with Un 2.4 #£(, by the equation

R = (/K.
Here z%¢C and p is a positive constant. One can then define a
Kihler metric on a circle bundle over Z.4" using R as the
Kihler potential. By a computation exactly analogous to

that of Theorem (2.1) we find that the Ricci tensor of this
metric vanishes. By the results of Ref. (10b) the assertion of
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the theorem follows.

CONCLUSIONS

The results in this paper show that asymptotic twistor
space possesses a rich geometrical structure which up to now
has been neglected. We expect to explore this structure fur-
ther by applying the ideas to some specific self-dual metrics
recently found by the author, but clearly much work remains
to be done.

APPENDIX

Lemma: If V(£,€) is a scalar function of spin weight
s = 0 on the sphere then the first fourth-order derivatives of
V with respect to ¢ and £ can be written in terms of the edth
operator according to the following equations:

Ve =(2P,) '8V,

Vg = (2Py) 8V — 208V),
Vm = (2P,) 8V — 6£8*V + 6;§6V

Veeee = (2P,)4(8*V — 12F8%V + 36LE0V — 24FELBY),
Ve = (2P,)'8Y,
Ve = (2P,) 238V,
Viee = (2P) (8°8V — 2§66 V),
Vieer = (2Py)~ Y38V — 4§626 V + 3EEBEYV),
Vie = (2P,)72(3°V — 268 V),
Veer = (2P)~ %382V — 2£88V — 28 V),
Vieer = (2Pg)” Y8°8°V — 2£8°8V — 4338V

+453V— 2£88%V + 4LEB3V).

Remark: The formulas above follow by recursive use of
the definition of the edth operator. The operator & is defined
exactly as in (1.2) but replacing £ by £&. We note that the rest
of the formulas for derivatives of order <4 are obtained from
the above by complex conjugation. It is in fact possible to
write a general formula for derivatives of any order but it is
not simple and we do not need it here.

Proof of Theorem 2.1: Using Eq. {2.15) we compute the
Ricci tensor. For the R 5 components we have

RA§ = 4&A8§InV— aAaglnp - 8,,851np
= — 4V, Vgz/V?
=2845. (Al)
Next we compute the R ;; component which is given by
R;= —49,0:InV —~3,0:Inp — 3,9,1np. (A2)
Using the previous lemma and the facts that X =5°
and 8°X = ¢°, we find that the second term in the right-hand
side of the last equation becomes
pePe” {XEXF_E(XCAXDQTE + XX 4pzz)
XEXFgg'(XCAXDg’ +XCXDA§)}
=p €L (2P) (X 0X,.(8X ,0X
+0X:0Xp, + Xy (5 X — 248K )
+ X [0°Xpy — 268X p,)] - XilG°K, — 263X,)
X(XCAEXD + XCEXDA” =0.

In the computation above we have used the fact that the
contraction of €“? with a symmetric spinor F-,, is identically
equal to zero. The last term of (A2} also vanishes by virtue of
the remarks following Eq. (2.10). Hence, the only surviving
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term is
Ri;=1284:.

Computation of the R,; component is a bit nastier since
it involves third-order derivatives with respect to { and £,

R,; = 49,d7logV — d,97logp — 3, d¢logp. (A3)
By further use of the lemma, we find some nice cancellations
take place and the second term in the right hand side of the
equation above reduces to
d.d¢lnp

= p 2P (2P) X L BX 1 (0°X p X - + X 020X ),).

Applying formula (1.4) to the quantity 3X,, we get

30X, = 38°X,, — 28Z,,.
Substituting this into the last equation and using (1.2) yields

3, 0gInp = — 2p™*(2P)) e PX DX, )€ X < BX, )

= —~1/2P,.

Since the last term in (A 3) is the complex conjugate of the
preceding one, we see that

R; = 48§3§an+ I/P(z) = 2¢5,.
Thus we have shown that
Ra[? = 2ga,§R = 6,

concluding the proof of the theorem.
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A new formulation is presented for analyzing the structure of a space—time at timelike infinity. An
asymptotically simple space-time is defined as a space-time (#, g) which can be imbedded in a
space (V%,g) with boundary .77, a C * metric § and a C  scalar field £, such that 2 =00n .7,
2>00n.# — 7 and §* — 0,02, = 2 g~ — 2 ~g’g*, 2, in a neighborhood of
7. Demanding that .7 = .7 ~uJ *, where each one of %"~ and .7 * is isometric to the unit
spacelike hyperboloid, and §°2,, 2, = 2 ~%¢**2_Q, =1 0on .7, we have an almost
asymptotically flat (at timelike infinity) space—time. The group of asymptotic symmetries of (A ,8)
at timelike infinity is found to be isomorphic to the Lorentz group. Some properties of the space—

time near .7 are shown.

PACS numbers: 04.20.Cv

1. INTRODUCTION

In the framework of general relativity and other similar
metric theories of gravity it is believed that a bounded
source, e.g., a binary neutron star or a dust cloud, generates a
curved space—time which at large distances from the source
becomes in some sense more and more Minkowskian. Al-
though a mathematically rigorous study of the near zone is
extremely difficult, substantial progress has been made in
the study of the asymptotic region.

To study null infinity (i.e., the asymptotic region
reached when traveling infinite affine distances along null
geodesics) Penrose! has introduced the idea of conformal
completion of the space—time. Using Penrose’s technique we
can attach a three-dimensional null boundary .# to the
space-time, define a C * four-metric in a neighborhood of .#
and use ordinary local differential geometry as in any other
regular region of the space—time. Conformal mapping, how-
ever, does not give satisfactory results at spatial and timelike
infinities, that is, for the asymptotic regions at infinite space-
like and timelike distances respectively. In fact conformal
mapping “‘shrinks” spatial and timelike infinites too much,
so that they become the single points /° (spatial infinity), i~
(past timelike infinity), and /* (future timelike infinity). Sev-
eral studies™” along these lines have shown some awkward
and undesired features for the space-time at /°, e.g. the un-
physical metric is only C >° at i°. For timelike infinity a new
complication arises, since the source itself reaches timelike
infinity {after infinite time), while it does not reach null or
spatial infinity. Thus the structure attributed toi~ and i+ by
the conformal mapping technique, although not investigated
yet, is expected to be much more complicated than that of °.

An alternative approach has been presented for spatial
infinity* and for timelike infinity.>® The central idea is to
attach three-dimensional boundaries to the space—time (one
at spatial infinity and two, past and future, at timelike infin-
ity) and define only projective structure near each boundary.
Thus in the projective completion approach we avoid the
definition of a four-metric smooth on the boundary. Howev-
er, projective structure seems to be inadequate when we are
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dealing with physical questions. Thus, e.g., the conformal
completion, although resulting in an awkward structure at
{, is more effective in the study of the physical fields than the
elegant projective completion.

To overcome these difficulties a new approach has been
proposed’® to define asymptotic flatness at spatial infinity.
In this formulation a three-dimensional boundary .% (a unit
timelike hyperboloid) is attached to the physical space-time
(#,gandaC* four-metric g is defined on the extended
manifold .# = .#u.%. Working along the same lines we
propose in this paper a similar formulation for past and fu-
ture timelike infinity. The basic requirement is that the
space-time admit a natural timelike boundary 7~ consisting
of two separate pieces .7 ~ (past timelike infinity) and 7 *
{future timelike infinity). The term “natural boundary” asso-
ciates with .7 the following three properties: {a} 7 is three-
dimensional; (b) the unphysical metric § is C * on a neigh-
borhood U of .7; (c) on U the unphysical metric g is deter-
mined uniquely from the physical metric g (and a scalar field
£2) and vice versa. In building up the structure near 7 we
follow a step-by-step process, imposing at each step only the
requirements which are necessary. Thus we define first as-
ymptotic simplicity at timelike infinity. In the second step
we specify the intrinsic structure of 7. In the third step we
describe how .7 is attached to the space—time. Finally, in the
fourth step we examine the physical fields and determine
other conditions which will give a rich and physically inter-
esting space—time.

In this paper we examine only the geometrical fields
which provide the background geometry and some physical
fields which do not affect this geometry. Since a world tube,
which includes the bounded source, reaches 7 eventually, it
is expected that for the most interesting space-times (e.g., a
binary star, a Schwarzschild or a Kerr black hole) the phys-
ical fields will affect (at least on some part of .7} the back-
ground geometry. This is an important difference from the
corresponding case of spatial infinity. A future detailed in-
vestigation of the structure at the points where the source
touches .7 is expected to give a classification of asymptoti-
cally flat space-times and a better understanding of the
Cauchy problem.
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In the Eardely-Sachs formulation® a space-time (.#/,g)
has a C* regular future projective infinity  iff there exists a
C * Hausdorff manifold # = .#ur with boundary 7 and a
C*~2 symmetric connection I such that (.#,g) and (#,I")
have the same geodesics and each timelike geodesic of .#
can be extended to intersect 7. It is obvious that such a
space—time may or may not be asymptotically flat, whatever
“asymptotic flatness” means. We can add some conditions
which will ensure similarity of 7 with the future timelike
boundary of Minkowski’s space-time. Such an approach,
however, will not give a metric structure to & .On the other
hand an almost asymptotically flat (at timelike infinity)
space-time, as it will be defined in Sec. 3, does not have, in
general, a regular future projective infinity, unless an addi-
tional condition is fulfilled (Sec. 5).

In Sec. 2 we define the concept of asymptotic simplicity
at timelike infinity. In Sec. 3 we give the conditions which
define an almost asymptotically flat space—time. In Sec. 4 we
examine the group of asymptotic symmetries. Some proper-
ties of almost asymptotically flat space—times are presented
in Sec. 5. In our notation Greek indices 4,u,v, etc., take val-
ues 0,1,2,3 while Latin indices ijj,k, etc., take values 0,2,3.
Covariant derivatives with respect to the physical metric are
denoted by V,,, with respect to the conformal metric by V,
or a semicolon, and with respect to the unphysical metric by
V,, oravertical rule. If 2 ~ "¥ admits a smooth extension to
7, wewrite ¥ = O,. Finally, the symbol = denotes a rela-
tion which holds on .7 only.

2. ASYMPTOTIC SIMPLICITY AT TIMELIKE INFINITY

To determine the relation connecting g and g we start
from the Minkowski metric in coordinates ¢,7,0,¢ which is
diag[l, — 1, — %, — P’sin?0] (we take ¢ = 1). To study ti-
melike infinity we set ¥ = (¢ — r*)'/? with r < |¢ | and
t = eycoshy r = ysinhy (€ = lande = — 1 respectively for
future and past timelike infinity). Thus we have a new set of
coordinates y,7,8,¢. Since timelike infinity is reached when
y— + oo with y,6,p constant, wesetw =y~ 1. In coordi-
nates y,w,0,@ the physical metric of Minkowski’s space—-time
is

2 . —4 2

h,= diag[ — 0% 0™, —sinh’yw~

(1)

Let now {2 be a scalar field such that in coordinates y,,6,¢
we have £2 = w. We define the conformal metric
h, =2°h,,

= diag[ — 1, 0~ % —sinh’y, — sinh’ysin®6 ], (2)
with contravariant form
A* = diag[ — 1, »*, —sinh "%y, — sinh~%ysin=%0]. (3)
Obviously };,W is singular at @ = 0 because h, = o~ ?orbe-
cause# !' = w2 Toeliminate this singular behavior we define
a new metric A,,, whose contravariant components satisfy an
equation of the form
R R0, = e — 0,0, @)
Note that in our coordinate system 2, = {2,, =&} and (4)
changes /4 '' only (it makes it different than zero) without

affecting the other components near the hypersurface
2=0.
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, — sinh?ysin*60w 7).

We state now the definition of asymptotic symplicity.

Definition: A space-time (.# ,g) is asymptotically simple
at timelike infinity iff there exist (a) a space (#,§) with a
nonempty boundary % (% C.#) and a ¢ * metric g on
some open neighborhood U of # (% CU), (b) a diffeomor-
phism f.U—U — % from an open subset Uof .# to U — %,
and (c)a C = scalar field £2 on U, positiveon U — % and zero
on #, such thaton U

g — 8,0, =07 — 0 TR, 0, ()

Equation (5} is the basic relation which essentially de-
termines the unphysical metric tensor g from the physical
metric tensor g and the scalar field 2. It should be empha-
sized that the quadratic terms in both sides of (5) have a
minus sign in front of them, contrary to the case of spatial
infintiy.

A consequence of the above definition is that an asymp-
toticaly simple space-time accepts a boundary which satis-
fies condition (b) of Sec. 1 for being a natural boundary. Fur-
thermore we can prove now the following theorem.

Theorem 1: For an asymptotically simple (at timelike
infinity) space~time (a) if on some part .4 of %

nN%0N,0,£ -1 and §02,0, =0, (6)
then on some open neighborhood on .#” we have
g =g )

while (b) if on some part .7 of #
n7g,0n,%1 and £70,0, =1, (8)

then on some open neighborhood of 7~ we have in a coordi-
nate system x* with 2 = x' (ij = 0,2,3)

gAll___-l——g"ll’ (9)
gAil =g~i1( — 14+ l/g"'”), (10)
F=g+g¢—1+(1-1/8"7] (1)

Proof: 1t is enough to show Egs. (7) and (9)—11) in a
coordinate system x* with 2 = x'. In such a system (5) gives

g"(l\/__g‘\l'ug"lvzg’v.t\'_g'lyg"lv. (12)
If (6) hold, then g§'' =0, §'' = 0, and (12) gives Eq. (7). If (8)
hold, then g'' =0, §'' = 1, and (12) gives Egs. (9)—(11).

This theorem indicates an unexpected relation of as-
ymptotic simplicity at null infinity and at timelike infinity.
This property and the corresponding in the case of spatial
infinity® will be used in a future paper to unify asymptotic
simplicity and flatness at timelike, null, and spatial infinity.
Also from the previous theorem we conclude that if we im-
pose conditions (8) then our asymptotically simple space—
time admits a boundary which fulfills conditions (b) and (c) of
Sec. 1. For Minkowski’s space-time the unphysical metric
can be obtained easily from (3) and (9)—(11). We have in co-
ordinates y,w,0,¢

h* = diag[ — 1, 1 — @, — sinh™2y, — sinh~?ysin 2],
g Y X s

h,, =diag[ — 1,(1 —? ', —sinh%, — sinh’ysin’6 ].
{14)

Thus hAm, and A*” are C = on a neighborhood of the hyper-
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surface @ = 0, which is the timelike boundary of . This
hypersurface has two separate identical parts 7 — and .7+
(7" =7 ~uJ ") corresponding, respectively, to t— — «
and f— + oo (a separate coordinate system y,,0,¢ is need-
ed to cover a neighborhood of each 7~ and .7, while
® >0on .#). The induced metric on each part of 77, i.e., on
T "or I tis

vy = diag[ — 1, — sinh?y, — sin’y %sin®6 ], (15)
namely the metric of a three-dimensional unit spacelike hy-
perboloid. The coordinates y,0,¢ take always values in the

intervals — o <y < + o0,0<0<7, 0<@p< 27 (@ = Oisiden-
tified with ¢ = 27).

3. ASYMPTOTIC FLATNESS AT TIMELIKE INFINITY

The space-time generated by a bounded source can be
regarded as a space~time for which the energy-momentum
tensor vanishes outside a world tube which extends from
J ~ to .7 *. Consequently, asymptotic flatness at timelike
infinity is expected to be a much more delicate and compli-
cated concept than it is at null and spatial infinty. There is,
however, an encouraging element in the definitions of as-
ymptotic flatness at null® and spatial® infinity. These defini-

tions do not assume that the energy-momentum tensor is
zero near the null or the spatial boundary. Thus we can pro-
ceed and define the concept of almost asymptotically flat
space-time (AAFS) at timelike infinity as a space-time in
which the energy-momentum tensor and the curvature are
not strong enough to destroy the background geometry at
T or T,

Working along these lines we require for the space-time
to be asymptotically simple and a part of its boundary identi-
cal to the timelike boundary of Minkowski’s space—time.
Some additional conditions are needed to specify how the
boundary is fastened to the interior of the space-time. These
conditions, and a way to define asymptotic flatness in terms
of tensor relations as well as in terms of the existence of a
special class of coordinate systems, are indicated by the fol-
lowing theorem.

Theorem 2: For an asymptotically simple space-time
with boundary %, .7 " a part of % and U an open neighbor-
hood of .7 the following conditions are equivalent.

(a).7" is isometric to the unit spacelike hyperboloid and
on .7 ' the conditions (8) hold. ~

(b) There exists a coordinate system (y,,6,¢) on U in
which we have 2 = 0, §'' = &’ + 05, and

—d
— 140, a+0, 0, 0,
5 = a+0, B+0, y+ 0, 5+ 0, 16
H 0, ¥+ 0, —sinh’y + 0O, 0, (18)
0, §+0, 0, — sinh?ysin’6 + O,
with a,y,8 arbitrary functions of y,0,¢ and
B=1—a®— p*sinh~ %y — 8 %sinh~ysin~20. (17)
{c) There exists a coordinate system (y,»,6,@) on U in which we have 2 = o,§'"" = w* + 0,,and (a,8,y,6 as before)
—1+a®+0, a+0, aysinh~2y + O, absinh~2ysin ~26 + O,
P a+ 0, 1+ 0, ysinh =%y + O, Ssinh~?ysin ™26 + O, 18
aysinh %y + 0, ysinh ™%y + O, (— 1+ 92sinh =%y )sinh =2y + O, ybsinh~*ysin %0 + O, - (18)
absinh~2ysin ™29 + 0, &sinh~2ysin™%0 + O, y8sinh ~%sin 26 + O, {— 1 + 8%inh~2ysin—2@ Jsinh~2ysin %@ + O,
(d) There exists a coordinate system (y,w,0,¢) on U in which we have 2 = o, g'"'=14+0,and
—1+0, a+0, 0, 0,
i = a+0, 0’40, v+ 0, 5+ 0, 19
”V 0, ¥+ O, — sinh?y 4+ 0, 0, (19)
0, 5+0, 0, — sinh?ysin? + O,
(e} There exists a coordinate system (y,,0,¢) on U in which we have £2 = w,8" =1+ 0,,and
-~ 140, aw’ + 0; 0,
= aw’ + 0, o® + 0, ysinh 2 yw? + O; 8sinh™2ysin~%6w® + O,
0, ysinh~2yw? 4 O, —sinh™%y + 0, 0, ' (20)
0, Ssinh ™ 2ysin~%6w? + O, —sinh~2ysin~20 + O,
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We will omit the proof since it is similar to the corresponding case at spatial infinity.® However, the formulas (16)—(20) are
different from the corresponding cases at spatial infinity. Another difference is that a space—time which is asymptotically
similar to Minkowski’s space-time is expected to have two separate pieces of its boundary, each one similar to 7. This is

incorporated in the following definition.

Definition: A space-time is almost asymptotically flat (or Minkowskian) at timelike infinity iff it is asymptotically simple
and for each one of two separate parts 7 — and .7 * of its boundary & one of the conditions (a)—(e) of Theorem 2 is satisfied.

Obviously an AAFS admits a natural boundary 7~ = .7 “UZ * in the sense of Sec. 1. Near 7 ~ and .7 * we can give a
general expression of the physical metric using the relation g,,, = £2 "zg",w. From (19) we have

""w_—2+0__1 0__2 0 1 0__1
—4
g = o_, w0 '+ 0_, ‘ 20__22 o_, 21)
# o_, o_, —sinh*yo ™" 4+ 0_, 0_,
o_, o_, o_, — sinh?ysin*6w 2 + O _,
This expression is very useful for practical calculations ! Yo\ | (36,2 A
near the boundary, something which is not possible in gener- (“9—?) + (5—0) sinh’y, + ( %0’ v ) sinh’ygsin’6,
al in the conformal or projective completion. The explicitly ¢ ¢ ?
given terms represent t}}e “geqmetrical” part of g, while = sinh?y sin®g”, (30)
the “physical” part is hidden in the terms O, .
4. ASYMPTOTIC SYMMETRIES ax? Qx_? 39(3 Qﬂ:sinh o+ 2P0 c?rp? sinh’ysin®, = 0.
Since .7 is a real boundary of the space-time manifold 96" d¢’ 96’ dp 90" dp (31)

with a C = four-metric on it, we can define asymptotic sym-
metries in three equivalent ways. The most natural defini-
tion is based on the form of the physical metric tensor near
the boundary and defines the group of asymptotic symme-
tries as the group of coordinate transformations
(v.0,0,¢)—y ",@',8"',¢") which preserve the form (21). The
most general transformation which mapsw =0tow' =0
and the region » > 0 to the region o’ > 0 is

X=Xo+0, (22)
©w=w0+ 0, (23)
6=06,+0, (24)
=@+ 0, (25)

with @, >0 and y,,0,,@, functions of y ',6",¢’. Calculating
8,., and demanding that it be of the same form as (21), we
have

( ax‘f )2 + (6_6_) sinh?y, + (3%) sinh?y,sin?4, = 1,
X

Iy dy’
(26)
o 9o 36, 96, sinh?
1 ' e 0
dy' 96 dy’ 98’
+ g‘p‘f 30, —=Lsinh’y,sin’6, = 0, (27)
o Wo 390 390 2 op 9Py Py 2
—A0 _A40 inh h? 6,=0,
oy a0 Kot Gy g SN AN G
(28)
2
(—-——-g’; ‘f) + (—Zz ) sinh’y, + (3‘50) sinh’y,sin24,
= sinh?y (29)
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After some calculations we obtain also the useful relation

2 2
() 5+ (o .
(32)

and for the Jacobian of the transformation (6, @o}—(6 @),

. 'sin@’
J(o 90 0, 9) = %

dy ' sinh? Y osing,,

We can also define the group of asymptotic symmetries
as the group of the transformations (y,8,¢)—(y .8 ',@') which
preserve the intrinsic geometry of 7+ (or.7 7}, i.e. preserve
the three-metric (15). This condition gives again equations
(26)—(31) with y,0,,¢, replaced by v,8,¢. Thus the two defi-
nitions are equivalent. Finally we can consider the group of
asymptotic symmetries as the group generated by the as-
ymptotic Killing vector fields £ of the unphysical space—
time (.« ,8). As in the case of spatial infinity, this definition
implies that the restriction of £#to 7~ {or 7 *)is a Killing
tensor field of the intrinsic geometry of 7 ~ (or 7 *) and
consequently generates the same symmetry group. It should
be noted also that linearization of Eqgs. (26)(31) gives the
Killing equations for the six linearly independent Killing
vector fields of (15) which can be solved directly.

Toidentify the group of asymptotic symmetries we con-
sider the three-dimensional hypersurface 77, x*x* = 1 of a
four-dimensional Minkowskian space-time with 7,,,
=diag (1, — 1, — 1, — 1). With

dy, sinh’y

(33)

x° = coshy,

x' = sinhysinfcosg, (34)
x? = sinhysinfsing,

x* = sinhycos6,
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the induced metric on the hypersurface is given by (15) and
the hypersurface is the unit spacelike hyperboloid. Any
transformation (y,6,¢)—{(x ', '.¢') which preserves (15) can
be written as H ~'LH where H is the fixed (with no arbitrary
parameters) transformation (34), H ~' its inverse, and L an
arbitrary Lorentz transformation x*—x'*. The group of as-
ymptotic transformations H ~ 'LH is the group of asymptot-
ic symmetries and is obviously isomorphic to the Lorentz
group.

5. PROPERTIES OF AAFS NEAR .7~

In this section we derive some properties of almost as-

ymptotically flat space—times at timelike infinity assuming
that the conditions of the definition (Sec. 3) are satisfied at
every point of 7. Besides describing AAFS, these properties
indicate some of the quantities which should be examined in
detail for specific bounded sources near ..

The first property refers to the way 7+ (and 7 ) is
fastened to the space-time. Let n,, be the unit normal on a

‘hypersurface £2 = const (which is close to £2 = 0),

9uv = &,v — N1, theintrinsic metric induced on the hyper-
surface, and p,,, = qf,q*;v Al its e_xtripsic curvat'ure. Using
the form (21) of the physical metric with a few higher order
terms as defined in Theorem 2, we obtain, after some
straightforward calculations,

J
has 1 + 01 a+ 01 0] Ol
a+ 0, —148+0, Y+ 0, 5+ 0,
9 Py + 0 0, ¥+ 0, — smhzx + 0, 0, 3
0, 5+ 0, 0, — sinh?ysin’@ + O,
Hence on .7 we have
‘Q q“\ - ‘Op,uv (36)
Straightforward calculations of the Riemann, Ricci, and Weyl tensors give the same order relations as at spatial infinity,
namely
R/llupv‘_'o—l_n’ Riﬂpv=07+m’ R,uv=01—n’ (37)
R#"-_—OH,,,,,,, R"™ =0, R =0, (38)
CAypV=0—17n) C,{#pvzos_#m;"’ CAupv=07+m, C:;Ap\/:O—l—n’ (39)
{

where m (n) is the number of upper (lower) indices which are
equal to 1. From these relations we have for the Weyl tensor
of the conformal metric §,, = 2°g,,,

Cuev 20,0 ~'CH 0, 20,0 CH0,0, =0.

(40)
Further calculations give for the electric E,

y = Chpn'n’
and the magnetic B,, = C¥%,.n “nf part of the Weyl tensor
E, =0, and B,

. = 0, near 7 or
E, =0 and B, =0. (41)
Consequently 2 ~'E,, and 2 ~'B,, induce on 7 * (and
7 ~) two (symmetric and trace-free) smooth tensor fields
expected to have physical content.

Finally we examine the relation between these two con-
cepts: a space—time with regular future projective infinity
(PI) and an almost asymptotically flat (at future timelike in-
finity) space-time. It is obvious that the boundary of a PI
space-time is not necessarily a spacelike hyperboloid, since
some well-known cosmological models are PI space-times.®
On the other hand, the conditions for a space~time to be
almost asymptotically flat at timelike infinity are not enough
to imply a regular future projective infinity for the space-
time. From the Eardley—Sachs definition given in Sec. 1 the
key question is whether a connection T can be defined on
M = M0T * sothat (#, ) be projectively equivalent to
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(#,I"), where I' is the metric connection on the physical
space-time as determined by g (1" is not necessarily a metric
connection). For this to be possible the two connections
should satisfy on .# the relations
A A
'(1“” & + F’;p&# )

=ri — (%, 8. +T%,8).

wn

(42)

Since I can be smoothly extended to .7 *, so can both sides
of (42). But a straightforward calculation shows that the
right-hand side of (42) is smooth on .7 *, except for (4,u,v)
equalto (0,1,1),(2,1,1),and (3,1, l)whlchcasesglvelotll N
+ 0y, Yy, 5 smh Yo~ ' + Oy, and Ja,, , Xsinh~2y
Xsin~20w " + O, respectively, where we have set
gu=0"*+ a,,w“3 + O_,. Thus we must have a,,
=a,,, = a;,; = 0. This condition can be put in tensor
form if we consider the scalar

<P=.Q‘5g““’.();1.();p -0~ (43)
In our coordinates (y,®,8,¢) we have
P=0"%"'—w'= —a,, +0, (44)

Hence an almost asymptotically flat space-time has a regu-
lar future projective infinity iff @ is constant on .7 * or
equivalently

~

—(®P,nt)n, = (45)
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where n,, is the unit normal on.7” ™. This condition is expect-
ed to imply some restrictions on the physical fields and at
this stage it seems unwise to impose it on the space-time ina
definition of asymptotic flatness.

6. GENERAL REMARKS

The definition given in Sec. 3, the theorems of Secs. 2
and 3, and the properties of almost asymptotically flat
space—times presented in Secs. 4 and 5 establish a new for-
mulation for the study of asymptotic structure at timelike
infinity. Some remarks, however, should be made.

First, a definition of asymptotic flatness at timelike in-
finity has not yet been given. A detailed study of specific
sources is expected to show essential differences in their be-
havior near .~ and indicate what new conditions should be
added and which of the conditions for AAFS should be re-
laxed on some part of .7". At the same time this study is
expected to indicate criteria for classifying asymptotically
flat space-times depending on their behavior near .7 . Some
of the quantities to be examined in such a study have been
already pointed out in this work. Many related questions,
such as the dependence of tensor fields at points of 7~ on the
direction of approach to .7 should be examined.

Three major classes of asymptotically flat space-times
are expected depending on whether the conditions of the
definition of AAFS (Sec. 3) are (a) fulfilled throughout .7 —
and 7 %, (b) violated at some point (or a set of points with
zero volume) of 77, and (c) violated at some set of points of 7~
with nonzero volume. In case (a) (e.g., a field of pure radi-
ation whose energy escapes eventually to .4 ) the energy-
momentum tensor of the source will not be strong enough to
destroy asymptotic flatness as 7. In case (b) (e.g., the space-
time of a dead star or a black hole) the source will touch .7 at
a point (i.e., the end of the source’s world tube). The depen-
dence of the energy-momentum tensor and other fields on
the direction of approach to that point will provide criteria
for subclassification.
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Second, the relation of asymptotic flatness at all three
infinities should be studied. The emergence of conformal
mapping in Theorem 1 for that part of # called 4" indicates
a close relation between Penrose’s formulation for null infin-
ity and the present formulation for timelike infinity. In a
future paper we will relate this observation with the corre-
sponding one made for spatial infinity® and present a unified
formulation for the whole boundary 4.

Third, the essential question of uniqueness of the
boundary should be examined. Since we are interested in the
physical fields which register on .7 and in general on %, we
have to know to what extent the informations contained in
the extension of the fields to & describe properties of the
physical space-time independently of the completion.

After answering the above questions we will be able to
attack new problems related to the stability of asymptotic
flatness, the multipole moments, the Cauchy problem, etc.
The main difference in a reformulation of the Cauchy prob-
lem is expected to arise from the fact that.”” ~ and. /7 (i.e.,
the hypersurfaces on which initial data will be specified)
have now well-known and relatively simple intrinsic geome-
tries, contrary to the case where an arbitrary spacelike hy-
persurface is used.
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A formulation is presented for studying simultaneously the timelike, null and spatial infinities of
space-times which resemble asymptotically Minkowski’s space-time. For this a relation of the
formf (g, g, 2 ) = Ois determined so that given aspace-time (.# , g) aspace (., g) with boundary Z

can be found with .# imbedded in .# and gand 2 C = fieldson

. A space-time (# , g) for which

this is possible is called (globally)asymptotically simple. Then the conditions for % to resemble
the boundary of Minkowski’s space-time are determined. Thus the concept of a (globally) almost

asymptotically flat space-time is defined.
PACS numbers: 04.20.Cv

1. INTRODUCTION

In the last two decades substantial progress has been
made towards understanding the asymptotic structure of
space-times which resemble Minkowski’s space-time
at large distances from the source.”* Although there
are many different attitudes and approaches in the nu-
merous papers on timelike,"!2 null!+?+!® and spa-
tia)®5:7+8:14:15 infinity | there are some common fea-
tures. First, there is a tendency to try to bring the
asymptotic region closer by imbedding the physical space-
time in a larger manifold with boundary, this boundary
representing “infinity.” Second, each asymptotic re-
gion is studied separately and in most cases by differ-
ent techniques.

In a recent formulation, however, of spatial infinity'®
an unexpected feature arose: a definiton of asymptotic
simplicity at infinite spacelike distances gave as a case
to be excluded the conformal mapping proposed by Pen-
rose for null infinity. A similar feature appeared in a
study of timelike infinity!? by the same technique. Thus
a question is raised: Is there a unified formulation of
asymptotic structure possible ?

This paper presents a positive answer to this ques-
tion. Starting from observations made on the two inde~
pendent but similar formulations of spatial and time-
like infinity we give a global definition of asymptotic
simplicity. Then depending on the relations satis-
fied by the physical and unphysical metrics on each
part of the boundary we define the timelike, null
and spatial infinities. Demanding that the intrinsic
geometry of the whole boundary is identical to
the intrinsic geometry of the boundary of Minkowski’s
space-time we have a global definition of asymptotic
flatness. Thus a common base is established for study-
ing the asymptotic structure of asymptotically flat
space-times at timelike, null and spatial infinity.

There are perhaps three arguments supporting the
usefulness of a unified formulation of asymptotic flat-
ness. First, it makes the whole formulation more ele-
gant and transparent and brings out the close analogy
between the threatments of different asymptotic re-
gimes. This is accomplished by giving a single defini-
tion of the global boundary which is then divided into
pieces (timelike, null and spatial boundaries) depend-
ing on the particular properties of each piece. Second,
such a unified formulation is expected to be very useful
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in relating the physical fields of one piece to the phys-
ical fields of another piece (e.g. the Bondi mass at null
infinity to the ADM mass at spatial infinity). A direct
link between two separate pieces of the boundary does
not seem to be possible and a unified formulation is ex-
pected to provide a possibility of going from one piece
of the boundary to the interior of the space-time and
then to the other piece of the boundary. Third, a uni-
fied formulation emphasizies the existence of a bound-
aryandits C” structure, leaving flatness as a secondary
feature. This raises the possibility of defining bound-
aries for space-times which do not resemble asymptoti-
cally the Minkowskian space-time (e.g. for cosmological
models). Obviously, there are many problems to be
solved at spatial and (particularly) timelike infinity (e.g.
uniqueness of the boundary, definition of physical fields,
etc.). The presentation of a unified formulation before
the solution of these problems will help us to have a
complete and coherent picture of all fronts and thus be
able to coordinate more effectively the attacks on the
several problems.

This work is based on many and lengthly results ob-
tained in three previous papers refering to null,!® spa-
tial'® and timelike'? infinities. These results are con-
sidered known and are not repeated here. Furthermore
the notation of these papers is closely followed.

2. GLOBAL ASYMPTOTIC SIMPLICITY

Asymptotic simplicity, as defined separately for null,
spatial and timelike infinity, is a concept which guaran-
tees the possibility of imbedding the physical space-
time (#,g) into a space .« with a boundary and a C*
metric & on.# (including the boundary). In each case,
i.e. for timelike, null and spatial infinity, a different
tensor relation relates g and g. For timelike!? infinity
this relation is

Y- MRTR0L,Q), =0 - QT e 0,0, @
for null®-!* infinity

oM =gty @)
and for spatial®® infinity

TRV, Q) = H R 0, R, (3)

The first objective, in order to give a single formula-
tion appropriate for all three infinities, is to unify the

© 1982 American Institute of Physics 289



above formulas into a single formula. For this we ob-
serve that for Minkowski’s space-time the component of
the physical metric which diverges on the boundary too
fast (in the appropriate coordinate system) is g,, and
Eqgs. (1)-(3) serve exactly this purpose, i.e. they re-
place g'! by 2! so that its inverse g,, does not diverge
on the boundary. This is accomplished by the relations
@uv En-zguv)

21=1-3" (timelike infinity) (4
plr=gh (null infinity) %
2M=—-1-31 (spatial infinity) (6)

which are obtained from the tensor formulas (1)—(3) for
w=v=1 in appropriate coordinates. Equations (4)-(6)
are algebraic equations of first degree with respect to
2 and 3 [while (1)-(3) are quadratic]. The lowest de-
gree algebraic equation which contains (4)-~(6) as spec-
ial cases is

@11_éu)@11+§u+1)@11 +51M-1)=0 )
or
21 ~- gt gl _511@11)2 +§“(§“)2 + (@1 =0. (8)

This equation should be obtained from a tensor relation
in coordinates x* where @ =x' is the scalar field. From
(8) we have the tensor relation

B - 3 - @708 B R, - G708 800,
+ @‘c—rﬂwglr)gulgwn;lg;p + @crﬂ;uﬂ;r)éukgupnngm =0.

(9)
This is an equation of the form f(g,8,2)=0. It is the
basic equation which determines g from g. It replaces
all three equations (1)-(3) and it will be the essential
condition in a global definition of asymptotic simplicity.

Definition: A space-time (4, g) is (globally) asympio-
tically simple iff there exist .

(a) a space # with a nonempty boundary # (Z =~ A),

(b) a diffeomorphism f: U~ U - # from an open sub-
set U of 4 to U -, where U is an open neighborhood
of 4,

(c) a set of disjoint submanifolds %, of # with U %,
=4, such that on some open neighborhood Ui of each %,
a C™ metric g and a C® scalar field £ can be defined
with 2=0 on £,, £2>0 on fJi— %, and satisfying condition
(9) on U,

The concept of asymptotic simplicity can be general-
ized to include cosmological models. The only essen-
tial modification will be the replacement of Eq. (9) by
some other equations, depending on the asymptotic be-
havior of space-times we want to consider. Since here
we are interested in space-times which at large dis-
tances resemble Minkowski’s space-time, we give the
following definitions motivated from studies of asympt-
otic structure at the corresponding case:

Timelike infinity 7~ of an asymptotically simple
space-time is the union of all 4;’s for which
§igme, Q21 and g, 8 51 (10)
Null infinity A& of an asymptotically simple space-
time is the union of all %;’'s for which
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QUgw, ., 8-1 and 2%, R, 20, (11)

Spatial infintty # of an asymptotically simple space-
time is the union of all &;’s for which

QYgmQ, Q. % -1 and §%4, Q2 -1. 12)

The question of existence of (globally) asymptotically
simple space-times with one or moreof .7, 4, & (con-
nected or not) will not be raised here since we are in-
terested in gpace-times which have a particular com-
position of 7, .4 and.¥. It should be noted, however,
that if 7, # and/or ¥ exist, then they are respectively
spacelike, null and timelike hypersurfaces of 4 with
respect to g,

The usefulness of the relations (10)-(12) of the

previous definitions lies in the fact that together with
Eq. (9) determine uniquely g from g near 7, 4 and ¥.
This is expressed by the following theorem.
Theorem 1: Let .7, # and ¥ be the timelike, null and
spatial infinities of a (globally) asymptotically simple
space-time. Then in a coordinate system x* with
Q=x'we have ({,j=0,2,3)

(a) on an open neighborhood ﬁT of 7

Fr=1opn, (13)
U=gi(-1+1/3"), (14)
Z=ga gL - 4z 20, (15)

(b) on an open neighborhood fJN of ¥
=g, (16)

(c) on an open neighborhood ﬁs of ¥
=11, (17)
BU=gt(-1-1/3"), (18)
§=gH+g p(-1-2g"). (19)

Proof: In a coordinate system x* in which  =x! we
have &, =48, =08} and Eq. (9) becomes

g‘-uv _g,uu _gllg-luglv _g,ué;lu,é‘;lu+§ll§lu§lu+§-u§luglv: 0.
(20)

For p=v=1 this equation reduces to (7) and gives three
possible solutions expressed by Eqs. (4)-(6). On 7 we
have from Egs. (10) 3'*20 and 2'*£1 which are satisfied
only if we accept (4) and reject (5) and (6). Thus Eq.
(13) has been established. Using this equation and (9)
we obtain (14) and (15) for u=1, v=7 and pu=1, v=j
respectively. On._# we have from (11) '*20 and 220
which are satisfied only if we accept (5). Then using
(20) we have Eqs. (16). Finally, on ¥ we have from (12)
Z'120,8"2 ~1 which are satisfied only if we accept (6).
Thus we have (17) and from (20) the remaining Eqgs.
(18) and (19).

Equations (13)—(19) give explicitly the contravariant
components of the unphysical metric tensor in coor-
dinates x* with & =x! in an open neighborhood of the
corresponding part of the boundary. Thus given (4.g)
we can calculate 7, and §,, near 7, / and/or J(if
they exist) and examine whether they are C” functions
of x# (essentially of x') on the boundary. It should be
emphasized, however, that the formulas (13)=(19) are
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not identical to those given in the previous studies of
asymptotic structure. Specifically, instead of (15) and
(19) we have found respectively'*!?

=g B (=14 130 1] (21)
and
F=g+z g 1 -+ 10y, (22)

the remaining of (13)—(19) being identical. Thus a
question is raised: It is possible to find that a space-
time is asymptotically simple (at Z, 4 and/or ¥) using
the present unified formulation and not asymptotically
simple using the separate formulation for .7, # and/or
#? 1In other words, are the two formulations equiva-
lent? Fortunately, the two formulations are equivalent,
as it will be shown in the next section.

3. GLOBAL ASYMPTOTIC FLATNESS

The boundary &, of Minkowski’s space-time consists

of (a} the past 7 and future 7% timelike infinities, each

one isometric to the spacelike hyperboloid, (b) the
past ¥y and future 4, null infinities {or # ~ and £ * in
Penrose’s notation) and (c) the spatial boundary ¢,,,
isometric to the timelike hyperboloid. Thus the time-
like infinity is 7=, U7 ,the null infinity 4}, =45
U4y and the spatial infinity ¥,. The whole boundary
By=T VN4 Sy is a three-dimensional well-known
disconnected manifold which is the direct sum of five
disjoint submanifolds with a three-metric on each. We
relate now such a boundary with the concept of asym-
ptotic simplicity.

Theorem 2: For a (globally) asymptotically simple
space-time the following conditions are equivalent:

(a) The boundary % is isometric to %, and on 7, &
and ¥ (@B =7 U, UZ) the conditions (10), (11) and (12)
respectively hold.

(b) The boundary 4 is direct sum of five disjoint
submamfold57 s ““,/1/ ,/V“ and ¥. On some open
neighborhood UT,UT,UN,UN,US of each of the above
submanifolds there exists a coordinate system x# with
R=w=x? m which the following hold:

(b1) On U5 and U% we have g''= w2+ O, and (x°=y,
x*=9,x°=¢@, =0 <x<x g, ¢ as usual)

-1+0, a+0, 0, 0,
n a+0;, B+0, 7+ 0, 5+0,
uv
o, Y+0, -sinh®+0, 0,
0, 8+0, o, -sinh?¢ sin*9+ O,
(23)
where a,y,8 are arbitrary functions of x,6, ¢ and
B=1-a?—-y?sinh™? - 6%sinh?y sin2§ . (24)

(b2) On U; and U} we have g''= ~w?+ O, and (x°=u,
x%2=9,x3= @, =0 <u<4o §,¢ as usual)
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Aw?+ 0, =140, pw+0, vw+0,
N -1 o
guv= +Ol OD 0 00 (25)
bw+ 0, 0, ~1+0, 0,
vw+0, O, 0, -—sin’9+0,
where u,v are arbitrary functions of #, 8, ¢ and
A=1-p2~p2gin™?g. (26)
(b3) On U ¢ we have gl = —w?+ 0, and (x°=x,x%=9,
xP=@,~0<y<4w §,¢ as usual)
1+0, a+0, 0, 0,
A _ |@+0, B+0, v+ 0, §+0,
By
O, 7+0, ~cosh®+0, 0,
0, 8+0, 0, —cosh% sin®§+ 0,
(27)
where a,7,0 are arbitrary functions of x, 6,9 and
=-1+a?-y2cosh™? - 6 cosh™y sin%g. (28)

Proof: Let (a) be true. Then9~ (or7") has a neigh-
borhood UT (or U‘) in which ©=w and g is given by
(23) in appropriate coordinates x,w,8,¢. From (10) we
have g1 = w?+ 0, and §¥=1+0,. Comparison with g
obtained from (23) gives Eq. (24). Thus we have proved
the case (bl). Similarly #~ (or_#*) has a neighborhood
U5 (or U3) in which 2=w and 2, is given by (25) but
with g,,= kw+ Aw?+ 0,. Calculating §'' and setting it
equal to —w?+ O,, as (11) suggest, we find k=0 and A
given by (26). Thus we have proved the case (b2). Si-
milarly we prove case (b3). The proof of (a) from (b)
is simple.

It should be noted that there are three more equiva-
lent expressions'®?!® of the conditions of the previous
theorem similar to (b). These expressions involve re-
spectively 2%V, g,, and g**. Thus the tensor conditions
of (a) can be expressed equivalently by the existence of
coordinate systems where the unphysical or the con-
formal metric have specific forms.

In a definition of asymptotic flatness the conditions on
the boundary may involve the physical fields which
have not been examined yet for spatial and timelike
infinity. At null infinity, however, the conditions &,
2 0 and Cy,p, =0have been included in the definition.!®
Thus it seems wise at this point to define a weaker concept
and leave open the question of whether or not more condi-
tions areneeded on  and .. Another reason justifying
thisattitude is the possibility that some of the space-times
we want to call asymptotically flat may violate some
of the conditions on some compact submanifold of 7.
Thus we propose the following definition:

Definition: A space-time is (globally) almost asym-
ptotically flat (or Minkowskian) iff it is globally asym-
ptotically simple, satisfies (a) or (b) of Theorem 2 and
on # we have

§ WEO’ C-Xupveo' (29)
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FIG. 1.

Using expressions (23), (25) and (27) we can obtain
the general expressions of the physical metric near 7,
Nor ¥ These expressions are identical with the gen-
eral expressions of the physical metric obtained in the
separate formulations of timelike,'? null,’® and spatial*®
infinities. This is important since the formulas (15)
and (19) of the present formulation are different from
the formulas (21) and (22) and proves the equivalence
of the two formulations. A more direct proof can be
given by taking the difference (15) and (21) near 7 and
the difference of (19) and (22) near .¥. Using expres-
sions (23) and (27) we find after some calculations
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that these differences are of higher order in w and con-
sequently do not affect asymptotic simplicity.

4. GENERAL REMARKS

In this paper we have proposed a formulation for
studying the asymptotic structure of a space-time si-
multaneously at timelike, null and spatial infinities.
The space-times we considered resemble Minkowski’s
space-time and have been called almost asymptotically
flat. Future work will show whether the word “almost”
can be eliminated after adding some additional condi-
tions or should be simply omitted without any additional
conditions. In any case we can draw a diagram for an
almost asymptotically flat space-time. This diagram
is similar to Penrose’s diagram in the case of confor-
mal completion and shows the different parts of the
boundary in a characteristic way. In the following fig-
ures we have drawn the space-times generated by (a)

a star, (b) three bodies of which one escapes eventually
to infinite distance from the other two and (c) a collap-
sing and then exploding dust cloud. Note that ¥is a
single hypersurface. The same is true for #* and A"~
separately. We can imagine as boundary the surface
generated by rotation of each figure about an axis pass-
ing through the middle of 7* and 7~ (see Fig. 1).
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In special or general relativity the electromagnetic energy tensor is usually taken to be 8°

= (1/47)(F° F* — 1g°°F_,F**). This expression may also be used in the generalized theory
which allows magnetic as well as electric charge. Rund [J. Math. Phys. 18, 84 and 1312 (1977)] has
suggested a new approach to the generalized theory with an alternative form for the energy tensor.
We show that in Rund’s theory there are other possible definitions for the energy tensor.
However, there is a strong indication that a particular energy tensor gives rise in a definite way toa
corresponding Lorentz equation of motion. This equation is derived for each of the energy tensors
and it is found that only 8 “° gives the Lorentz equation which is usually assumed in the
generalized theory. Furthermore, the Lorentz equations arising from the other energy tensors will

not give charge quantization.
PACS numbers: 04.20.Me, 04.40. 4 ¢, 03.50.De

1. ELECTROMAGNETIC FIELD TENSORS

We use the notation' of general relativity. g, is the
gravitational metric tensor with normal form diag ( — 1,
+ 1, + 1, + 1). A semicolon denotes covariant differenti-
ation with respect to this metric. For a skew symmetric ten-
sor 1,, the dual® tensor *¢,, is defined by *z,, = le,,cqf “ It
follows that **t,, = —1,,.

F,, denotes the electromagnetic field tensor which sat-
isfies the generalized Maxwell equations:

Fo, =4qj°, *F®, = — 4ms°, (1.1)
where j° and s are the electric and magnetic current 4-vec-
tors, respectively. In particular, for a fluid of dual-charged
particles having 4-velocity field U ¢ and electric and magnet-
ic charge densities €, 7, respectively, j* = eU“and s* = yU“.

In Rund’s theory there are two underlying fields f,, and
C,, both skew-symmetric and with the following
properties™:

£, =4aj, *, =0, (1.2)
C*, = 4ms®, *C*, =0, (1.3)
Fab =f;zb + *Cab' (1.4)

Equations (1.2)—(1.4) together imply (1.1). Furthermore,
(1.2) and (1.3) imply that electric and magnetic charge distri-
butions give rise independently to the fields £, and C,,, re-
spectively. We regard f,, and C,, as fundamental tensors
describing the electromagnetic field rather than F,,.

Equations (1.2) {ii) and {1.3) {ii) imply the existence of
vector fields ¢,, ¥, such that

f::b = 1pb;a - Itba;b’ Cab = ¢b;a - ¢a;b' (15)

2, ELECTROMAGNETIC ENERGY TENSORS AND THE
FIELD OF A DUAL-CHARGED MASS PARTICLE

Let

9% (F) = (1/41r)(F“ere — %g"”F-F),
where

FF=F_F“ 2.1y
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This has the same form as the classical electromagnetic ener-
gy tensor. Rund has suggested as an alternative®

T (fic) = (1/4m)(f* F* + C* ,*F* — 1g"°F.F). (2.2)

T“* has the following properties: (i) If C,, = 0, then T

= 0%(F)=0°f). (ii) Let L = R — F-F + 167(¢},j" — 6,5"),
where R is the curvative scalar. L may be expressed ex-
plicitly in terms of g, , first and second partial derivatives of
8uor Yar bur Vs o J %, and S, where J ¢ = ( — g)'/2 " and
S9=(—g)'/*s" LetI = ., L dv, where & is a 4-dimen-
sional region of space-time.

Then: (a) Extremizing / with respect to variations in the
£.5 Subject to certain boundary conditions® leads to field
equations® in the form G *° = 877 ?°. (b) Extremizing I with
respect to variations in ¢, or ¢, subject to certain boundary
conditions leads to the generalized Maxwell equations (1.1).°

There are other tensors which have similar properties to
T“. For example, let L = R — ( £-f + Be-c) + 167(, /"

+ Bé,s"), where 8 is some constant. Extremizing [ L dv
with respect to variations in g, leads to a corresponding
energy tensor

E®(fie,B)=0(f)+B“c), (2.3)

and extremizing fL dv with respect to variations in ¢, and
¢, again leads to the generalized Maxwell equations (1.1).
For each of the energy tensors 8%, T%, and E “® one
may determine a static spherically symmetric asymptotical-
ly flat solution of the coupled Maxwell-Einstein equations:

Fe, =0, *F®,=0, (2.4)

G = 87U, (2.5)
where U “* stands for any of the above electromagnetic ener-
gy tensors.

This has been done for °° and T°® in Refs. 7 and 8,
where it is shown that in a coordinate system (¢, 7, 8, ¢ )

8., = diagle”, — &', — P, — r*sin? 9), (2.6)
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, A4

Sio= —foa=€r"’e Sy other f, =0, (2.7)

Clg= —Coy = —yr e A —; V, other c,, =0, (2.8)
. (62+7/2) 62—7/2

86, ———-4———A, &rT,, = = a4,

where 4 = diag (e, — €%, 7%, ¥’ sin”> ) and € and y are arbi-
trary constants which may be regarded as the electric and
magnetic charges, respectively, of the mass particle. Equa-
tions (2.6)—2.8) are obtained as a consequence of the as-
sumed symmetry and Egs. {2.4) alone. Substitution into (2.5)
now leads to

A= —v, e=1-=2m/r—k/r, (2.9)

€ +y* for 6,

e€—y for T,.

Turning to E_,, we observe that (2.6)—(2.8) still hold. Since
E o (£i6,8) = 6 (f) + B,y (c) and 876, (f) = €4 /1%, we
find that 87E,, = [(€* + By*)/r*)4 and (2.9) holds with

k = €’ + By*. We see that for the field of a dual charged
mass particle

E,=T, ff=—1 E,=60,ifB=+1

where k =

3. THE LORENTZ EQUATION OF MOTION

Chase' has shown, using a method of Infeld and
Schild,'' that in a certain sense, the Lorentz equation of
motion

put=eFu’ (3.1)
for a test particle of mass p, electric charge ¢, in a field F°

without magnetic sources is a consequence of the Maxwell-
Einstein equations (2.4) and (2.5). In his derivation Chase

uses 8, for the electromagnetic energy tensor and the Cou-
lomb potential for a point charge. It is quite possible that the
method of Chase can be generalized to dual charged parti-
cles using any of the above mentioned energy tensors and the
Coulomb potentials which correspond to (2.7) and (2.8).
Each choice of energy tensor should yield a corresponding
equation of motion.

Since the method of Chase is quite involved and the
approximation procedure is difficult to justify, we present
instead an elementary argument resting on different assump-
tions. Consider the classical theory of an isentropic perfect
charged fluid.'? It is assumed in this theory that mass density
is conserved meaning

ou), =0 (3.2)
and that the energy tensor has the form
S = (u + pluu® + pg*® + 6, (3.3)

where p is mass density, 4 is energy density, and p is pressure.

Suppose that pressure is negligible so that we have a
charged “dust” fluid. Then u = p and (3.3) becomes

Sab —_ puaub + Uab’ (34)
where U® = 6.

We will assume that, for a dual charged dust fluid, the
energy tensor has the form (3.4), where U is one of the
electromagnetic energy tensors 6 “%, T, and E *°. We also
assume that {3.2) holds. The field equations imply that

5, =0. (3.5)
From (3.4) S, = (pu®),,u® + pu’(u,) + u,,.

Using (3.2) and (3.5) we find

pu® +u®, =0. (3.6)

Now the following expressions may be derived for U*®,,
(see Appendix):

(3.7)

J
r 1 a be xfa xfbe
_4';[FeF ;b+FeF;b]
eab
If Uab= Tab then Uab;b — ‘ 74_177-_ [fane;b . Caecbe;b}

ab
£ 1

Substituting (3.7), (3.8}, and {3.9), respectively, into
(3.6), using (1.1), (1.2) (i), (1.3} (i) and j* = €u®, s° = yu" we
obtain the following equations of motion for the dual-
charged dust fluid:

(€F7, =y F i Ju (3.10)
put = \l€f" + yCJu. (3.11)
(€f“. —vBC, Ju’ (3.12)

Imagine that a small blob of dual charged dust is intro-
duced into an existing background gravitational cum elec-
tromagnetic field in a region which was previously devoid of
matter. It seems reasonable to suppose that as p, €, y—0 the
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L__ {fane;b + BC aane:bg
47

(3.8)
(3.9)

r

fields F, and g,, at events inside the blob will approach the
background fields and that we obtain in the limit laws of
motion for a test particle which have the same form as (3.10)}-
(3.12) except that p, €, and y are interpreted as total mass,
electric charge, and magnetic charge of the test particle, f,,,
¢,s» and F,, belong to the background field, and covariant
differentiation is with respect to the background field.

In the classical theory where y = O and F*, = f“,,
(3.10)~(3.12) all reduce to the usual Lorentz equation of mo-
tion which is thought to describe the motion of an electron in
an external field provided the electron is not radiating sig-
nificantly. Hence there is some reason to believe that one of
(3.10)~(3.12) may apply to dual charged elementary
particles.

J. M. Nevin 294



4, CHARGE QUANTIZATION

In Sec. 2 we described the gravitational and electromag-
netic fields of a dual charged particle. Let us assume that r is
sufficiently large so that we can replace (2.9) by " = 1. Then
(2.6) is the metric of flat Minkowski space in spherical polars.
We make the usual spherical polar transformation from (¢, ,
6, ¢ ) to an inertial frame (¢, x', x?, x3). Applying the tensor
transformation laws we find from (2.7) and (2.8) that in this
inertial frame,

rof2030) = €777, (€10:C20:C30) = — yr/P. (4.1)
From (1.4) and (4.1) we then find
0 E, E, E;

—E 0 B — B
Fab= 1 3 2 , 4.2
_E, —B, 0 B, 4.2
—E, B, —B, 0
where E = er/r’, B=y1r/r.

Suppose we have a test particle of mass m, electric
charge ¢, and magnetic charge g moving in the above field. If
the equations of motion (3.10)—(3.12) with @ = 1,2,3 are ex-
pressed in terms of E and B they become, respectively,

P e(E + vXB) + g(B — vXE) (4.3)
Z{( (1— 777 )=

¢E +gB . (4.4)

¢E — BgB, (4.5)
(4.3) is the equation of motion which is usually assumed in
the generalized theory.

Schwinger'? has given an account of the Dirac quanti-
zation procedure which uses (4.2) and (4.3). His method rest
on the fact that, according to (4.3), the Lorentz force on a
dual charged test particle moving in the field of a fixed dual
charged particle is not along the line of the join of these two
particles. If (4.4) or (4.5) were used instead of (4.3) the Lo-
rentz force would be along the line of the join and the argu-
ment would break down. Thus if the quantization procedure
is regarded as a necessary part of the theory (4.4) and (4.5)
must be rejected together with their corresponding energy
tensors (2.2) and (2.3).

APPENDIX
Proof of (3.7):
470,", = F,,F*, + F,.,F* — {FF),, (A1)
*Fo 2Py = Jes FPe™™F,,),
= = %FNquca + FHMF,,
(using the skew symmetry of F)
= —§{F-F), + F"F,,,, (A2)
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(A1) and (A2) give (3.7).
Proof of (3.8):

4rT,, =foesF¥ + foof " + Caen*F " — Co C™,

— YFF),, (A3)
(F-F), =2F7F,,
=2F"F ., + 2FP*C .,
=2F%f, . + 2*F"C,,,
=4F Yy pn + *FP0 g0 ). (A4)
Substituting (A4) in (A3) we find
4T’ = foen F " — CocC™s + F"foc — Yeba)
+ *F*(Caey — Besba)s (A5)
Fbe(fae;b —Yepa) = Fbc('pc;ab - ¢a;eb - l/’c;ba)

= %Fbc{ (we;ab - we;ba) =+ (wa;be - wa;eb)
+ (¢’b;ea - wb:ac”;

using the skew symmetry of F*
= %FbeW(Recab + Racbe + Rbcea
=0.

Similarly *F*(c,.., — @epa) = 0.

Equation (A5) now gives the required result. Equation
(3.9) follows directly from (2.3), (3.7), (1.2) (i1), (1.3) (ii), and
skew symmetry of /2, c%.
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Coupled translational and rotational diffusion in liquids
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School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
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The equations for coupled translational and rotational diffusion of asymmetric molecules
immersed in a fluid are obtained. The method used begins with the Kramers—Liouville equation
and leads to the generalized Smoluchowski equation for diffusion in the presence of potentials.
Both external potentials and intermolecular potentials are considered. The contraction of the
description from the Kramers—Liouville equation to the Smoluchowski equation is achieved by
using a combination of operator calculus and cumulants. Explicit solutions to these equations are
obtained for the two-dimensional case. Comparison of our results with earlier literature is also

presented.

PACS numbers: 05.40. + j, 51.90. +r

|. INTRODUCTION

In this paper we study the translational and rotational
motion of molecules immersed in a fluid. The molecules ex-
perience translational and rotational Brownian motion as a
result of the bombardment by fluid molecules. The descrip-
tion of this essentially stochastic process in terms of the
probability-distribution function P (z,x) leads to a diffusion
equation

%P(I,x) = %: a;(x)

2

a
O0X,0X;

=AP(1,x) (1)

for all times ¢>0 and all points x, x = {¢,,4,,9+,9.6,¥).

q = {4,,92,q,) describe the position and the Euler angles

a = (¢,0,¢) fix the orientation. The differential operator 4 is
a diffusion operator. All eigenvalues of the symmetric ma-
trix [a,(x)] are non-negative. For translational diffusion 4
is simply a diffusion constant muitiplied by the Laplace op-
erator. Favro' derived the diffusion equation for rotational
Brownian motion and was able to solve it for axial symmet-
ric molecules using the fact that the diffusion operator A
has the same form as the quantum mechanical Hamilton
operator for a rigid body,” the properties of which are well
known. In general the translational and rotational motions
are coupled in a complicated way.

Already 50 years ago, Kolmogorov showed that under
very general conditions a Markov process defined in terms of
the transition probability F (z,x,x')dx’ of finding a particle
initially at point x in the infinitesimal small set dx" after a
lapse of time ¢, leads to a diffusion equation. The probability
density

a
Ptx) + Z b;(x) EP(AX)

Pltx)= j F(t,x",x)P(0,x") dx’ (2)

satisfies Eq. (1). S, is the space containing all points x. P (0,x)
is the initial distribution at time ¢ = 0.

The concept of a Markov process is an idealization of
the underlying physical reality. For a complete dynamical
description, it is necessary to consider the distribution func-
tion £, (¢,x,, y.) defined on the phase space S, XS, consist-
ing of all points (x., .} with x, = (¢,,42,4+,¢,6,¥) and the
canonically conjugate momenta y, = (p, Py P Po» Par Py )-
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The distribution function £, (#,x., y.) satisfies the Kramers—
Liouville equation®*

—;%fc(t,xc,yc) = L+ K)fltxe, p.). 3)

L is Liouville's operator and K denotes Kramers operator,
which describes the effect of all random forces acting on the
Brownian particle. If Eq. (3) can be solved for some initial
distribution £.(0,x., y. ) then it is possible to find an operator
G (t,x.) such that the averaged distribution P (¢,x) defined by

Plix, )sf A @)
SV(
fulfills the first order differential equation in time:
gf’(nxc) = Gltx,)Plex,) (5)

In general nothing is gained, since G (£,x,} might be a very
complicated operator. We will use the cumulant expan-
sion>® to approximate the operator G (£,x,).

Gltx)= S G"ix,) (6)
n=1

It turns out, that the diffusion operator 4 is the first
nonvanishing term in the expansion {6). Equation (1}, where
A is now replaced by the second cumulant G *(z,x,)
[G"(t,x.) = 0], is a very good approximation of (5). K de-
scribes the time evolution of the distribution of the momenta
due to random forces. The momenta y, (¢ ) can be considered
as random variables, which very quickly become indepen-
dent. y_(t)is independent of y, (¢ + At ) if the lapse of time At
is large compared with the correlation time 7. It can be
shown,’ that the nth cumulant is proportional to

G("IN'?" - l. (7)

#is a dimensionless quantity. f=r, /7. 7 is some typical mac-
roscopic time unit.

Intuitively, it is clear that we obtain a Markov process
on S, described by (1) if the correlation time 7, of the mo-
menta y, (¢ } becomes very small. It is the short correlation
time which makes the higher order contributions small.

The idea of deriving the diffusion operator 4 as the low-
est order of a cumulant expansion (6) is not new. The actual
calculation of the operators 4,G ..., is complicated by the
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nonlinearity of the equation of motion for a rigid body. The
time derivatives of the angular momentum L ' and transla-
tional momentum p’ expressed in an orthogonal coordinate
frame attached to the moving particle are

L'=L'XI7'L'+ N/,

(8)
p=pXI"'L'+F'
N'and F’ are the torques and the forces acting on the parti-
cle. The prime denotes vectors in the body fixed coordinate
frame. I is the tensor of inertia. It is necessary to choose body
fixed coordinates for both L ' and p’ since otherwise the fric-
tion tensor C depends on the orientation [see (70)].%

The purpose of this work is to analyze the rotational
and translational diffusion in the most general case using a
mathematically transparent method. We will show that

(i) The generalized Smoluchowski equation is the lowest
order contribution of G (t,x,). Starting off with a Maxwell
distribution at time ¢ = 0 the diffusion tensor is time depen-
dent. For ¢ < 7, the diffusion tensor depends on the mass and
the moments of inertia, and becomes stationary for t»7,.

(i1) The diffusion equation couples the translational and
rotational degrees of freedom even in the simplest case.® As
an illustration, the two dimensional diffusion equation is
solved. The solutions are obtained in terms of exponential
and Mathieu functions. (Sec. V).

(iii) A suspension of & interacting Brownian particles
leads to a diffusion equation for the N particle density
PtxVx2,.. xV), (Sec. IV).

In Sec. II the operator calculus used later is introduced
and applied to the translational motion. Section I1I treats
coupled translational and rotational diffusion.

Il. OPERATOR CALCULUS, TRANSLATIONAL
DIFFUSION

The starting point of the theory is the Kramers-Liou-
ville equation.**

%f(nq, p)=Bfltg,p) = L +K) (1.4, p) )

g are the coordinates describing the position, ¢ = (¢,,¢.,¢5)
and p are the conjugate momenta. Liouville’s operator is

d au 4
Lf= —m ™ 'po-—f+ —.—f 10
P 5 f % (10)
U denotes the potential. Kramers operator is
Kf=ai-(m“p+kTi)f, (11)
ap ap
It is convenient® to work in the “interaction picture”
f=e*F. (12)

The exponential e’ is defined by a formal power series in tK
and acts on the new function fwhich is assumed to be smooth
enough, such that the series e’ f=3=_ [(1K )"/n!] f con-
verges. The smoother fthe smaller the contribution of K"
which is a differential operator of order 2» in the variable p.
The time evolution for f'is governed by the KramersLiou-
ville equation in the “interaction picture”.
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J - o~ .
Ef:e*’KLe”‘f——_—L(t)f. (13)
Theoperator L (¢ )canbe expressed in terms of the differential
operators d/dq and d/dp using the identity
e” KL K =~ 1K1 (14)
The proof of this equation is found in Ref. 5. The operator on

the right hand side is by definition

e Kl = 4 i [K, 1L (- t)/nll. (15)

n=1

The commutators [K,-]"L can be defined by recursion,
(K, ]'L=[K,L],
(K, PPL=[K,K.L]], (16)
[K"]nL E[K’]([K’]" B IL )

We can calculate all terms in the infinite sum (15). Applying
the commutator algebra discussed in Ref. 3 leads to

~ _ J p d
L= - ‘“/m)f—.(—~ + kT—)
) ¢ dg \m ap
ad au d
+e‘“/’"”—-(—- + —) 17
dp \ g dq )

In Sec. III the corresponding expression for translational
and rotational motion is derived in great detail.
Formally, the solution of (13) can be written

fley=E(t )f'OEZ exp JO lds L (s)f;, (18)

in which T exp is the time ordered exponential.® £; is the

initial distribution. The time ordered exponential must be
used because L (¢,) does not commute with L (t,)ift, 5¢,. We
would like to derive the time evolution for the averaged dis-
tribution P (t,q),

Pltg)= f d'pfitg,p) = f d*p e*Fit.q.p)

_ fd p fltag, pi={F(1.0)). (19)

The third equality can be proved by expanding the exponen-
tial ', After integrating by parts, all but the lowest order
term, which is £, vanish. We can assume that

f(tvq’p)lp,: - =0.

_ We write the initial condition
(0.9, p)=/fo(g, p) = flg, p) in the form

Solg, p) = gla, P)Po(q),

(20)
Pylg) = <f0(4)>
With Egs. (18)—(20) one obtains
Plrg)= f d*p fitg, p)
- fd p E(t glg, pIPog) 1)

=(E (1)), Polg)-

U. Steiger and R. F. Fox 297



The operator (E (t)), is obtained by muitiplying glg, p) from
the left with E (¢ ) and integrating over the momenta p. Differ-
entiating Eq. (21) with respect to ¢ gives the time evolution
equation

9 plrg) = (g;w(z >>g)<E(r Do Pltg)

-
We expect that the inverse (E (t)), ' exists at least for small
times. It may be obtained by the Neumann series®
A7'=Z2=_.(1 — A} The operator

G(nq)z(;f; (B, KB,

(22)

(23)
a%P(t,q) = G (1,9)P(1.q),

depends on g sinceg(q, p)is a function on g and p. But in most
physical applications the initial distribution of the momenta
does not depend on the position ¢. In this case the operator G
depends only on .

In order to calculate G (¢ ) we use the cumulant expan-
sion,>”” which is obtained by reordering the expression

G(t)= n}::0<f(z)?’ exp LI f(s)ds>g<l - ?’ exp J:Ij(s)ds>n

4

(24)

Gi)=S 6n.

=1
Compare (18), (22}, (23). G’ contains all terms of the sum in
(24) which are of order / in the operator L (s). The two lowest
order terms are

GMe)= (L)), = fa”p L(t)glp)

6ot = [ A EL), - j s (L),
25)

= fo ds fd 3p L(t)L (s)g( p)

~[[as [aw Lo [awLigp

The higher order terms are given in Sec. VI.
We assume that the distribution in the momenta is ini-
tially a Maxwell distribution

glp) = (2emkT)>* exp( — p*/2mkT). (26)

In this case, it is easy to verify that the first cumulant G 'V(¢)

vanishes for all times 7>>0. The second cumulant is

ko (—l—ﬂ + i)(l _e-tarminy. (27)
a dg \kT dq dg

The time evolution equation (23} is, to second order in E, the

Smoluchowski equation with time-dependent diffusion

“constant”,

Gt) =

Ar)= KL (1 —e-tarmn),

a
d d 1 U 8)
—Pltgl= — - A(t)|—= — 1 Pltg). (28
5P = 4 ()(kT o o) Pl 08
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At t = 0 the diffusion constant vanishes since by assumption
the distribution in p was given by a symmetric function, the
Maxwell distribution. After a short time of order m/a the
particles start moving until finally the Boltzmann distribu-
tion is reached. In order to illustrate the meaning of the time-
dependent diffusion constant A {¢) we calculate the first and
second cumulant with the initial distribution

g(p) = 8( p — p,). All particles have the same momentum p,
at ¢ = 0. In this case the first cumulant does not vanish:

Gli= —e = “ipm ' 2, (29)
9q
G@ = 1 (e~ armi _ p—2armyy
a
o) —(5)]
X ——" —kT|—
{m(c')q Po dg
1 a (aU a
+ — l—e“‘“/’"”)—-(—— +kT—). 30
a( dqg \dg dq (30}

In the limit #— o both expressions (27), and {29) and {30)
agree, as they should. The operator G (¢ )isindependent of the
initial condition for large times. The larger a/m, the faster
G (t) approaches the constant expression. For very large val-
ues of a/m the dynamics governed by (23} approaches a
Markov process. Formally the Markovian limit is obtained
by first rescaling the time 7 = a ™ 't and taking the limit
a— co. In this limit all higher cumulants vanish since they
are proportional to higher powers of 1/a.

1. COUPLED TRANSLATIONAL AND ROTATIONAL
DIFFUSION

We consider particles of arbitrary shape in a fluid. The
friction forces depend on the orientation. We will describe a
proper choice for the variables. In Refs. 10 and 11 inconsis-
tent definitions which lead to wrong results are used.

The position and orientation of each particle is deter-
mined by the six variables comprised in the sextuple x,

X = (‘11’42’43,'15:9»1//)- (31)

Qs an arbitrary origin and C the center of mass. ¢,,¢,,¢; are
the coordinates of the vector OC in the laboratory frame
where é,,é,,6, are three arbitrary orthogonal vectors of
length one such that &, X &, = é,, et cyclic. It is convenient,
to choose the Euler angles a = (4,6,1) to describe the orien-
tation.'? We will also use the body fixed coordinate frame
é;,65,é; such that the tensor of inertia / becomes diagonal.
The components of the vector &/ expressed in the laboratory
fixed frame é,,é,,é, are

(€), =R ;(4,0,9),

R (¢:6v¢)E [Rlz (¢’9’¢)] (32)
The Euler angles are defined by
R (#,0,Y}=R.($ |R (0 )R, (4). (33)

R, (¢ ) and R, (¢) are counterclockwise rotations of a vector
about the é, axis. R, (@) is a rotation about the &, axis.
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R.(¢)=e"",

R, (0) =", (34)
R.(¥)=e""

The 3 X 3 matrices T,T,,T are defined
(Ti)im = €itm- (35)

€., is the completely antisymmetric Levi-Civita tensor. Be-
sides the position x (31) we need the momenta p,

y=p},psp3,L1,L5.L5) (36)

Both the translational momenta p’ and the angular mo-
menta L ' are expressed in the body fixed coordinate frame.
The tensor of inertia and the friction tensor depend only on
the mass distribution and shape of the particle. They are
independent of the orientation if body fixed coordinates are
used. According to (32) the vector p’ and p=mg, where m is
the mass and the dot denotes the time derivative, are related
in the following way:

P =R"¢.6,4)p
=R ~'($.0,¥)p. (37)

The angular momentum L ' is the product of the angular
velocity @’ and the tensor of inertia 7,

L'=lv. {38)
With Eq. (37) the skewsymmetric angular velocity matrix
12 '3 expressed in the body fixed frame is

2=R"'R (39)
The matrix {2 and the pseudovector o’ are related:

0= oT, (40)

i=1
In order to obtain {2 in terms of the Euler angles a = (¢,0,¢)
and their time derivatives we substitute in (39) for the rota-
tion R the expressions (33) and (34). Evaluating the time de-
rivative in (39) and multiplying R from the left with R ~
leads to

0 = ¢ e '/’Txe — 0T, T3e9T|e'/’TJ
+60e VIT '™ 4 YT, (41)

We compare this expression with (40). Equation (41) can be
simplified using the commutator algebra (77,7} ]
= €, T,.»'? One obtains for the angular velocity o’

®), = ¢ sin G sin ¢ + 6 cos ¢,

)}, = ¢ sin @ cos ¥ — O sin ¢, (42)

0y, =¢+ é cos 6.
Now we are able to describe the motion of the particle com-
pletely. The phase space S, XS, consists of all pairsz = (x, y)
defined by (31), (36), (37), (38), and (42).

A. Liouville’s equation

The motion of the rigid body is a solution of the canoni-
cal equations®
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_6H . OH
)

Ve = ax

x

’

C

(43
1 i p—ty
Hirey) = 5= ||pIP 4L ~'L 4 Ul

The canonical conjugate variables x, and y, are x, = x and

Yo ={(P1, P2 P2 Pg» Pgs Py)- The canonical conjugate mo-

menta for the angle variables a = (y,6,¢) are given by

Po =9T /da with T=\L "1 ~'L".
Ps=L{sin@sinyy+L;sinfcosyy+ L;cosb,
pe=Licosyy—Ljsing, (44)
p'=Lj;.

For every solution z, (¢ )=(x_(t), y. (t)) of Eq. (43) Liouville’s

theorem holds,

9 .9 _
-a_tf;(t’ZC) + 2. ;;Zf;'(t’zc) =0. (45)

It would be more convenient to express the particle density
distribution f, as a function of the variables z = (x, y) defined
earlier, instead of as a function of z, = (x_, y.). We define a
new density

fltz)=f (12 (2)). (46)
With the following identities, one obtains the Liouville equa-
tion {48) for the new density f(t,z).

Jd _ dz d

oz, dz, 3z

. d d dz

= —z(t)=— t)) = , 47
== z(t) dtl(zc( ) 2. z, (47)
oz 8zc

e =1

9z, 9z

1,, is the 12 dimensional identity matrix. We get
d d
atf( 2) azf( ) (48)

The transformation z, = z_(z) is given by Egs. (37) and (44).
The Jacobian determinant is — siné. For any observable

O = O (z,) the expectation value EOQ =§dz Oz} f.(t,z,) can
also be expressed in the new variables z = (¢,a, p',L '),

( )
c
aZ

= fd 3qd¢d sin Odyd > p'd L’ (49)

EO = sz

Oz (2)f(1.2)

X 01{g,9,.0,¢,p",.L") f(t,4:,0,¢,p',.L").

Equations (45) and (48) are formally the same but the mean-
ing of the differential operators 4/9z, and d/3z are very
different.

a a ad d a 3)
=(Z.%), £=(&.9) 50
dz, (axc ay. ) 0z ( dx dy (50

The gradient d/9x, is evaluated with the canonical conju-
gate momenta y. = (py, P, P3, Py, Py) fixed. When 3/3x op-
erates, the momenta y = ( py, p3, p;.L },L ) are fixed.
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J [ a 3
(—?—x—c- -a_q: 92.425:0,¥ T aw 91:92:956,6 o .]’

Py P2 P Pgr Por Py Py P2y P3: Pow Por Py

J _ A J
3; aq 22.0008,6,¢ A 3_1/1_ 91192193,8,0 T ]

iP5 PLLLSLS 2 P2 Py L L3LS

(51)
Rather than using {(47) to calculate Z we got back to Euler’s
equation.
a % d d
x dt 9x,

(52)

<

The Lagrange function .¥ is ¥ = p'M ~'y — U(x,). M is

the generalized inertia matrix

ml, 0) (53)
M= ( 0o I/
M is a symmetric 6 X 6 matrix. Keeping in mind that
y=yx.,x.) Eq. (32) can be written
d _, Oy a9y, 9UK,)
M —yIM ' 4 —— =0, 54
a7 w7 e T ek (54
The derivatives dy/dx, and dy/dx, are 6 X 6 matrices. Eval-
uating the time derivative gives |
R ($,6,¢) 0
1 1
— i ——
A7'= sin ny sinecos‘/}
0 cos Y —siny
—cot @sin ¢ —cot B cos ¢

We can write the matrix 4 and B in block form,

= (% 4) =G 5)
0o 4/ s BJ’
BA—I:@IR BzA'“')_ (60}
R B!
Comparison of (37} and (44) with (58) gives
y=MA(x)%,. (61

With (61) the matrix B can be expressed in terms of 4.

= (d /dt)4 — (3/9x_)Ax,. The matrix B R is therefore
equalto((d /dt )R ~')R = — £2.Bydirect calculation wefind
that also B,4’'~'is equal to — (2. The matrix B, vanishes.
This leads to

d .
£ — YR ;! ,A’f‘)
Bd '=— — (aajg:, t xd g ' (62)
0 0
We define the differential operator D,
D=4 9 (63)
ax
According to (57) p is
. Ile
y=—puw + (7). (64
xw
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-1 O *(
—_ M
ey +y

(x,)=0.

Ay

ny _ 1 _@_ )
dr 9x, ax,

+ (55)

9x.
The following definitions are useful:

.

Am—-z leax",

m=1

(56)

Bu=3 M,

m=1

(d Ww aym)

dt ox,, %)

Equation (54) can be solved for y. The result is

aU (x) e
ox

dU /dx = dU /dx, in agreement with (51) since the potential
U does not depend on the momenta. From the transforma-
tion y = y(x_,x_) given by (37) and (44) one obtains for the
matrix A

=~ —ytB4 . (57)

R ~'(¢,0,%) 0
sinf siny cosy O
A= ] 58
0 sind cosy —~singy 0 (58)
cosé 0 1
The inverses of this matrix is
0
0 (59)

[
We used the fact that the following contribution vanishes:

. d s
ZR n §QI a (R ik }qk)
i da

f
1 a
=—2’z’;5— i 'GR K ‘4, )
a

1 1

=——|R" ——1iglI*=0.
2 5a i 5 a 4l
Equation (64) is Euler’s equatlon of motion for a rigid
body. The differential operator D, is explicitly given by Egs.
(111)and (112).In the following it is more convenient to write
the last term in Eq. {64) as a quadratic form in y,

911" =

(y)n = (D U[x )n zalmnylym’
Qi = %(C[")M —1 + M — lC n)?)]m’
(65)
(O TH)
C(ni _ ,
0 0
0 0
(n+3) _ — .
C = (0 Tn)’ n=123
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The tensor a,,,, is defined such that a,,,, = a,,,,. With these
definitions we obtain Licuville’s equation (48} in the form we
will use it in the following.

2 fixn = { oM "D, +D,Ut)Y

- zalmnylymvn f(t’x’y)' (66)

Lm,n

The operator x-d/dx in (48) and (51) is equal to yM ~'-D,
since y = MA (x)x [(61),(63)]. V denotes the gradient with re-
spect to y with components V,=d/dy,,.

B. Kramers-Liouville equation

The motion of the particle is influenced by an external
potential U and a *‘Brownian fluid,” which is composed of
molecules which exert fluctuating forces and torques,

Rit)=(F(e)N(t). (67)

In the absence of an external potential the equation of mo-
tion is

y= - Jl ds (¢ — siis) + h {¢). (68)

For a derivation of the generalized Langevin equation (68)
see Ref. 14. The friction tensor I” (¢ ) is proportional to the
correlation of the fluctuating forces 4 (),

1 ,~ -
r)= T (R{0)A(t)). (69)

The symmetric tensor I (¢ ) is independent of the momenta y
for heavy solute mofecules. In the following we will use the
“Markovian limit”.

y=—~Cy+hit), czrr(s)ds. (70)

The following discussion can be generalized simply by re-
placing the 6 X 6 matrix C with the corresponding expression
in (68) in all equations.

In Ref. 14, Eq. (68} was derived from a linearized set of
the equation of motion. Therefore one does not have to dis-
tinguish between the laboratory and the body fixed coordi-
nate frames. The difference consists of quadratic terms
L’'Xw' and p' X ®'. The idea is that over a short time of the
order of the relaxation time both frames do not differ very
much. After combining the stochastic equation (70) with
Newton’s equation, we can follow the orbit over an arbitrary
long time and must therefore distinguish between both co-
ordinate frames. The equation of motion containing the
forces due to the fluid and the external forces is

/Xa)!

'Xco’) +hit) (71)

y=—av+0,U+ (7

In Refs. 10 and 11 the term p’ X " is omitted. The general-
ization of Liouville’s equation including stochastic forces
can be obtained from (71).7 The result is the Kramers-Liou-
ville equation
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a p—
Ef—(L+K]f,

Lf= —yM "D, f+ DUV~ 3 @y ¥ Va S (12)

Lm,n
Kf=V.C(M 'y +kTV\f.

The operator X is known as Kramers operator.

C. The operator

In the translational case it proved very useful to go to
the “interaction picture”.

f=e*f,
Lity=e *LeX =L+ 3 (KL (‘—“n"—’) . (73)

n=1

The operator L consists of three terms.
L=L,+L,+L,

L,= ",V’Mlex’
(74)

L,=(D.U)V,

Lq = — zalmnyl ymvn'

Imn
The calculation of the operators fo and L, - does not pose any
d_jfﬁculties. However, for L, the situation is different since
L, contains quadratic terms in ¢. The commutators with X
become more complicated.

All operators needed in (74) are contained in the algebra
generated by x;, v,,,V,,,379x,. The position and momenta
are independent. From the definition (51) we obtain
[V,.x,] =0and [d/3x,, y,, | = 0. The partial derivative
d/dx, is evaluated with the momenta y = ( p’,L ') held con-
stant. The differential operator (D, ), (63) also commutes
with y,, and V,, for all components i,m,n. The only nonvan-
ishing commutator needed for the calculation of Lis

Ve Vml1=6,., nm=1,.6 (75)
The operator Ly(f)is given by the infinite sum
Lyt)=Lo+ 27 [K,-]"Lo({ —2)"/n!). In order to sim-
plify the notation we introduce the matrices C and Cand the
operator D,

C=CM~', C=CkT, D.=—M"'D,. (76)
Kramers operator becomes
K=V.Cy +V.CV. (77)

Theoperator Lis L, = y-D_ . The first time-dependent term
in the expression for Lt ) is equal to — ¢[K,L,]. This com-
mutator is

[K7L()] = [VC—')’,J/D—A] + [Vévin_x]

= zatl(ﬁx)m [Vnyl?ym] (78)
ntm
+ z énf(Ex}m [anlvym ]
nd.m

The following identities hold for arbitrary operators A4,B,C:
[4,BC]1=[A4,B]C + B[4,C],
[4B,C]=A4[B,C] +[4,C]B. (719)
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With (79), (78) becomes

[K’L()] = Z EnI(D_x)m{Vn [yl’ym] + [Vn’ym ]yl}

ndm

+ ,Z Enl(l—)-x)m {Vn [Vl!ym] + [Vn!ym ]VI}

With (75) and using the fact that the matrix C = CkT'is sym-
metric,'* leads to

[K.L,)=D,-Cy + 2D,-.CV. (80)

For the higher order commutators one obtains

(K,1"Lo=D,-C"y +2 _&Yw.

(81)
This equation can be proved by induction on #. The calcula-
tion is similg_r to the calculation of [K,L,]. We observe that
the matrix C "C is symmetric for all m>0 since

C"C =CM~'CM ~"-.CM ~'CkT
=(C"C)t=CC™.
C and M are symmetric. Usmg this S property the last term in

(81)becomes 23, . ,_,_ ,D,-C™C )’CV The sum vanished
for even n. For odd » it is equal to 2D,-C "~ ICv.

E'E"y,
[K"]nLO= n o—n FYal P
b,.Cy +2D,.C"— 'V,

S D.-CmCl

mad=n—1

ncven

n odd.
(82)

The final result for the operator Lo(t) is
Lfe)= 3 (K Lol(— 1) /nt]
n=0

=D.e G4+ D (eC—e C)CICY, (83
and with the definitions of C, C, and D, [(76)] one obtains
Lyft)= —y-M ~'E(—1t)D,

+ kTV.[E(t)—E(~t)]D,. (84)
The matrix E (¢} is the exponential
E(t)=eM . (85)

The corresponding expression used earlier for the transla-
tional motion

=P 9 8 —la/mit L ok T smh(— t ) i 9

m 8q m dp Jq

is a special case of (84). It is remarkable that no higher than
second order derivatives appear in Lyt

The calculation of the operator f, is similar. One
obtains

Lt)=V-E{t)[D.U(x)]- (86)
In the final step we calculate the operator Eq which is qua-
dratic in the momenta p. This leads to major complications,
but it turns out that the operator fq(t ) contains no higher
order derivatives than a third order derivative in the mo-
menta g.

We will write L, as the scalar product of two vectors
with 6° = 216 components [(74)]:

L=—a(ys yeV) (87)
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In order to find the commutators [X,-]"L, we make the an-
satz that there exist some vectors W™, X ™ yn Z " guch
that

(K, ]"L, = W (y& yo V) + X "%y
+Y"ysVeV)+Z"(VeVeV) (88)

The vector X ""*eR® is defined X {"*=3,X ) . The definition
of the nth commutator [(16)] [K,-]"L, = [K,-]([K,-]" " 'L,)
allows us to derive recursion relations for the vectors W,
X("), Y("’, Zin,
Lemma: W9 =

Wi+ iy
X+ ytnn + Wwing

—a, X(O) O Y(O) O Z(O} 0

(89)
yir+ ) — Y(")Y—{— Wlniq/

Zn+ ) - Z(n)¢ + W(n);:

The 216 X216 matrices Y, @, =, ¥, X are defined
>=Celel+leCel—1eleC",
Y=Celel—-10C'el—18l18C",

&= -C'elel—-18Ctel—1818C",

(90)

Z=2Cslel,

v=418Ceol,

nN=—-1e1eC".

1 is the 6 X 6 identity matrix. W} is symmetric in the first

two indices W), = W3 foralln =0,1,2,....

Proof: All these relations follow directly from the defi-
nition of X, Y @) Z " [(88)] and the definition.of the
commutator [K,-]"[{16)].

The following equations are true for arbitrary vectors
Xt ym g Z " with the only restriction that W is
symmetric in the first two indices.

Wi, = Wi, 1)
(1) [V_@’Xm)t,v] — (X"".())*-V,

2) [V-O, W (ye yo V)] = W"Z(ye yeV)

(3) [V-Cy,Y"(yeVe V)| =Y"'T(yeVeV),

4) [V-Cy,Z"VaeVeV)]=Z"dVeVaeV), (92)

5)

[V-CV, W (ye ye V)] = (WWZ )V + WY (yeVeV),

(6) [V-CV,Y"(yeVe V)] =Y"Z(VeVaV)

(7) [V-CV,Z" (Ve Ve V)] =0.

The proof of these equations is mostly straightforward. For
instance, the first equation is

[V-Cpx "=Vl = 3 CoXP™* [V, 5:.9,]
aBy
= 3 CaX PV, (—8,) =X~ CN)V
aBy
- (X('")*-V.

The fifth equation is different since there are two different
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types of terms:
(V-CV. W (y® ya V)]
= 2 C;aBW{;é)s{(Va[vB’yy]-*' yévs)

a.fB,v.6,€
+ [va)yy]vﬁ’yéve + yyva [VB’yG]VE
+ yy[va9y5 ]vﬂve}

By assumption W', = W, and [ y,,V5] = — 8,4 This
gives the result

[V.CV, W (ye yo V)] = (WWZV 4+ W (ye Ve V)

The proof of the other equations is similar.
We define the vector valued function Wt :R—R*'°,

W(t)= 20(( — /W (93)

and similarly X *(¢), Y (¢), and Z (¢ ). The recursion relations
(89) for W', X * Y™ and Z " lead to the differential
equations

W)= —a, X(0)=0, Y(0)=0, Z(0)=0,
Wit)= — W3,

X(t)= —X{(1)\2— W)=, (94}
Y(t)= =Y ()Y — W(t)¥,

Z(t)= —Z(t)p— Y(t)=.

These differential equations can be integrated and the results
are

Wit)= —aexpl—1tZ),

X{t)= an ds exp{ — sZ )= explls — 1 112),

Y(t)=afdsexp(—sZ)'I’exp([s——t]T),

Zit)= — LtdsY(s)Eexp([s —t]P).
With these expressions the final result for the operator L (¢ ) is
with (84), (86), (88), (95):
Lit)= —y-M ~'E@)D,
+kTV.[E(t)— E(—1)]D,
+ V-E(t)[D,Ulx)] (96)
+ WitHye yaV)+ X*t)V
+Y(ie)yeVeV)+Z()(VeaVeV).

This is the Liouville operator in the interaction picture. The
quadratic term L, caused all the additional terms. Even if
they are not explicitly known, we will be able to show that
they do not contribute to the first and second cumulants.

D. First cumulant

We calculate the cumulants under the assumption that
initially the distribution in the momenta y is a Maxwell
distribution,

1 — y-M ~'y/2kT

(27kT (et M }*?

gly) = (97)
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The first cumulant is according to (25)

GWn=fd%Emmw. (98)

We use expression (96) of L (¢) and integrate by parts. The
contribution at the boundaries vanish. The remaining terms
are integrals over odd functions in y,,, which vanish. The
first cumulant is identically zero for all times >0,

Gt )P(tx) =0. (99)

E. Second cumulant

The second cumulant gives the first nonvanishing
contribution,

6y = [ as [ @y L) Lol (100)
with [(96)]
GOt)= — L dsfd"yy-M“E( ~1)D,
X[~ yM ~E(—9D,
+ kTVA{E(s)— E(—s)}D, (101)

+VEG[D U]+ Wiskye yeV)

+X ¥}V + Yisi{ye Ve V)]g(y).

Theremainingtermsofthe product L (z \L {s)vanishafterinte-
grating by parts. The only term left from the operator Lit)is
—y-M ~'E(—t)D,. Also the term Z (s){(V & V @ V) van-
ished after integrating by parts three times.

At first we can show that the contribution due to the
terms Wi(s)(y® y® V), X *(5).V,and Y (s}-( y ® V ® V) cancel
each other. We will show that the following integral vanishes
for k = 1,2,...,6 and all times 5>0:

J?=fd%n[wmu®y®w+Xﬂwv

(102)
+ Y(s)}(ye Ve Vlg(y).

We recall that §d % y, y; g(y) = M;kT . Again integrating
by parts (102) becomes

Jk(s) = - z(kTank(s Mnm + Xnnk(s) - Yrmk(s))'
" (103)

The function J, (s) may be written as
Jo(s) = 22_ o J W — s)"/n!. For the constants J {" one ob-
tains, according to {93),

J(ID = - Z(kTW(r:r]nanm +X(rfr)lk - Y(rf)zk . (104)
The recursion relations (89) allow us to define J ' in terms of
7,

JO= 3 (kTW My Cl + X5 0 Cr

I k'\m"
+ VTl )
Comparing this expression with (103} shows
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H= — ST, = (- IE,. (106)
>

The vector J vanishes because X © = @ = 0 and
2 WMy = — Zpp @y My .
= —} Tr(C"™ + M ~'C"™M) = 0 [(65), (89)]). This

shows that J ) = 0 for all / and k. Therefore

Jls) =0, s>0.
The integration of the remaining four terms in (101} is
straightforward. One has to keep in mind that the matrix
M ~'E(t)is symmetric.

The final result is

4 —_®
= Pltx)=G ()P (1)

(107)

=D, Al )(Dx + Zl;(D,U(x)))P(t,x). (108)

The time-dependent diffusion matrix is
At)=kTC ' (1 —e~* ™), 1>0. (109)

Equation (108) is the generalized Smoluchowski equation for
coupled translational and rotational diffusion. Since we
started with a Maxwell distribution at ¢ = 0, the diffusion
matrix A (t) is time dependent. Equation (108) includes as a
special case the translational diffusion and the rotational dif-
fusion discussed in Ref. 1. The operator D, depends on the
orientation a = (¢,6,¥).

D,
D, = , (110
3/0q,
D, =R'$.0,¥)|3/dq, |, (111)
3/9q,
d d
cos ¢ — ———— —cot#f —_
Yoo Tt ¢sm08¢ cotfsiny = ¢
D, = . d a
e "1 _singp— —— —cot —
m¢ae + ¢ ¢sm 5 3 co cos¢' 2
9
oY (112)

The rotation R (¢,0,1) is defined in (33) and (34). The expres-
sion for D,, follows from (59) and (63). Usually the friction
tensor C is split into four 3 X 3 matrices.

C= (CTT CTR) ]
CRT CRR

For axialsymmetric molecules it is easy to show that
C.x = Cry = 0.% In this case the diffusion equation is

1
L, Ulga)

(113)

%P(t,q,a) - {Dq, -AT(Dq + e
+0,4,(D, + 2= (0, Vlgall)|Plegc)

with o
A, =kTC 7' (1 —e ™ ),

r =kTC gz (1 —e =" '), 130

The diffusion of translational and rotational degrees of free-
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dom is still coupled even if the potential U vanishes, since
D,, dependsona. In Sec. V we will solve (114) in two dimen-
sions for U (g,a) =

In Refs. 10 and 11, different expressions for the opera-
tors corresponding to D, and D,, which are wrong in our
opinion, are used. Instead of D, the operator
J = — igx(0/dq) was used. J is, up to a constant factor, the
quantum mechanical angular momentum operator for a ro-
tating point particle. Both operators D, and J have the same
commutator algebra since they are both infinitesimal gener-
ators of a representation of SO(3). D, and J correspond to
two different representations; see {136). A connection be-
tween J = — igx(d/dq) and the three Euler angles (¢,6,v)
also used in Refs. 10 and 11 is not obvious.

For axially symmetric particles one can factorize the
angular dependence of P (¢,4,4,0,¢) in ¢. The operator D2 is
in general not equal to A |, _,, the Laplace operator in
spherical coordinates on the unit sphere. This is only true if
we set d /Ay = 0. If we consider only axial symmetric mole-
cules and do not distinguish between two orientations which
differ only by a rotation about the axis of symmetry, then we
may use D2 |w =4 |,_,; see(136). Reference 10 obtained
wrong results by setting J? = 4.

It is important to keep in mind that the operator D,
depends on the orientation. D, is the gradient along the
body fixed coordinate axis. If D, is replaced by D, = d/dq
one obtains wrong results.'>!' The coupling of translational
and rotational diffusion of the two dimensional model dis-
cussed in Sec. V is a consequence of the a dependence of D,
only.

These claims will be justified in detail in Sec. V.

IV. N PARTICLE DIFFUSION

We consider N particles moving in a fluid interacting
via arbitrary forces. In general the N particle density
Ptx" x?,...,x"™)) is not the product of the distributions
Pt x"), where x")denotes the six coordinates of the ith parti-
cle x = (¢",a"). The N particles are correlated. The inter-
action energy is

U(x(l) (’) (N|)

For an arbitrary observable O (x'",x"?,

....x™)) depending on

the position and orientation of the partlcles 1,...,V the expec-
tation value is defined
Oft )EJd,UXP(I,X)O (x) (115)

with x=(x"",x?,.._ x™)). The volume element dp, is the

product measure

H dq(lldq(l)dq(')d¢ @ sin 2] (iide U)dl/,(”.

i=1

(116)

The objectives of this section is to derive the evolution
equation for the & particle density P (£,x) based on the
Kramers—Liouville equation for the N particle motion. For
the complete description of the N particle dynamics all posi-
tions x'" and all momenta y" are required.
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Z0=(x, p),
(117)
2(t )=(z"(¢ ),2(t ),....,2"N (t)).
These variables are connected with the canonical variables
z.(t) through the transformation (37) and (44) applied on
every single coordinate 2, i = 1,...,N,
z(t) = 2z (¢ )= [V ),...2 VM) ] (118)

Liouville’s equation holds for the density £, (¢,z.) since the
determinant of the Jacobian matrix of the flux z_(¢) is equal
to 1 as a consequence of Hamilton’s equation.

dH dH
o y(ci')k a(x(cn)k
fork =1,2,..,6 and { = 1,2,...,N. The Hamiltonian function
is

v (P = — (119)

(x(cn)k =

% ﬁ’: POMD=1 Y L (D W),
i=1

The matrix M ? is the generalized inertia matrix (53) of the
ith particle. Liouville’s equation is

H(x,y)=

9 fitz)+ 2 -2 fitz) =0, (120
ot dz,

z, is determined by (119). The expectation value of an ob-
servable O (z.) is obtained by

EO(t)= Jduc £(2.)0(2.)

du, is the volume element in the phase space (S, XS, )*".

(121)

du. = 11 1. (122

i=1k=1

Instead of the canonical variables z, we use again z. The
transformation of the density f,, the observable 0, and the
measure du, are

Sflz)= Stz (z),

0 (2)=0 (z.(z)),

{123)

d ’ Det 22 |4

=!| Det —|dz

H dz
N 12 .
=[] sin6" ] dzy.
i=1 k=1
The expectation value of the function O (z),

EO()= [ duft2i0a), (124)

agrees with the definition (121).
The Kramers-Liouville equation for the N particle
problem has the form

9 -39 SN
atf(t,z) z azf(t,z) + Z K f(t,z).

i=1

(125)
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K " is the Kramers operator acting on the ith particle,
KO=VA.CO[MO— 1y 4 kTv0],

V= 9 . {126)
Ay

The Kramers operator is the direct sum of the individual
operators K ? acting on the ith particle. The forces due to the
fluid are completely random and not correlated at different
positions.'* The correlation matrix of all components of all
random forces and random torques, which is a 6" X 6" ma-
trix, is the direct sum of the correlation matrices C'. There-
fore Eq. (126) is justified. With L “, the Liouville operator
acting on the ith particle, the Kramers-Liouville equation
(125) is the sum of N formally identical operators,

2 flea)= $(L9+ K 11t

i=1

LO= —y"MO~1D,; + Dy U(x)-V?

—a"(ye Yo VY (127)
All operators L " are connected through the potential U (x).
Equation (127) contains the complete N body dynamics.

Since [K“,L "] = 0 for i j we have

N N\ N N
exp( —t zK“’) SLY exp(t D K‘”)

i=1 j=1 i=1

U] [t
e 1K L ()] elK
1

1Mz

1

N o
— ,ZL ). (128)

i=1

The operator L't ) are given in Eq. (96) after replacing z by
Z"% and M by M ). The evolution equation for the density f
defined by f=¢* f is therefore

- Noo
%f(t,z) =3L At ) f(2,2). (129)
i=1
Suppose the momentum distribution is Gaussian
initially,
N -
gly) =[] &»")
i=1
(130)
1 :
N = —yM kT
) = kT et ¢ '
As in the one particle case the first cumulant vanishes.
0 N N N
Gt)P(t,z) = j I14%" > L9%t) [] g y*)P(ex)
i=1 j=1 k=1
N ~
=3 [d°yILYt)g(yP(rx)=0.  (131)

Jj=1
The second cumulant is
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GPt)P(t,x) = J.tdsf ﬁ d &y i ﬁv: L)L ™) ﬁ g( ") P(t,x)

=i1m=1 i=n

=[as 3 [l a ez 1T spex

=1J =1 j=1

+[as S [l avmr [T sy
0 IEZm i

i=1 i=1

N t
=[ EG(Z)U)(I)-f- 2 J;dSG(”“)(t)G(“(m'(S)]P(t,X).

=1 I'Zm

The second term vanishes because all first cumulants

G [ = 1,...,N are zero. The remaining term is the sum of
the cumulants calculated for the one particle dynamics. The
N particle diffusion equation is

iP(tx“’ ™) = ﬁl: D, -A%r)
a[ b} ’ » &~ x({)

1
X{D,y + — D,; Ux‘”,...,x‘N’)
(Pao + 2 D U™

X P(txV,... x™),
AN ) =kTCY (1 — e~ "M ), (133)

This is the generalization of the Smoluchowski equation for
N interacting translating and rotating particles.

V.CORRELATIONS BETWEEN THE VARIABLES g AND «

We consider the one particle diffusion equation (114).
In general the positions and orientations are correlated. The
correlations are not only caused by the potential U = U (x),
x = (g,a) or by nonvanishing elements of the matrix
Crgr = CLr. We will show that, if the positions ¢ and the
orientations a are uncorrelated at ¢ = ¢, there are in general
correlations for ¢ > 1, even if the potential vanishes and also
Cr =0.

A. Axially symmetric particles

As an illustration we consider axially symmetric parti-
cles. In this case one can show that C,, = 0.'° If we identify
the axis of symmetry with the e} axis the matrices C ;' and
C zx' are diagonal.

a 0 0 > 0 0
c=0o a o], cz=|0 & o (134)
0 0 a 0 0 b,

We assume that we know the distribution at time 7 = ¢,
where ¢, is large compared with the translational and rota-
tional relaxation time of the momenta.

to»m||C 7'|| and 1> ||C R |},
%P(t,q,a) =kT [aD} + (a;—a)D,);

+bD;, + (b — b)(D,); 1P (t.g.a)
for z> ¢, (135)

This equation is a special case of (114) where we used expres-
sion (134) for the friction tensor. We alsoused A (¢ )=k TC ~!
for 1>t,.
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(132)

The differential operators (D, )%, (D)}, D2, and (D, )}
are given by Eqgs. (111) and (112).

(D, P = 4,
a a
(D, ) = 0 Ba) 3 Bj(aJ=R;(@)Ry(a),
3 1 a? a?
D, = — + ( ) 136
) 3’6 sin’6 \ 32 + %y (136)
—_ 2 __0.0820 _a__a_ + cot Hi,
sin“d d¢ Iy ad6
. _ &
(De ) = F
4, is the Laplace operator in Cartesian coordinates.
We define the new density P (t,4,6,6),
P(.066) = [du Pl.ad6) (137)

Integrating Eq. (135) on both sides with respect to 3 leads to

d d d
— P{t,q,0,8) = kT |ad —a)— - B(¢,0)—
2 Plg8.0) [a oy —a) 2o B60) 5

+ bA lr-_— 1 ]P(t’q!¢’6 )
The matrix B (@) defined in Eq. (136) does not depend on ¢.

(138)

sin @ cos ¢ sin 6 cos ¢
B(¢,0)=|sinfBcosg |® |sinbcosd|. (139)
cos 8 cos 6

The contributions of Eq. (135) which contain a derivative
with respect to i vanish after integrating by parts. Therefore
the operator D2 reducesto 4 |, _,, the Laplace operator in
spherical coordinates on the unit sphere.

D2|,=4| (140)

We assume that the initial condition factorizes. For ¢ > ¢, the
solution of (138) has the form

P(t(,,q,¢,6) = POt(q)POR (¢,9 )r
P(t,q,6,0) = Pt [PR ])PR (t,9,6),

r=1"

The function P, (¢ ) is also a functional of the distribution
Pg{t). Pr(t) and Pt (t) are probability densities,

§d3q P(t,q,[Pr ]) = 1 and §d¢d0 sin OP(t,4,6) = 1 for all
times ¢ > ;. The boundary conditions are: P(t,,[Pr]) =0
ifg, = o forsomei = 1,2,3. Substituting (141) into Eq. (138)
and integrating with respect to ¢ and & (using the weight
sin 8 ) leads to Eq. (142). Similarly one obtains (143) by inte-

U. Steiger and R. F. Fox 306



grating with respect to gq.

%PT(t’q! [PR ]) = kT [aAq + ((13 _ a)
i a a
X ZJ jd¢ sin 6dOB,($,6 \Px(1,6,8) o a_q,}

X Pr{t,q,[Pr ])s (142)

9 Pr(t,6,0) = kTbA
at

Pp(t,9,0) fortxt,.
=1
(143)

r

The second equation describes the ‘“Brownian motion on the
unit sphere.” The eigenfunction of 4 |,_, are the spherical
harmonics Y,,, (6,4 ). Substituting a solution Py (¢,4,8 ) of
(143) into Eq. (142) one obtains an expression which is for-
mally a diffusion equation with time-dependent diffusion co-
efficients. The off diagonal elements of the diffusion matrix
vanish if the distribution Py (¢,4,0 ) is uniform.

Similarly, one can show that for arbitrary molecules
with C, = Oasolution of the form (141) (including ¥) exists,
if the positions and orientations are uncorrelated at time
t=t,andif U=0.

B. Diffusion in two dimensions

In two dimensions the diffusion equation without exter-
nal potential can be solved for arbitrary initial conditions.
Equation (108) reduces to

a
- P(t’ql’q2r¢ ) = AP(trql’q2’¢ )’

ot
(144)
9 9
_ aq, 9q, _(?i
4= 3 Alg) a3 +kT7’az¢» >4
99, 99,
_ acos’d +fBsin’¢ (B —a)singcosd
A(¢)_kT((ﬁ—a)sin¢cos¢ asin2¢+Bcosz¢).

(145)

kTa, kTP, and kT are the diffusion constants correspond-
ing to the degrees of freedom ¢, ¢,, and ¢. We assume that
a > 3. We use the following identities to simplify the matrix
Alg):

a+fB  a—p

acos’¢ + Bsin’ ¢ = 5 +Tc052¢,
asin’é +Bcos’d = “—;i — a%gcos&ﬁ, (146)
2 sin ¢ cos ¢ = sin 24,
1 O cos 2¢ — sin 2¢
wir-as(! ) o e )
@) 0 T JGn2s —cos2e
(147)

4 is the average translational diffusion constant and € is a
measure for the asymmetry of the particle.

a+p a—p
b=——, e=—=. 148
> > (148)
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Without solving (144) explicitly it is already possible to make
some statements about the lowest moments of ¢,, ¢,, and ¢.
One obtains the following differential equations for the ex-
pectation values (-}, = fdgq, dg, d¢---P(t,q,,9,,¢ ):

d
_— ’=O,
at (q1)

di (q}), = 2kT8 + 2kTe(cos 2¢ ),,
t

£ (q42), = — WTe(sin20), (149)
t

% (cos 2¢ ), = — 4ykT (cos 2¢ ),,

d , . )

7 (sin2¢ ), = — 4ykT (sin 24 ),.
This leads to

(cos2¢), =e T (cos 24 ), ,

(), = 2kT5t + 2i(1 — e (cos 24 ), + ().,
7/ .
(150)

— € .
(9.92), = 2_7/(1 — e~ “T")(sin 2¢ Yo +$(0:192),, -

The calculation of arbitrary expectation values (0),,
0 = 0(g,,4,,% ) can be reduced to the problem of finding the
eigenvectors and eigenvalues of the diffusion operator 4 in
Eq. (144).

(A — Ak i)Wy = 0. (151)
For the symmetric case a = /3 the solutions of (151) are

, R
Virilgvg28) = —7 fe"-q' e sin(lg ),

(152)
L1 g
v k1a1 o292 cos(Ig ).
We choose a box of length L and assume periodic boundary
conditions,

¢k,k21(‘11’42:¢ )=

Y0,9:8) = ¥L.g2d ), ¥(g:,0.0) = ¥lg,.L,8),

(153)
q1.928 ) = Yg1,92,¢ + 27).
The possible values for &, k,, and / are
kI= i 2;’77-’ k2_ i 2m7T, n)mEN
(154)
1=0,1,2,....

In the general case a > 3 we make the ansatz that the eigen-
functions can be written

1 1, i
Yo elire kzngk|k,l(¢ ).
One obtains the following differential equation for the un-
known function g, , ,(¢ ) [(144), (147), (151)}:

Vi lg1920 ) = (155)
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[ 6k + k3 — ekt — k3 cos 26

. 82 A 172
+ 2€k,k, sin2¢ + ¥ 367 - ;;I 8k iu(¢)=0.
(156)
We define the complex wavenumber & ',
k'=k, + ik,
(157)

y==arctan(k,/k,).

k' can be written k' = |k '|/ . Equation (156) becomes
—(81k'? € k'|2e¥ v € k!ze—2i¢—2iw)
[ otk + <1k Ik

82 A 1742
— M e i(d)=0.

i (158)
ap* kT

+7

The exponentials can be combined to cos(2[¢ + ]). Equa-
tion (158) is equivalent to Mathieu’s equation.'®

%y,(z) + (a,(r) —2r cos2z)y,(z) =0, (159)
Kl +kDa—B)

_ 2 ,
z = ¢ + arctan{k,/k,), (160)
Ars = — KT {ya,ir) + “jﬂ(k% + k3,

8kk.i(@)=y,[¢ + arctan(k,/k,)].

The eigenvalues g, (r) of Mathieu’s equation are negative for
certain values of r and /,'° but the eigenvalues 4, , are al-
ways less or equal to zero for all k,k,, and /.

Equation (159) has a complete set of orthogonal solu-
tions ce,(r,z) and se,(r,z) with the corresponding eigenvalues
denoted by a,(r) and b,(r).'® The eigenfunctions of (151) are

1 1 .
Viny915929 ) = —ET e* e*:50 (1, + arctan(k,/k,))

11 = %e""""e""z‘“ce, (r,¢ + arctan(k,/k,)).
T
(161)

since {w,’(l kl,,z//k'k:,} is a complete set of orthogonal eigen-
functions of the diffusion operator (151), the expectation val-
ue (0), can be found by

(0), = J dq, dg,dd P(t4,428) 0 (41,40

¢k,k21(41,42»¢ )=

— Anit
= 2 e Pk,kzl Oklkll
Kokt

(162)

A;\.AJ ’ ’
+ Z 4 Pk,kzl Ok,kzl'
Kkl

The coefficients O, ;. ;, O i 41> Pr x.i» P &1, are obtained from
O (q,,9,,¢ ) and the initial distribution P (¢,,q,,45,¢ ).
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Os = j dq, dg; dd Ut 1(q1428) O (d1and

E(¢k,k21r0),
o l’(,kzl = (¢l'<,k21:0),
Py = (Pto) ¥ i)
P1’<|k11 = (P(to),wi,kz/)-
Asanillustration we consider the following two observables:
0°(q,,¢ )=sin(kq,)se(r,$ ),

(163)

(164

O<(q,,¢ )==sin(k,q,)ce,(r,§ ),

withk, = 27/Landr = 7*(a — B)/yL >. We assume that the
asymmetry is small. In this case <1 and the Mathieu func-
tions se, and ce, are approximately

ce(r,¢ ) =cos(d ) — % cos(3¢ ),

(165)
se,(r, )=sin(¢ ) — % sin(34 ).
The corresponding eigenvalues are
ar=1+r
(166)
b(r)=1-—r
The eigenvalues 4 , , ;, and A7, , , are
2
Ay ko = _kT(7/+ %(3‘1 +ﬁ))’
(167)

A’iklo,z—kT(y—l- g(a+3[3’)),

and for the expectation values of O and O ¢ one obtains
<0 C>r =~ce KTlv+ (/L) 3a +/1‘)]'y
(168)

<0x>l e KTy + (/LY a + 381

The constants ¢ and ¢’ can be written ¢ = (O ,P (¢,)) and
¢ = (0%P (1))

The state O © decays faster since we assumed a > 3. a corre-
sponds to the diffusion along the e; axis of the molecule. In
the state O © the molecule axis e] is mainly parallel to the e,
direction of the laboratory frame; in the state O *e; is mainly
parallel to the e, axis. The average speed of the molecules in
state O “is bigger in the direction e ; e, is also the direction of
the spatial inhomogenity. Therefore O ¢ decays faster than

O°. This example is typical for the type of coupling of ¢,,4,,
and ¢, which occurs in the translational and rotational diffu-
sion if the otential U vanishes and also C;; = 0.

VI. CONCLUDING REMARKS

We have shown that a “contraction of the description”
is achieved when a Kramers—Liouville process is averaged
with respect to its momenta variables. The second cumulant
of an ordered time evolution cumulant expansion yields the
generalized Smoluchowski equation as the contracted de-
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scription. We have examined the details of the dynamical
operator algera generated by the contraction procedure for
translational and rotational degrees of freedom, and for as
many as N distinct particles.

A more thorough description of the higher order cumu-
lants, shown to be small here, will appear in a forthcoming

paper.
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Three bases in the Hilbert space of tensor fields on the unit spheres associated with two
independent vectors are discussed: the tensor spherical harmonics and the symmetric and
unsymmetric tensor helicity harmonics. Under the conditions which we specify they form
complete sets of independent Lorentz covariants which may serve the purpose of the analysis of

reactions with several particles in the final state.

PACS numbers: 11.30.Cp, 03.65.Fd

1. INTRODUCTION

The Lorentz covariants written in the Cartesian basis
have been the traditional theoretical tool to analyze the lep-
ton- and meson-induced processes on nucleons and nuclei.
Though manifestly covariant, the technique frequently does
not fit the purposes of the physical investigations, e.g., al-
ready the basic problem of selecting the independent covar-
iants may prove to be practically insoluble in many cases.

It is our experience that the tensor harmonics in the
spherical and helicity bases constitute a convenient, highly
flexible framework for the construction of the Lorentz co-
variants: The most important mathematical properties of the
tensor harmonics follow directly from the well-known for-
mulas of the angular-momentum algebra. The construction
of the independent sets of covariants is straightforward.
Orthogonality properties of the tensor bases make the calcu-
lations of rates and other physical quantities much easier
that with the cumbersome Cartesian techniques. Besides
these technical advantages two gratifying properties of the
new formalism constitute its main merit and should be men-
tioned. First, the relativistic tensor harmonics allow a natu-
ral unification of the theoretical treatment of a big class of
different physical processes. Second, the formalism, though
fully equivalent to the covariant Cartesian expressions is ac-
tually very much similar to the familiar nonrelativistic mul-
tipole-expansion formulas. Therefore, the physical results
may always be easily interpreted by a direct extrapolation to
the domain of classical nuclear physics. Using the tensor
harmonics, we need not perform any *“‘nonrelativistic reduc-
tion” which is normally done, e.g., via the Foldy-Wouthuy-
sen transformation. Namely this is the step which frequently
makes the treatment of physical processes unwieldy and
brings in the approximations which are usually difficult to
control. The trick here is indeed in choosing the appropriate
reference frame. It is the Breit frame which being fully ap-
propriate physically, gives simultaneously an enormous sim-
plification of the formulas.

The formalism of the relativistic sth order tensor spheri-
cal harmonics has been presented recently by Daumens and
Minnaert.' For the corresponding analysis performed in the
helicity basis we refer the reader to the paper by Akyeam-

310 J. Math. Phys. 23(2), February 1982

0022-2488/82/020310-05$02.50

pong.> As a matter of fact the method was first introduced by
Stech and Schiilke® who have considered, however, only the
specific case of nuclear beta-decay. Recently, Delorme® pre-
sented the application of the relativistic spherical tensor har-
monics in the context of the so-called elementary-particle
theory of nuclear currents. The treatment in Refs. 14 is
always limited to the one-variable harmonics which corre-
spond to the case of binary reactions.

Here we shall present our results concerning the two-
variable Lorentz-covariant tensor harmonics in the spheri-
cal and helicity bases. It will be shown that they provide
actually the most general description of the multivariable
tensor fields, which may be needed in the analysis of any
reaction of the type a + b—1 + 2 + - + n.

In Sec. 2 we define the spherical tetrads and build up the
second-order tensor spherical basis. Section 3 is devoted to
the (scalar) spherical harmonics in two variables. There we
display the reduction formula which permits an easy elimi-
nation of those harmonics which can be expressed as linear
combinations (with scalar coefficients) of the harmonics
which form the basic set. In Sec. 4 the second order tensor
spherical harmonics in two variables are introduced and
their most important properties are listed. In Sec. 5 two dif-
ferent forms of tensor harmonics in the helicity bases are
deduced from the two-variable tensor spherical harmonics
constructed in the preceding section. Finally, in Sec. 6, we
indicate, using a particular example of the reaction with
three particles in the final state, how the formalism of the
present paper may be applied and indicate some of its merits
in comparison with the Cartesian expressions.

2. TENSOR SPHERICAL BASIS

First we have to introduce a set of orthogonal 4-vectors
on which to define the projections of the tensor fields. Fol-
lowing Daumens and Minnaert' we choose three spacelike
vectorse,” (n = + 1,0) on the unit sphere § %(e) embedded in
the subspace E *(e) orthogonal to the timelike vector e)’=e,, .
The complex vectors e, satisfy the following conditions:

(e}r‘n)llt=(_1)r+n+1e;7ny (1)
e;‘n(e;"')* = 6”’ 5nn' . (2)

We use the Pauli metrics (i.e., a,b, = a-b = a-b — agb,) and
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the usual summation convention for repeated Greek indices
(i =0, 1, 2, 3). Note that three vectors e}[‘(n = 4 1, 0)form
the ususal three dimensional spherical basis.

The spherical components of an arbitrary vector g, in
the basis just introduced are given from the decomposition

a, = zalmelm* + a00 00* (3)
This means
00 — Im __ 1
a“e# , a7 =a,e". 4]

The construction of the tensor spherical bases of an ar-
bitrary order has been discussed in detail by Daumens and
Minnaert.! We shall deal with the second-order tensor basis

ryrnr
BT =3 n)E" (5
nyn, ngn,n

only, where the symbol [ ' l denotes the Clebsch—Gordan

coefficient. The parity and orthogonality properties of basis
(5) read as follows

Pt gkrglfn — ( _ l}r,r;z '(“rkrz)rn, (6}

tm i =8, .8, 8,8 (=177 ™

oy s

3. SPHERICAL HARMONICS IN TWO VARIABLES

The relativistic spherical harmonics may be introduced
by taking the projections of an arbitrary unit 4-vector 4, on
the basis e]. The construction as performed, e.g., in Ref. 1,

2+ 1]
Vo) = (- [EER )0, eu, 00u,)
1 1 29[2
X3 [ ][ r3 ]
mniy My mp i lmy,  n; my
[1~1 11, "
X m[_l nl m e/‘l e (8)

holds for the purely spacelike vectors (i.e., uqe = 0) only.
This condition, however, is not restrictive, since we shall
work in a reference system defined by a timelike vector

Q. = 1{0,Q,). Then, choosing the spherical basis in such a
way that €’ = Q, /( — 0 %)'/?, we may always instead of an
arbitrary vector a,, consider the vector

@, =a, —(Qa/Q%Q,, (%)
which is orthogonal to e, :
d,eX =0, (10)

and then define the unit 4-vector u, = d,/(d*)'/*. In this
way, since the time components of u,, vanish, the spherical
harmonics Y., (1) defined in (8) on S ?(e) become identical
with the usual spherical harmonics as defined, e.g., in Ref. 5.
In the simplest case / = 1 we have

u, =\/—ZY el (11)

Proceeding to the case of two variables # and v, we con-
struct as usual the objects, which transform according to the
irreducible representations of the rotation group:
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(Uihlm} = (Y, (@)Y, (©)} 1

L 17, ,
= lrwrie 0

The bipolar harmoni;:s*"6 (12) form a complete orthonormal
basis on the unit sphere embedded in E *:
[an.d0. 1y, @Y, 008 (¥ w0,

=06,,.6,,,61 8- (12a)
The product in the Hilbert space is
(il )lmli(l'f')l'm']

s 5 VL l
41TLL/M 0 0 0jt0 0 O
l I’ f

/ ['(
mmM

LL'

LL) M}, (12b)

with the usual® notation { - ¢ for the 9/ symbol. The

parity operator acts on the bipolar harmonics as follows
PA(Lbim) = (~ 1) S (1, L)im}. (12¢)

For each given value of [ we would like to keep only
independent terms of the infinite-dimensional basis (12). By
independent we mean such terms which cannot be expressed
through the remaining ones as their linear combination with
scalar (i.e., depending only on %*, v?, and u-v, and their pow-
ers) coefficients. The basic identity which will be needed for
the separation of the independent bipolar harmonics is easily
obtained as the relation between the two coupling schemes
((s2),(st ")I5;lm) and ((ss)O(¢¢ *);im) of the four momenta s, ¢, 5,
and ¢":

{Y (@)Y (o) ool Y. ()Y, (0)}
s s 0
zi Live ¢ 1alstlalst )Y, (@)Y, (0} m

(13)

In deriving {13) we have used the expansion

s t ll /

Y, W)Y, (u)= ;la(stl )[ m,]Y’"' (u), (14)
i s 1t l|]

) 1\/477 00 0

where d = (2a + 1)'/2.

In order to construct a set of independent bipolar har-
monics one should express (Where possible) the given har-
monics {(/; 12)1m} with “large” value of /; + I, through ones
with/, + 4, <1, + L,. Using (13}, it can be done in the follow-
ing manner. Take s >0 and define t = I, — 530,
t'=1,—5>0. Now Eq. {13) can be rewritten in the form

a(sti,) =

s s 0
LERL —s L—s 1tals], — sTalsl, — sT)
1 A !
X{Yl () Y7, (v)}lm
= {Y(“)Y(U Jool Yl‘,-s(u)Yl‘z_s(U)}lm (139
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s s 0
- Z’i,l;f I,—s L—s lalsl, —sl)aisl, — sl)

hh I, L 1

XY, (@)Y, )} 4,
where the prime on the summation symbol reminds us that
the term with /, =/, [, =, (i.e., maximal value of /, + /,)
has been extracted and written explicitly on the lhs. Now it is
easy to see that if there exists such value of s > 0 (certainly it is
more suitable to choose s as large as possible) that
I, + I, — 2s>1, then the harmonics {/,/,)/m} can be ex-
pressed as requested above, with {(ss)00} playing the role of
scalar coefficient. Simulataneously one sees that Eq. (13/)
breaks down in the other cases and there exist

! harmonics with /, + ., =/ + 1, and
[ + 1 harmonics with /, + I, =, (15)

which can not be further decomposed. We have shown that
the infinite-dimensional set (12) always contains just 2/ + 1
terms which are independent in the above sense.
Concerning the case of the spherical harmonics in n
variables it should be noted, that further generalization of
{12)is actually not needed. In physical applications which we
have in mind we always deal with the four-dimensional Min-
kowski space. In this space there are only four independent
vectors, that is the timelike vector Q,, = (0,iQ,) and three
spacelike vectors, e.g., u,,,v,,, and €,,,5, @, 4V, . Any other
vector can be obtained as their linear combination with sca-
lar coefficients. Therefore, the prescriptions (12) and (15) are
sufficient to obtain the multivariable spherical harmonics as
well.
4. TENSOR SPHERICAL HARMONICS

The second-order tensor spherical harmonics in two
variables are defined as

ir J
T TR M [ AT AT

Xt @) (16)
The generalization to the tensor harmonics of an arbitrary
higher order is straightforward.
Using the properties (6) and (7) of the basis tensor ¢ /i
and those of the two-variable spherical harmonics (12) we
may easily see that

i) the tensors T"\L2WM — for || + 1, = [,1 + 1 form a set
(rurairu

of independent Lorentz covariants,
(ii) they satisfy the identity

T(I\IZ)IJM( —u, — U,Q) — ( .

{rr)rud

1)[' + IZTUI[:)UM (u,U,Q ) (17)

{rors)reA

Now, recalling the definitions of tensor
g 5,0+ &
I/Itl(u’v)—’( - 1) " A“Vv,u/i( — U, = U)

and pseudotensor

_ 1)6,.“ + 80+ 1

P
A,u/l (u,U)—-*( A;Li( —u,— U)

operators, we can easily see that the tensor harmonics (16)
transform under the parity operation P-like tensors (pseudo-
tensors) if the sum /, + I, + r, -+ r, is even {odd).

(iii) 72" are othonormal on the unit sphere S *(e)

ryrabrped
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embedded into the space E *(e) orthogonal to the vector eﬁ":

jdn dn (TU,IZ)IJM)* T(l HEV A

(rir)pd (rira)r i

ZSJJ'BMM"S[‘I;‘S[‘H(SH"S 8,6, (18)

ririOrurs
(iv) the scalar product of 7' in the four-dimensional
space is

(1LIMIM | ('™
T(r’f:imi T(r{ri)r‘#/l

= —ILi;Iss,.8,.8, S [

41 ~ 10 0 ojto 0 O
s t x {J J(:"lmx x
X[m_\. m, mx”M M’ mx}
L L
XW(lrx ' JI 1 1Y, W)Y, (v),
st X
(19)
where W (---;-.) denotes the Racah coefficient, and

(v} the number N %' of independent tensor harmonics of
an arbitrary order s is
J+r
NP=%n" 3y @2+1)= > a2r + 1)(2J + 1),
r I=|J—r r
(20)

where n!" is the statistical weight of the corresponding basis
tensor. E.g., for the second-order (s = 2) spherical harmon-
ics (19) with ¢ 4™ we have n,® =2, n,” = 3,and n,” = 1;
therefore

N =16(2J + 1). (21)

Note that while it seems to be actually impossible to count
the number of independent Lorentz covariants when work-
ing with the Cartesian forms, in the spherical basis the result
(20) has been obtained in a very natural and elegant way.

5. TENSOR HARMONICS IN THE HELICITY BASIS

The helicity basis state analogous to those of Jacob and
Wick’ are introduced here in a slightly formal way, and
therefore, the interpretation in terms of conserved quantities
may be lost. Nevertheless, the technique has proved to be
very helpful when a particular direction may be chosen ac-
cording to the nature of the physical problem. We keep call-
ing helicities the projections of the (internal) angular mo-
mentum (vectors e}[’ of the basic tetrads) on the directions
,¢, and J,@, connected with the scalar harmonics (8)

~

Y () = ——D% (@50} 22)
T
and
Y ()= —\/%_;D . (29:0) (23)

considered above. The one-variable tensor harmonics in the
helicity basis have been discussed in substantial detail by
Akyeampong.? We shall follow his definitions and notation
where possible.

In our case the second order helicity tensor basis may
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depend on three variables Q, ,u,, and v,. [The dependence
on Q; comes through €3° just as in the case of the spherical
basis (5).] Indeed, we can write®

ZD ok, (@23,0)€X" (),

and consider any combination of the tetrads €}*() and €7(v).
The particular choice of the tensor helicity basis certainly
depends on the character of the physical problem to be
solved. Taking the helicity basis in the form €* (u)ez*:(v), we
can define the helicity-basis tensor harmonics

e (@ 1,0)€3(u), (24)

(25)

j'C";Zﬁ'(u v,Q)

Jxlz
m|’"z m; M

XD7Y (@1 O)D o (20,006 u)e o (v),

(26)

which are in the following way connected with the tensor

spherical harmonics: F

J
D :'I:E. (19,0

tz* 190
r M] (¢’2 20)

4 t]
r “SS)OO}TZ{ .

Aan ll lz / )
‘f'll"zz’}l;;l—lz = l l l 2 1 r2 r [[2 r2 ]2]
1 i3 gy J 0 &, k&,
2 ) .
X [O k2 kz] szrz’l:ﬂ{ﬁl(u U,Q)_ (27)

The tensor helicity basis can also be chosen to depend on two
variables, say Q, and u, only: €;*'(u)e*<(u). The corre-
sponding tensor harmonics will have the following form

]l
{L,éj)‘;lk,ul(u 4 Q) - 2 z [m! mz M]

AT

D%, (@300 % (0,9,0) 3 | ! ’
XD P I ORI T L ]
X et (ulesu). (28

Now we list some useful properties of S and U:

(1) The harmonics (26) and (28) form the sets of indepen-
dent (see Sec. 3) Lorentz covariants if just 2J + 1 different
pairs jj, (il,) are taken for each combination of
rikroko(r,rork ). The reduction formula which allows us to
fix these restrictions and thus to deal with the independent
covariants only can be easily obtained in the same manner as
Eq. (13). It reads

s s
= Siiin & [s A A 1Pl 09,022, (20,0 29)
Jiia . j 0 Bo 0 ﬁz mm A b 22
1 2
(ii) The parity operator acts on them according to
S —u, —0,Q) = (= 1Y Th*rtnghn — My y.0), (30)
Uipiia — u, —0,Q) = (= )R+ URM | (u0,Q). (31)
(iii) The S and U harmonics are orthonormal if integrated with df2; = sind,dd,dg;; e.g.,
J A, A, (SIS T = 810 Baa8,5:8,18,18, ik S s (32)
(iv) The scalar product is
STrbaS ik
Ji s
- 4— 1-]2]1]2( - l)r' ik +k26r.r| r;rza—k.kia—k;ki
S A A (R
, i’ ;r ’ J, J,
M M, m|IM M m ik, —k,  ollxk, —k, 0 T Yo, W)Y 3 (v). (33)
xm, 1 Jz X
The scalar product of the U harmonics has a similar expres-  nuclei®®:
sion; we do not display it. B +AWp v+ k) + BU,p)).
6. CONCLUSION Introducing the momenta Q, = (p; + p;), and

In the present paper an extension of the relativistic ten-
sor harmonics to the case of two variables has been suggest-
ed. They appear to be rather compact and very flexible in
comparison with the Cartesian forms which were usually
employed in the applications. To give just one example, con-
sider the reaction of the radiative muon capture on atomic
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4, = [p; — p.), we can fix the general form of the corre-
sponding weak hadronic matrix elements in the elegant form
which is also easy to manipulate

N/

J
Ta= Y J ! ]
“ ,,ZM M, M M,

X Fipitk,g, Q)T 50" (k,q,Q), (34)
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where F{2/(k,q,Q ) are form factors. The structure of this

tensor in the Cartesian covariants is considerably more com-
plicated and for different values of J; and J, must be con-
structed individually. In addition it is not always easy to
eliminate the dependent covariants in the Cartesian basis.
For example, for the reaction u =~ + p—v + ¥ + n Hwang
and Primakoff® write

T;M = - a(P/){Fﬂ’,J’A + 7’#7ka
(kaFy+ qaFy + Q Fy) + ...
+ ¥slFasvura + vu vk,
(ka1 Fy6 + i Fy + Q1 Fyy) + . JJ ulpi)s (35)

where 68 covariants appear which contain the Dirac matri-
ces 7,, and the momenta k,q,, and Q, . F;(k,g,Q ) are form
factors. Comparing with Eq. (21) one realizes that only 64
independent covariants exist in this case. To eliminate super-
fluous Cartesian covariants in (35) one has to derive the cor-
responding four coupling equations. The present authors
have obtained them'? using the symbol manipulating com-
puter program SCHOONSCHIP. The relations are very
complicated; each of four equations couples 26 individual
covariants. The further possible applications of the tensor
harmonics for the description of the radiative muon capture

314 J. Math. Phys., Vol. 23, No. 2, February 1982

reaction are presently being studied.
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A 4-vector generalization of the sine-Gordon equation

D. G. Swanson
Auburn University, Auburn, Alabama 36849

(Received 14 April 1981; accepted for publication 10 August 1981)

Using the differential operators from the Dirac equations, an algebra is developed which leads to
4-vector functions and the generalization of many scalar functions. Assuming particles to be
described by the potential solutions of the generalized sine-Gordon equation (a set of four coupled
nonlinear equations), a single soliton is shown to be localized within a light sphere and have
intrinsic properties of group velocity, phase velocity, angular momentum, and wave-particle

duality.
PACS numbers: 11.30.Na, 12.20.Hx

In the search for a possible soliton description of the
particles of physics, the form of the Dirac equations offers a
tantalizing suggestion that they are part of an inverse scat-
tering scheme, but they offer no firm direction about the
underlying soliton equation. Examining the form of the basic
operators of the Dirac equations may guide us, however, in
the search for the soliton equation which may describe our
universe. In what follows, the Dirac equations are written in
a form which bears a superficial resemblance to the AKNS
equations,’ and the operators lead to a set of 4-vector varia-
bles and 4-vector functions which suggest a 4-vector general-
ization of the sine-Gordon equation which appears to have
enough interesting properties to merit close scrutiny.

In a fashion similar to what is used with the one-dimen-
sional sine-Gordon equation, the basic variables are sums
and differences of the r, variables such that (with ¢ = 1)
E=Yz+1), 7=}z —t)u=4x+ ), v=4x - iy). With
these variables, the Dirac equations may be written as

D* —id W= —im¢,

(1)

(D~ —id 7 )¢ = imy,

where D * are derivative operators given by

d ad d ad
D+=(g ”) D—=(’ “) (2)
3, d. d, 9

and 4 * are representations of the normalized 4-vector
potential

ol t)
v _Af ’
A, —id
y ) (3)

GT A# ) CZ_A4
A_= =
N L tid, —A,—A,

and A4, is the scalar potential. The rest massis m, and ¢ and ¢
are column vectors. The form of Egs. (1) are reminiscent of,
but not equivalent to, the AKNS equations in that they in-
volve a pair of first-order linear differential equations with
an eigenvalue term (the mass) and a potential term, but the
potential and mass terms are interchanged from the familiar
AKNS equations where the potentials couple the equations.
It appears a gauge transformation can eliminate the 4 *
terms, and additional coupling potentials can be added on
the right if they are taken to vanish rapidly enough away
from a particle, but the eigenvalue coupling is still different.
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The form of the differential operator suggests a new
algebra, however, which may lead to a modified set of equa-
tions. The basic 4-vector variables associated with the opera-
tors D * are

S e (A "

and the “scalar product” is
R*R~ =R "R*=R’I,
where R? = &7 4+ puv = x* + y* 4+ z> — t 2 and [ is the unit
2X 2 matrix. The differentiation rules are
D*R+=D"R~=2I
D*R- =D R*=D*R- =D R*=0,
D*R*+=D "R~ =D*R-=D"R*=],
D*RI=RT,
The transformation laws for 4-vectors of the form (3) and (4)
are

(5)

A" =T*4*T*, (6)
where for a frame moving in the z direction at speed v = B,
0
T+ — ( * ) (7)
0 fi

andf, =[1£B)/(1FB)"*sof* =y(1+8)and
f.f_ = 1. Field vectors or axial 4-vectors such as

F,_=D*4+%* (8)
transform as
F' . =T*F_TT. (9)

In order to construct functions of R * which will trans-
form properly, it is necessary to require that repeated pro-
ductsof R * mustalternate,since T * 7 ~ = I, sothata func-
tion is of the form

JSR*Y=a+aR*+a,R*TR™ +a,RTRR™
+a,R*R"R*R ™ + ..
From the differentiation rules (5) it may be established that

D i(R 2")I=nR 2n—ZR q:’

D*R¥™R *)=(n+ 2)R?I

These relations allow us to define a set of special functions
which are analogous to one-dimensional functions, but not

(10)
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equivalent.
(1) EXP(R *)is a solution of

D *EXP(R *) = EXP(R 7), (11)
+ 2 2p +
ExPR “j= L 1 R RY | R°R
ont 02! 112! 113!
R™I R¥R ™
nln + 1) nl(n + 2)!
(12)
(2) SIN(R *) and COS(R *) are solutions of
D*D-FR *)= —F(R %), (13)
2 4
SIN(R *}=R r(L _R  R*_
012! 113! 214!
( - 1)"R 2n )
+ —— +) 14
nln + 2)! 14)
2 4 np 2n
COS(R r).—_I(L _R R ﬂ)_R_)
on 112! 213! nin + 1)!
(15)
so that
EXP(iR *) = COS(R *) + i SIN(R ), (16)
EXP(ER *) = COS(R *) + E SIN(R *), (17)
where E is the 2 X 2 “imaginary matrix,”
0 -1
E—(l 0 ) EE= -1
also
D * SIN(R *) = COS(R *), (18)

D+ COS(R *)= — SIN(R ).

These special functions may be written in terms of Bes-
sel functions, such as

EXP(iR *)=1J,2R)/R + iR *J,2R)/R? (19)
so they represent a four-dimensional extension of the
sequence

cos(x}—Jo( p)—(sin r)/r—J,(2R }/R

as the dimensionality progresses from 1 through 4. The rela-
tionship (18) is apparently unique to one and four dimen-
sions, however. This fact is the basis for the suggested form
of a valid 4-vector soliton equation which follows.
(3) The SIN(R *)and COS(R *)functions are merely the
first two of an infinite set of functions which are solutions of
D*D"F,, + [1 —n(n + 1)/R*]F,, =0,

(20)
DD Fpyy + [1=nln+2)/R?|F,, ,, =0,

which satisfy the recursion formulas
D*F,R*)=@2n+ 1!
X [nFy _((R7) = (n 4 1)Fy, (R 7)],
(21)
D Fy, RY)=[2(n+ 1)1
X [(n 4+ 2)F;,(R ) — nFy, 2R 7)),
and the sum rule
I= 3 (n+ 1PF,(R)F,(R ). (22)
n=20
The solutions may be written

© _ 1\kR 2k
an(R +):IR2nZ ( I)R

o kl2n + k1) =1J,,, ,2R)/R,

© _1ykp 2k
F2n+l(R+)=R+RZ”2 ( l)R

T —— (23)
o kl2n + k +2)!

=R*J,,.,2R)/R>
For more general arguments than R *, we construct
X *, where X * islinearin &, 7, i, v. Thenif U * is a general
4-vector, f(X ?) is a scalar function of X , where
X*X ~ =IX? then
D*fT=f'D*X,
DY fUN =MD U+ (D XU, (24)

D*D f=f'D*D XU+ f"D XD ~X),
DYD=(X*)=f{D (DX )X *]
+D¥YX)D-X*}
+f'D*XHD XX . (25)
A sufficient condition that D *D ~U (X *)“point” in the “di-
rection” of X ¥, i.e.,

DD [fIXX "] =gX* X+
isthat X 2 = m?R ? with m a constant. Some nontrivial exam-

ples of X * are in Table I, where the constant 4-vector P *
satisfies

P*P~ +m’I[=0, (26)
and the X * in the last relations represent any of the first

four expressions. Note that X ~ = EX*E.
We can then generalize Eqgs. (20) such that

D*D~F+ [m*—nin+2/R*F=0 (27)

TABLE 1. Examples of nontrivial X * with the property X *X ~ « IR 2. X * represents any of the X * pairs in the first four rows with a, A scalars and

P*P~ = —m’lL

X+ X~ Xx?

P*R* —R*pPT mR?
P*R17 _1@ tpF m2R?
P*RT _R*PF m2R 2
PiR* —RP+ m’R*
aX ! +PBEX} aX; —BX[E X a? + 87
aX ' +BXTE aX, —pBEX, Xa* + B

X! +aEX} +BX " E+afX,

X;i —aX[E—BEX, +aBX

Xl +a*+ B +a’B?
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has the solution

F=an+1(X+)-
Since D *D ~ = (V2 — &), this is a 4-vector Klein~Gordon
equation.

Maxwell’s equations appear in an appealing form in this

algebra. The field vectors are derived simply from the poten-
tials by

F,=D*4*. (28)
and Maxwell’s equations are
D*F. +JF =0 29)

with J * being the 4-vector current (normalized)
J+=(j§ J, )___(}J,+p Jx—in)
v —Jr x+i',y —Jz+p'
The D * operators have the (vector, scalar) properties
IVXA+VA,+3,A

V-A+3d,A4, (scalar portion).

In view of the remarkable properties of the algebra, and
the result (18), a generalized 4-vector form of the sine-Gor-
don equation

D*D-U*= —SIN({U™) (30)
is proposed as a suitable soliton equation candidate. Among
the reasons for the choice are (a) the sine—-Gordon solu-
tions are relativistically invariant; (b) the sine—~Gordon equa-
tion is gauge invariant; (c) the result (18) appears to be a
sufficient condition that an infinite number of conservation
laws may be generated by a generalization of the method of
Lamb,? using the Lagrangian

L=yU*U~ +I—-COSU *. {31)

By gauge invariance, we mean that if the AKNS equa-
tions are written with diagonal potential terms,

Y, — TP+ iCyY = q¢,
¢, —iv"$—ilp=ry,

Digt— [ (vector portion)

where v =, + v,, thenifg = lu,e®andr = — g*, thenu
satisfies
u, =sinuy (32)

ifd,v* =0and @ = 2§*v,dz". In other words, one may
solve foru withoutregardtov * aslongasv * satisfy certain
gauge conditions.

Although no analytic solutions of Eq. (30} are known, a
series solution of the form

Utr=R*+p— _1__ — i(_mR )2+ i(_mR )4
on! 113! 2 214! 2
_ ﬂ( mR )6 2-347 ( mR )3
315! 2 416! 2
_ 241.563 ( mR )‘0 6-11-23.317 ( mR )'2
3.5L7 2 618! 2
2.30488957 [ mR \4
3.7191 ( 2) +m] )
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leads to localized solutions in a surprising sense. The func-

tionQ, = D * U * isexponentially decaying outside thelight
sphere, i.e., 7 > t 2, whereas Q , is oscillatory inside the light
sphere with the wavelength given by the mass if P ~ is the 4-
vector momentum. Furthermore, the vector portion of U *,
namely, R * P ~, has vector—scalar components given by

irxp+ (pt —p,r) vector
pr—pt scalar,

so the real part of the vector portion describes the group
velocity, the scalar portion describes the phase velocity, and
the imaginary part of the vector portion describes the angu-
lar momentum (the spin angular momentum is of course im-
bedded in the fabric of the algebra). In this formalism, then, a
soliton is localized within a light sphere and its effective
character is described by a center of motion, a phase motion,
and an angular momentum. This concept of a single-particle
soliton guarantees causality, but allows a particle to absorb
radiation from anywhere inside its light sphere or interact
with any other particle inside its light sphere. In evaluating
dynamics in this picture, an integral over space will describe
the particle “center” as moving with the group velocity and
its size will be defined by its mass since that defines its wave-
length. More complicated structures may be described by
other forms of X * as in Table I, which is not exhaustive, or
by other solutions of Eq. (30).

In conclusion, it has not been proven that Eq. {30)is a
true soliton equation, but it is an appropriate 4-vector gener-
alization of the sine~Gordon equation, and the remarkable
property (18) seems to imply that an infinite number of con-
servation laws are obtainable. These properties, along with
the properties of the solution (33) which include causality,
phase and group velocity, angular momentum and effective
localization due to the oscillation wavelength, seem to de-
mand further investigation. It is also apparent from the
structure that this generalization of the sine-Gordon equa-
tion is unrelated to other higher dimensional generaliza-
tions® since they deal only with scalar functions which lead
to essentially trivial results.® This representation is a 4-vec-
tor formulation and not simply three dimensions plus time
with scalar functions.

R+P‘=[ (34)
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Linear response theory revisited lll: One-body response formulas and
generalized Boltzmann equations
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Montreal, Québec H3C 3J7, Canada
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The many-body linear response expressions obtained in previous papers [J. Math. Phys. 19, 1345
(1978); 20, 2573 (1979)] are applied to systems of weakly interacting particles. General
expressions for the susceptibility and conductivity in such systems are obtained. The diagonal
parts depend on the scattering processes, for which we consider interactions with bosons with
mass and electron-phonon interaction. For elastic collisions simple closed forms result. For
general two-body collisions, the closed expressions are cumbersome, except when the current is
due to collisional current through localized states, such as Landau orbits; in that event a
generalized Adams-Holstein result is obtained. The nondiagonal electrical conductivity is shown
to be of paramount importance for the quantum mechanical Hall effect. We also derive quantum

mechanical Boltzmann equations, both for the diagonal occupancy operator {(n_), and for the
nondiagonal operator {c c..),. The total Boltzmann equation is shown to be fully equivalent
with the linear response results. Finally, in the last part we derive the Boltzmann equation for
the Wigner function of inhomogeneous systems. In the classical limit this yields the usual
Boltzmann transport equation. This equation has therefore been obtained by first principles

from the von Neumann equation.

PACS numbers: 51.10. +y

1. Introduction

In a previous paper, ' referred to as LRT I, we discussed
the Kubo—Green formulas which relate transport coeffi-
cients to certain forms of the correlation function of fluctu-
ations about an equilibrium state. It was argued that in Ku-
bo’s theory proper no dissipation occurs; this is reflected by
the Heisenberg form for the time-dependent operator B (¢ ) of
the system, and by zero entropy production. Dissipative be-
havior was introduced by writing the system Hamiltonian as
H = H° + AV, where H ° represents the motion proper and
AV is the cause of randomizing transitions, such as electron-
phonon interactions in an electron-phonon gas. We consid-
ered the van Hove limit A—0, t— e, A %t finite, which led to
an entirely different form of the time behavior for the re-
duced operators B *(¢). In the subdynamics of H ° there is
now clearcut relaxation, as expressed by the reduced
operators

K5{t)=e"""K }(0), (1.1)

where K %(0)=K } = K 5=K, is the Schrédinger operator’
and the subscript *“d ” denotes the diagonal part in the repre-
sentation of H % A, is the master superoperator in Liouville
space, defined by

AK = =3 |n) W, KNy — W VKN ],
” (1.2)
where |y) are the eigenstates of H °, with energy &, and
where W, . is given by the golden rule
Wy = Qud /R [y 8, — & ) = Wi

#Now at CAE Electronics Ltd., 8585 Céte de Liesse, Montréal, Québec,
Canada.

318 J. Math. Phys. 23(2), February 1982

0022-2488,/82/020318-19$02.50

One eigenvalue of A, is zero, determining the equilibrium
behavior (see LRT II Sec. 8); the other eigenvalues are posi-
tive definite (see Vigfussen®), thus governing the approach to
equilibrium. The superoperator A, is also written as

AK =S INyIM YK |y, (1.4)
Y
where M is the master operator in the space of functions F (y):
MFy)= =Y [W, . Fly") =W, .F(y)]
¥
=S W, [F(y)— Fiy")l. (L5)
<

The response formulas in the subdynamics of H ° can
also be obtained without previous knowledge of the Kubo—
Green formulas. To that purpose we applied projection oper-
ator techniques to the von Neumann equation for the full
density operator; these results were laid down* in LRT II.
Applying the van Hove limit, we arrived at an inhomoge-
neous master equation, which is a many-body equation,
which does not only contain the relaxation terms of the Pauli
master equation but also the coupling to an external field
with field Hamiltonian — AF (t), F(t) being an applied
generalized force and A the conjugate extensive operator.
The solution of the inhomogeneous master equation gave the
new response formulas. We also included the nondiagonal
part of the many-body operators K in this treatment; the
reduced operators, i.e., after the van Hove limit, were found
to have the form

KR(t)=e M=K, (1.6)

where .7° is the interaction Liouville operator,
FSK=#""[H°K].
The inhomogeneous master equation referred to above

© 1982 American Institute of Physics 318



is the many-body counterpart of the Boltzmann equation for
one-particle distribution functions; like the Boltzmann
equation it contains streaming terms, which represent the
effects of an external field, and dissipative terms, which ac-
count for the influence of collisions. The main tenet of the
new treatment is that the necessary “randomness condi-
tions” are carried out on the many-body level. Thus, no new
assumptions are to be introduced when we go to the one-
body or two-body level, except closure relations [see LRT II,
Eq. (8.1)]. In this respect our treatment differs in essence
from the various one-body treatments in the literature which
start from a one-particle von Neumann equation, cf. Kohn
and Luttinger,®> Adams and Holstein,® Kahn and Freder-
ikse,” Argyres,® and Argyres and Roth.? The one-particle
von Neumann equation is not very suitable for a perturba-
tion approach since it is linear, so that it cannot properly
arrive at the quadratic (or quartic) Boltzmann collision
terms. The treatment of LRT II, on the contrary, led to a
quantum mechanical Boltzmann equation with the full colli-
sion terms. We still note in this respect that the van Hove
limit is equivalent with the first-order Born approximation
used by others. '’

In the present article we shall more fully be concerned
with one-body results, derived from the many-body results
of the previous articles. To that purpose we consider H  to
represent the Hamiltonian of a fermion gas and boson gas;
AVisthe interaction between them, being of a binary nature.
Thus,

HO=3 hilr)+ év:lH‘,i(Rj), (1.7)

AV = SAulr, —R)) (1.8)
w7

We use the formalism of second quantization. So, let {{{ )}

denote the set of quantum states of ) with eigenvalues {e, },

and let {|7)} denote the set of quantum states of H j with

eignevalues (E, }, we then have

H®=3ne +3N,E,, (1.9)
W= S e e e, (L10
7> =1{nLIN, 1) = [{n:}) @ [ [N, 1) (1.11)

here n, = cfc, are occupation operators and n, is the occu-
pation number; similarly for N, =afa, and N, ; the ¢’s and
a’s are the creation and annihilation operators for fermions
and bosons, respectively, At some points we will indicate the
changes if both gases are bosons or fermions or if the bosons
are quasiparticles like phonons.

The present article has a threefold purpose. First we
derive the one-body linear response results (Part A, Secs. 2—
4). Next we derive a fully quantum mechanical Boltzmann
equation both in diagonal and nondiagonal form; this is an
extension of LRT II Sec. 8 (Part B, Secs. 5 and 6). These
equations are shown to be fully equivalent to the one-body
linear response results (Part B, Sec. 7). Finally, we consider
inhomogeneous systems and derive a Boltzmann equation
for the Wigner function corresponding to the one-particle
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FIG. 1. Flow diagram of the various connections.

distribution function (Part C, Sec. 8). From this equation the
classical Boltzmann equation is easily recovered. In Fig. 1
we give a flow diagram of the various connections.

We still note that a fourth article, containing applica-
tions of the present developments for magnetic and other
transport phenomena is in preparation.

A. ONE-BODY LINEAR RESPONSE RESULTS
2. The diagonal susceptibility and conductivity

The many-body forms for the diagonal part of the sus-
ceptibility of a variable B and for the diagonal part of the
conductivity of a variable B were in LRT II given as

Xoalin) =Bf:dt e T p (AR BEO] (1)

and

L4, liw) =ﬁf:dre- T pog (A ®)a(BR(ENa ], (2:2)

where the superscript R stands for the reduced operator;
= 1/kT. The time dependence for B R(¢) was given already
in (1.1); the time dependence for (B ®(z)), is likewise

(BR(t), =e "B (2.3)

however, B X is more than the Schréodinger operator B,, see
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LRT II, Eqs.(4.28) and (4.29),
J5.=(BR), = —A,B, +(B), (2.4)
=R,

In case we deal with the electrical conductivity, the ex-
ternal field Hamiltonian is — A.F(¢z) with F(¢) = ¢gE,
A = 3,(r; — (r;). ), where g is the charge of the carrier (in-
cluding sign), r; are the positions of the carriers, and (r; ).,
are the equilibrium positions prior to the switching on of the
field. The electrical current Schrodinger operator is
J = gZ,v,/0 = g4 /2, where £2is the volume of the sample,
see LRT I, Eq. (2.31). Thus we have, denoting by greek sub-
scripts the vector and tensor components,

Similarly for J,,,

o4 (iw) = Bﬂf die “Trlp,J5J8(t)]; (2.5)

the reduced current is given by

JR = % [ - AdZ(ri ~r1%) + vad ’ (2.6)

the two parts representing collisional current and pondero-
motive current, respectively; the former accounts for the
many-body effects in the subdynamics of H°. (In the full
dynamics of H, this term is absent.)

We will develop the one-body form for (2.1). Since both
A Rand B  are extensive operators of the fermion system we
have

Bilt)=e

M 1b1E), 2.7)

(A%), = [ —Adn (& ald) +n(6|alg)], (2.8)

with lower case symbols denoting one-body operators. Thus
(2.1) becomes

Vialio) =B [ "dte " Trlp, 3 [~ An (¢ lalg )
tnlalE]Te M Tiblen)) 29)

We take the operation in the representation
fl¥)1 =|{n-]) ®|{N, ) and we develop the exponential

)(‘/M(iw)=/3fdte’ S S (pegling LN, DU ]|

)l IV

XE[ - A(/n;‘(§'|a|§') +n.(5'a5)]

X3 Z P A Pn (€716 1) 7 ;>] 2.10)

Peg = (jn;. ],]N,, } |pcq t{n:},{N,})."* The standard adiaba-
tic assumption is made that the boson average can be made
separately, i.e.,

2 S pallng Ny b = S ol 1)y @210

gt PN bl

where the latter average is an equilibrium average over the
boson distribution.

We need the following two theorems (also stated in
LRT II but not proven there) which are the main link of the
many-body and one-body descriptions.
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Theorem 1:
(Mng,),, =Ayn;.. (2.12)

Here M is the linear master operator in function space, re-
presenting the many-body aspects, while %, is the nonlm-
ear Boltzmann operator of the one-body description,'” given
by

A f6) = Plwgf (E)1 =GN —wefE)1 —fEN

(2.13)
The fermion transition rates are given by
““““ - Z Q(g "n" ; I!n,)<N7) '(l + Nn')>eq
"
~ Z Q(§ "n" ; ”7’[)<N71" >eq(1 + <N1;’ )eq); (214)

vy
the latter equality is based on the truncation rule or closure
property of LRT II, Eq. (8.1); it is exact in the grand canoni-
cal ensemble. The Qs are the binary transition rates [see
LRTI1, Eq(8.18)]. Whereas the two-body transition rates Q
are reciprocal, the one-body rates w are not; from the quili-
brium Bose-Einstein distribution one finds

=2 Q"""

0y
zeljlé_ € ]EQ(é.ln!g” "(1+<N"">eq)<N.,]'>eq,
ny
where we used the delta property 8(E,- +€.. —E,. —€..)
in the definition of the @’s. Thus we have

77')6‘ — PR, (1 + (Nu" >eq )ele” <N71, >cq

Weep =we . (2.15)
Theorem 2:
(Aqng ), = Z“n..i)({”g“//ﬁnha (2.16)

bad

this gives the connection between the master equation in the
Liouville space and the Boltzmann operator. The theorem
follows from (2.12) by multiplying Mn_. by the projector
a4, (N, 1) ({n4,{N, }|, summing over all many-body
states, applying Eq. (1.4), and performing a boson average.

The proof of (2.12) is straightforward. For w,; we have
from (1.3), (1.10), and (1.11),

2T S (i IV, Vel alay e ), D

ﬁ STyt
X & "n"|vI& ') *Se; - — €. + E,r —E,).
(2.17)

One easily finds that the_only connected state for given |y)
and given §'S "n'n" is [¥)=|y. -z, )» With [LRT 11, Eqs.
(8.19), (8.13), and (8 14)]
Wi = Q@ "Nl = ngehng
where

ne=n(l— 8y — 8} +

W)'T' =

(1 +N1[”)N71'? (218)

(1 =) + 8w hr
(2.19)

N =N, -6 .+6 (2.20)

y ny UM

We now make the standard adiabatic assumption, (2.11};
then in calculating Mn ..., employing (1.3) and (2.18), we per-
form a boson average; the result is
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(Mn.), = zw:: (1= ng.)ng (ngo —Rgo)

=' Ew
—Z[wu

+w " (1—n Jng 2n0 —1)]

A1 = ngoYng 2ngn — 1)Bgug: + Bpug-)

o1 = ng)2ng — 1)

=% (2.21)
where we still used, noticing n}. = n..,
Heo(2n.0 — 1) =n,
(I —n.)2n.0 — l) = — (1l —n.) (2.22)

2.1. Linear collision operator

A simple closed expression for ¥, L, and o can only be
found when the collision operator is linear. This occurs in
two cases. First we may have elastic or near-elastic colli-
sions. Then w; - ~w, ... The linear Boltzmann operator
then is

BfE) = ;w;;r [FE)~fEN].

Electron collisions with acoustical phonons is an example of
near elastic collisions {see Sec. 4). Strictly elastic collisions
occur when the scattering involves heavy obstacles (one-
body collisions), such as in impurity scattering. Then by
2.14) and (2.15) since N, <1,

Wepr = ZQ@'W%‘ ",U")(Nn'>b

~2Q(§ s §”’77”)2<N Vs

WY Q%" ",
Q%L L") =2mA /A)(E vl ")*Ble; — €c-),
indicating one-body collisions.
Secondly, the Boltzmann operator is linear when we

deal with nondegenerate systems such that f(J)<1. In that
case we have from (2.13), for the collision operator,

BSfE)= ;[w;g'f(g) ~weof €]

In contrast to the case of Eq. (2.23), now generally
We ;- #W, ... We shall therefore use the form (2.26) since it
encompasses both cases.

It is now possible to compound the M operator; first, we
will show that

(M), =(M(M..),),. (2.27)

For the boson average of the left-hand side we have terms
like

(2.23)

(2.24)
(2.25)

(2.26)

ZE(Q €™ n"& "M@ E 0" TN+ Ny )N,

X(1 + Ny )Ny o) (2.28)

In this series we first plck the terms with %' #7’ and " #7".

We can then use the truncation rule for the boson average,
({1 + N,-)N, (1 + N5 )N Yeq

=1+ N, )N

n’)eq((l +N;")N;’)eq' (2'29)
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Thus, this part of (2.28) yields w, ... wz.z .The remaining
part of (2.28)is a triple sum 2. or 2,, 47+ 1t vanishes
with respect to the first part in the thermodynamic limit

N = 3ZN,— . This proves (2.27). The compounding of the
fermion parts is simple. Since # . n, is a linear combination

of n,’s, Theorem 1 can be applied repeatedly. We thus obtain

Theorem 3:

(M*ng. ), = (B ng . (2.30)
For the repeated A, operator we have
(Agfne )y = S P Bl P %L
{"Z;l {ng lngzll trg™ 1
(2.31)

!
"'EPI"H ﬁg,n;,’
[EA

where P, ., are the projectors [{n.}){{n:}]. Since the pro-
jectors commute with the %' operators and since P, P,

= P25, = P,§,;, we obtain
Theorem 4:

((A)ng ), = lzl|[ngl)({ng}l(@ﬁ;,)"ngr. 2.32)

Using this result and (2.16) we find upon reconstituting
the exponential in (2.16),

Xoalio) = B f “dre- o “ S pallne)
X 2; [—(#Lncda, + ng.dg.]bgne_’“’“n;.,
&
(2.33)
where
o, = (£ 0|§) (2.34)

for any one-body operator such as a and b. The resuit can
also be written in terms of the resolvent'*

X34 (i) =BE <[ — (B ng)ag +ng.d,. b,
§'s”
i
X ) 2.35
i+ B ¢ >eq (2.33)

In the result for L ¢, a few changes occur. For (B (¢ )),
we have

(BRe)a=e T [ ~An (L 161¢) +n (€16 15)]).
g
(2.36)
When the exponential is expanded we now also encounter
terms with [( — ¢)*/k!](A,)** . The procedure is clearly
the same. We find
LY, (i) =BJ dte= 'S ([ — (BLng)ag. +nydy. ]
0 T
Xe [ - (B ¢-ng.)ber + ”g”bg" Degs (2.37)

or in terms of the resolvent

LS, liw)= /32<[— (B lag +ng ag] 1

w+ B
X[~ (B-ng Yo, +ng.b,- ]> (2.38)
eq
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For the electrical conductivity likewise,

ot i) = 34 dze*"“'z (L= (BLng |, — roIE)
+ n;‘ (g |Uv|§ )]
—IE [ (BLeng ) e — FNE ")+ g (610418 ") Deg
or in terms of the resolvent (2.39)
,w(g‘)) :

q ({—(BLn)r +n S

2 g, =), ¢ Ve ] ot %,
X[— (Bng)r, — P 1 U e (2.40)

Note that in (2.37)(2.40) the exponential exp ( — t#') or

resolvent operator only operates on the particle densities to
their right.

a. No collisional current. For the linear case the aver-
ages can be carried out in a grand canonical ensemble. For
simplicity we first consider (2.39) in the absence of collisional
current, i.e., when ({ |7, — r5%{) = 0. Thus, with

Pellng))=(1/Z)e™ P2, (2.41)

where a/f is the chemical potential and Z = I1,(1 + "~ Bey)
is the partition sum, we must evaluate

%Q”g»v 2> Tle Mﬁn&’”vg' Upg- g€

n I"J I3

_ r,ﬂfvn;" : (242)

here X' denotes the restricted sum subject to 2.1, = n.
Combining however, £, and ZM , toan unrestrlcted sum,
we can interchange the IT and this sum, obtaining

(2.42) = _2 ”v;'”;u;"H z e(a—ﬁeglngng_
T ¢ {n =01
t)" x
X 2 e )ong-. (2.43)
k=0

For k = 0 the sum is tr1v1al. For k = 1 we obtain (omitting
2, v, for the time being)
1

(aABe:)n\ _
EZ.%H > e Mg (wepng
(349 ¢ [n;=0,1}

— Wg-ng).
(2.44)

We split this into two sums and we interchange the summa-
tion indices § “ and £ in the second sum. We then find

a) =S T & mnweplg — v

£in=01y
— 0
= ‘Z‘;I;["'”g'”g" (B2~ Vug- )

where the operator %° acting on the matrix element v, . is
to be understood in the sense of (2.23) even though w may not
be reversible as in (2.26); we signified this by the superscript
zero on the Boltzmann operator. For the sum over {n,} we
first consider " = & '. This gives

a — 136;'

(2.45)

1 o pe
_Z—I;[(l +e ﬁg) & Vg
=(ng)e %; Vg -

Next we consider all £ " #¢ '. The result is likewise found to
be

eaAﬁe;v

(2.46)
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2 (nedeqnee)eq Bev

¢ Fe
= (g Yeq 2 Ange Yeq B — () Biv
&
(2.47)
The first term to the right is zero:
Z_(ngn )eq wg ”éT(v,Ué‘ T U;LE) = 0 (2.48)

33
as is found from interchange of the indices ¢ ”,¢ and detailed
balance. Thus, combining (2.46) and (2.47), we obtain

(2.44) = (ny ) (1 — (g ) Jc Ve
= —(1/B)(3 (ng )eq/aeg )ﬁc e (2.49)

If we now take the term for k = 2 of (2.43), we have,
denoting by

v=[] > "7

5 [n:=0,1}

the following result

%ZU#F Wn, B (Bp.ng.)
Z”n; ¥ng: Z We g h -y

izq’”g (A ”§ )ng Vg~ Vug)

—zqfng (By-ng. )ﬁo

gl
— wgg - B gng)

*

= E Z,W”;'(%g"”ug" 12w -gnge —wg-ng)
s -
3
ok ok 1
=_ZW”; P JWerp( B — BEvz)

3
=7;an,n§~%2~(%2~uugﬂ), (2.50)
where in * we interchange § ” and £inone term and in ** we
interchanged { ” and § in one term. Likewise, we find that the
term of order k in (2.43) produces the result involving
(A2 )"vyg .. The final result, valid for any linear Boltzmann
collision operator, is therefore

) 2 a(n, ), 1
Tnlito) = _(qﬁ)z e i+ B

13 6e§

b, (2.51)

We still note that a similar, but not identical result, follows
from the Boltzmann equation (5.10) of Sec. 5. We then find
.. Tather than o,,, (which are equal, however, due to the
Onsager relatlons) and the resolvent operation of % ap-
pears in front of (9 (n, )., /3¢, v, . The equivalence of these
results is only trivial if the collisions are elastic; then
3 (n; ).,/ d€, is a collisional invariant.
At this point we also note that (2.51) shows a close cor-
respondence with Verboven’s result'’ for the original Kubo
theory:

1 (" i af . . ]
Verboven _ __ __ dt e m)ltr[__ N t
Opuy QL o Jult)
1 .. s . 1 .
= ——IlimY —j ,  ——J.¢»
nwgaeg““ fw—1)+87% (252)
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where fis the Fermi function, tr the one-particle trace, j the
one-particle current { = qu/{2) and / the one-particle Liou-
ville operator; clearly, the van Hove limit has brought about
the change il— — %°, causing convergence of the Fourier—
Laplace integral and yielding and explicit result for the
conductivity.

The result (2.51) can be further simplified by introduc-
ing a relaxation time 7. Let us put

1
&' )= Vg

Weer (v, — U
Z s6" \Wug Iz T,

where 7 1s a ¢ number. In addition we require (% ¢ X% Ve

(7';) v, for any k. This is strictly only satisfied if 1/7 is
an eigenvalue of Z°, being independent of £. Now in all
usual cases 7 depends on § only via €,. Thus 7 is an eigenval-
ue for elastic collisions, for then Z°® decomposes into contri-
butions % °(¢, ) for separate energy sheets. Indeed, we have
in that case

(B V0 =;w§§'(vug - __v,‘;'))

r(eg) T(é'g

Z I(é W[&)*8 (e, — €

[

X(_v'i _ .__U“g )
(€s) T(€;)
= -szgg'(vug — V) =

Tle;) €

B, = (2.53)

1
[T(é’g)]zvﬂ;,
(2.54)
and so on for k = 3, 4 -... For nonelastic collisions we can
only maintain the result (2.54) as an approximation in that
we write 7{€; )~ (€, ). However, this approximation is not
tantamount to the usual “‘relaxation time approximation’ in
whichonesets 2 (n,), = [{(n.), — {n;) . 1/7(€,); thisan-
satz requires that (n, )., =(n, )., in order to arrive at the
form (2.53) and (2.56 (see below) for the relaxation time, cf.,
e.g., Nag. '* Since (n, )., depends exponentially on €,
while r{€,) depends on ¢, via a low power of €., the present
approximation is considerably better. We therefore have for
any linear Boltzmann process
o= — L5 Hnideg Uyl
NT de o+ /7€)
Let u refer to the direction of a polar axis [this direction
refers to the current response, but it is easier to switch the
indices v and p (Onsager) so that u refers to the direction of
the applied field] and let v, = (v;,y,,¥;) and v. -
= (v;, Y, ¥, ) be the polar representations. Then

(2.55)

(Vue — Ve /v =1 —cos y, /cOs x¢. (2.56)
Thus the relaxation time is determined by
1 COS Y
Lo S, (1 ~ X ) (2.57)
T, € oS Y,

The standard applications involve impurity scattering
and lattice scattering. For Bloch states we have

S-35- %f”k@dk'dfpd(cose).

&
For impurity scattering,
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1 — cosy, /cos y, = (1 —cos@)— tan y sin O sin .
where @ is the scattering angle between v,. and v, and where
¢ is the azimuthal angle for the direction of v,. around v, .
This yields the well-known result

1  A’mN
7€) #

lv|k)}*(1 — cos 8)

= 27N /02 )u,‘f1 dicos8)a(f)(1 —cosB);  (2.58)

here Z (¢) is the density of states and 0@ ) is the cross section.
The application of (2.55) and (2.57) to lattice scattering will
be discussed elsewhere. For randomizing collisions, we have

1
J- d(cos@)(l —cos@)=2
—1
so that,

1 .QJ' .
= —\lw,.dk
rle,) 27 kK

In this case, also, Eq. (2.55) is exact.

(2.59)

b. Collisional current. We consider the case that the cur-
rent is due to collisional current only, such as is the case in
problems involving transverse magnetic fields.'® We must
now evaluate

o lic) = BL j die” S R Ry (Aon )

7’//

Xe ALY (2.60)

where R = r — r9. Using the grand canonical ensemble, we
must evaluate

% 2 R‘.;-'R'“;. : ]:[ Z e(n - ﬁe_mk"y/?{:’ n,.

S n, =00
< ("t)k 31 k41
xS gy,
o k! : )
(2.61)

Consider the & = 0 term first. Writing out the % operators
we easily obtain

(2 61 1 a — Ben 7
k 0] - EZ”HIH = 0,1 ( e kngln.[" (%g'R‘c')
><‘/,/2n R, (2.62)
For §" = { " this yields
2.62) ]
é—l __é—ﬂ
(r-ﬁe eaiﬁeh‘ 00 0 0
= _ZH — (AR NBLR,
1+e .
= z(ng,)eq(.’//'g.Rl,;,).%g.R (2.63)

Foré’#;”, we find
(2.62) o o
§l7é§”] 2;;”(”;’>cq <n_.:‘”>eq(“//2§’Rv§')‘%§”R

- z<n£‘2>eq(%?"R"§')‘%2'R
Il

The first term is zero by (2.48). We thus obtain

(2.61)
o) = pYCSWIBSCORIELD SN 3
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The terms for & = 1,2... are treated similarly. We can easily
obtain the final result

Uﬁ\'coll (la))
q2 - — i(ula(rIg)eq 70 — A2 0
= — L dte "“"—2—URBR ,)e ‘AR
ﬂcsme A Je, (#:R.;) ¢Bug
n,
= Z e Tl g0R ) ——HR,.. (264
ﬂtspm afg : ¢ W+ -%2 :
In this result, we can define a new scalar
_R ..
1y X6l —e: Res ~Rus' 5 65)
7-? R#é
where X (£,¢ ') = |(£ [v|€)|*. Then in (2.64) we can set
AL—1/7E.

" Equation (2.64) is a generalization for all frequencies of
the result by Adams and Holstein® for the transverse magne-
toconductivity, in which case | } are the Landau states
[Nk, k,). To see this we note for for w = 0,

2 dn)
(0= — L 5 209508 1x,
xxeon (0) sz . (A X)X,
d{n,
= -4 ch,()@ — X)X,
.Q“ ~pin O€; o .
a(n ,
- QZ wee (X, — X, ). (2.66)

In the final result we mterchanged the summation indices,
took half the sum, and we multiplied by a factor 2 due to spin
summation (noting that we need the spin factor in only one
sum, since in the collision spin is generally conserved). We
thus obtain the same expression as given by Adams and
Holstein.

2.2, General two-body collision operator

We return to the general case for which .4 is the nonlin-
ear Boltzmann collision operator. For collisions between un-
like particles the operator is quadratic in {n,},. For colli-
sions between like particles {e.g., electron—electron
interaction) the operator is quartic in {n,),. Though we did
not consider the latter case, it can be carried out in a similar
way as the fermion-boson interactions considered here.

The repeated A, operation can formally be carried out,
but leads in practice to formidable expressions. For example,
for A }n. we find

(Ain.), = S lin ) {n )| A0,

fn 1

(2.67)

where

//f‘__..z.'. " z w,

(1 —-n__:..,)—w‘

cretite

(2.68)

gn(l = nge)]

o4 liw) = —BLZZTr{p (Agng)r, — re),.
1534 0 7 eq [ v vig iw
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1
Ad(Adng" )r, — ’iq)g" J.

here Fc and Z—gm are given by (2.19). Carrying out the sum-
mations over the Kronecker deltas results after much alge-
bra in

//}(;«2)!”;-0 == -")/r)g-nn;-n Z [w;n‘_n(l —_ n‘;") + w;-";—”n;-" ]
&
— Z [weee {1 =np) g —wepong (1

X[ L‘”C (1 —n;‘ )+w§“;“n§“]

+ Z [weo,
- z [we- o

—ngo)]

Wergo ol — g} + whecong o (1= npo)]

W Ao (1 = Rga) + Weogonpo(1 —npn)] .
(2.69)
Generally we will set

(Agng )y = 3 lin D ({n}| AN,

fn
% . Equation (2.10) then yields'’

- it (_t)l\
B dte Z Z

Py e
o .
or (2.71)

k41
d oo
Xoa = (lsm})ﬂz Z (1a)+(5)

([~ -"/};'";') ag + nede (A by Vg

(2.70)
with .#"" =

Y{llm (lw) =

Here,
. — 1\~ ! ok
hm[ . =/ (—-—) — (= ) r8™ (w)/k !
s 0liw+ 6 w
(2.71)
One easily notices that for linear .# [with .#'*'—(#')* and

for w||(-#')~"|| < 1] this reduces to (2.35) of the previous sub-
section. For practical purposes this result is not useful; how-
ever, we will need this formal result in Sec. 7.

We also give the results of L and o

,M(m)) ﬁf dte
STTKS0
X{([— (A n.)a +n;~a_¢~]

X[ = (A5 b + (A0 be - D
(2.72)
J‘ - feot (_t)l\
i) dte Z Z
STk 0
[= (Ao e, ——r“') +n.0. |
X[ - (//'_f‘”nv_ r, — e+ (A ).
(2.73)

Collisional current only; extended Adams—Holstein re-
sults. When there is collisional current only a very useful
result can be obtained for @ = 0. Going back to (2.5)and (2.6)
we have for the many-body form

(2.74)
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which for —0 yields

2
o110 = B3 Trip(Aung e, — 2o (r, = 7).
[
(2.75)
Employing Theorem 2, we find
2
o4 ,(0) = %’2 (B ng g deqRop Ry (2.76)
[

The average to be found is
z«%g'”g')ng" YeaRug:
£

=3 3 peg lwegng (1 —ng) —

tng} £°€

wgeng(l —ng)Ing-Rog,
(2.77)

where p,, is the grand canonical distribution. In one part of
this sum we interchange ¢ ' and £ to obtain

2 Zpeqng,ngr(l

{ne) &T
For § & " the result is zero since n;. (1 — n,.) = 0. For
¢ = the result is zero since W, = 0 (we assumed that v
has no diagonal part).

For §' = { " the result is

zpeq 2”; (1—

tngl
= z<ng" )eq(l - (nf>eq)w§"E(Rv§"
For{'#(¢ " +£theremaining contribution isfound likewise
z (ng“)eq <n§’>cq(1 - (nf)eq)wg’f(Rvg' _RVE)
¢T
C#EET AT
= 2_(”;" >cq (ng’ >eq(1 -
23
- z<ng~ >§q(1 -
3

- ;(”;~ )eq (ng‘>eq(l — (”g" )eq)w;'g~(Rv;' - Rvg-')-
(2.80)

The double sum of (2.80) is zero, as is found by interchanging
§,¢ in the term with — R 7 and applying detailed balance

(e Yeq(l — {np)ghwe g = (nz) (1 —

2.77) = —ngw, AR, — R (2.78)

ngw,-#R,.- — R.z)

—Ryp. (279

(”; ):q )wg'E(Rvg' - va)

<nf)eq )wg "E(Rvg” - RVE)

(ng’ )eq )wg'g' .
(2.81)

The third sum of (2.80) is written as
Z(ng” )eq (n;‘_>eq(1 -
E

Applying detailed balance, (2.82) cancels the second sum of
(2.80). Weaare thus left with (2.79). Substituting into (2.76) we
obtain (with £—¢, £ "—¢ )

o, (0) = %— S (1 )egll = (1) g ¢ (Rog: —
&6 spin

<n§" )eq)wfg" (RVE - Rv;"' )'(2‘82)

(2.83)
For u = v this can be simplified. We interchange the indices
£, & apply the detailed balance, and add the results. We then
find,

2
Arl0l = BLS (o1 = (e Yeghoge K. — X (284
145
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RVC )R,ut'

where we include a spin factor of two. Equation (2.84) is the
extended Adams-Holstein result for processes involving in-
elastic binary collisions. It is also valid for collisions with
quasiparticles such as phonons (see Sec. 4). For these pro-
cesses this formula was first given by Argyres and Roth.*'®

3. The nondiagonal susceptibility and conductivity
3.1. Formulas for Y ngs Lnas @Nd 0 g

For the nondiagonal part of the susceptibility and con-
ductivity we found in LRT II, Sec. 7,

XBA(I(L)) Jdte foot

f B Tripu (¥ — B NuBEE)] ()
Ly liw)= | dre=

J; B . .

X f dB" telpu (A (= B s B X (0)aa ]; (3:2)

for the electrical conductivity specifically,

o™ (i) = nf dte- “‘”fdﬁ Trp.J R — BV R, (1))

Here 33)
BRd(t)_exy tBR — iH"t/ﬁB de-iH"r/ﬁ,
(BR(t ))nd = e:! 'B:d — :H“t/ﬁBnde—iH"r/ﬁ’ (34)

with’ BY, = B, BR =B, ,,JR,=Zqv,/Q, there being
no collisional current for the nondiagonal part; also
(AR(— i#B))og = " Apge """, (3.5)

We proceed with (3.1). We take the trace in the repre-
sentation {|y)}, giving

o .
X i) = jdre [ 48 S o P Aug )

e ‘”””wwmlm (3.6)
where we used H°|y) = &, |y). Carrying out the dB inte-
gration, this yields

P
X lio) = f die” "”’Zpeqm—————e""‘— o
'Y
X (VA4 |7 (VIB.,d V22 (3.7)
Now, in second quantization form,

A = T cbce- €Nl ") = 3 cbe-E g, (38

where 32’ denotes { '#( ”; note that by this convention the
subscript “‘nd” on d can be deleted. Consider first fixed |y)
and a fixed pair £ ', { " out of the sum (3.8). Since

C?";"W) _
=cf - (T LN, ) = ( T
X(1—ng ) 2 ne-)"?1 — ngyey] — Reeren{ Ny 1),
(3.9)

we find that the matrix element (¥|4,4|¥) is nonzero only if
|y} is the connected state, for which

1)211,5' - 1)( _ 1)2(1.5' - 1)

ng —1—ng, ng =1—-n,.,
all other n ¢ = all other n,,
allN = allNV,;

(3.10)
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this connected state is denoted as |y§ ¢} Forall other terms
of the series (3.8) the matrix element between |y) and |7/4 o)
yields zero. Hence we arrive at

(Pl Verg -y = (= PFE 0= 7 N 172
X(1=ng )25 als") (& #5")
(3.11)
Likewise we need (5/-;,§ +|B,417). Let again
(3.12)

Bnd = ZICZ-‘»CA_ v (é’ ”"b ‘é‘ ” ”J-
(33

With |y) given, and for fixed § ™, §"", thestate |3) mustbeso
chosen that |y) is connected to |y) by

N —l—nc iy —l—n
all other n, = all other g, (3.13)
allN, = all N, .

Now (3.13) is incompatible with (3.10) unless either { “ = ¢’
andé- " — ; H,orgm — § " and; " — § '.Forthesetwocases
the matrix element is, respectively,

(oo leboee ly) = (= 107 B e =0

X{ng )1 —ng)'"?, (3.14a)
e leboep |y) = (= 1P =N — e =0

X (g )1 — ) (3.14b)

All other terms of the series (3.12) give zero matrix elements.
Moreover, when we multiply (3.11) with (3.14a) we obtain

Zero since
(n;')l/2(l

_ ngn)l/Z(n;”)l/’l(l _ ng’)l/Z =0

forn,.,n.. =0,

Hence, only (3.14b) contributes to (- [B.q |¥), the rel-
evant matrix element being

Fepr 1Baaly) = (= 1HE (= 12087~ V)12
X(1—ng )3 b 1E). (3.15)
We substitute (3.11) and (3.15) into (3.7). This gives
difio) = [ dre S S 5 gl N )
'fyi/ﬁi | 'I' ii %
X%——ey e A
X(£'a]s"NE 1818, (3.16)

Since |y) differs from |7) by the lowering of 7. and the
raising of n,.., we have with € again denoting the fermion
energies

(3.17)

So, (3.16) gives, carrying out the equilibrium averaging,

g;— gy =6§~ —fgr.

o3 liw) dte"‘”'z (e Yeqll — (g ) g
(S
1 —e Pleg-— el (e, €, )/ g gt » ” ” '
X e S g NE b (S )
€ — €
(3.18)
Finally, with
j dt 6 = 2185 _(a) = iﬂ(i> + 78la), (3.19)
0 a

where & denotes the principal part, we find
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) =5, 0 ol = (). AIENE 81
y l—e'ﬁe’ me
€ — €
s 1
X 1.//——*—6;” y—— + 7€, — €. — Hw)]|. (3.20)

We still note that for & = 0 (direct-current result), the delta
function does not usually contribute, unless £ 'and £ " refer to
different eigenstates with the same energy.

For L, the result is analogous, with b replacing 4. For
the electrical conductivity we have in particular

o) = AT, (e ol = (el 1116 NE 1€
l—e Ble - — €.}
X
€. —'64“’
I
l(/m +77'5(€§~ —‘Gé-r —"ﬁ(l)) s (321)

where j = qu/{2 is the one-particle current density.

3.2. The quantum mechanical Hall effect

For the Hall effect in strong magnetic fields, {|{)] are
Landau states. It has long been realized that the diagonal
matrix elements of the current yield zero, so no Hall effect
results. This problem has been circumvented by some au-
thors (see Ref. 7) by including the external electric field in the
unperturbed Hamiltonian H °. To obtain results an expan-
sion of the one-particle von Neumann equation in powers A V'
is employed up to orders (4 ¥)?; in the &, function that is
found to occur, the delta part is retained and the principal
part is, unjustifiably, neglected. In our opinion it is fortu-
itous that the right Hall conductivity is found in this way.
For that reason, we will indicate here that the quantum me-
chanical Hall effect stems solely from the nondiagonal part
of the conductivity response formula. Since the nondiagonal
part has not been considered in the past, the cause for the
problems with the absence of Hall effect in earlier theories is
evident.'”

We consider the Hamiltonian

hY = (p+eA)/2m, A =|(0,Bx,0), (3.22)
where we employed the Landau gauge, the magnetic field

being in the z direction. The one-particle eigenstates (in wave
mechanical form) and eigenvalues are

&)= dnlx + fik )™ e /4112, (3.23)

% ik, = (N + 1/ 2w, + #k2/2m, N=0,1,2,,
' (3.24)

wherew,, = |q|B /misthecyclotron frequency and where g,
represents harmonic oscillator wavefunctions. We also write
|&) = |Nk,k,) and we set x,, = ik, /maw,. The relevant ma-
trix elements are’ for a solid dimensions

L.LL, (A=L,L,),

(& |xI&") = xoOnn Opsr + (ﬁ/zmwo)l/z[(N+ l)l/zasz+ 1

+ (N2 w1 16k (3.25)
& WIE T =1{L,/2)0nn- Sixr =V Oy Siis {3.26)
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(& v, |6 7) = itfiwe/2m) [ — (N + 1)/ 8y,

+ (N1 18k, (3:27)
(& 10,16 ") = (Fwo/2m) P [(N + 1) 8 1
+ (N85 1 16k (3.28)

with &, = &y 4 Ox x_- From the latter two equations we
note that there is no diagonal ponderomotive current, nei-
ther in the x nor in the y direction. The matrix element of
(3.25) indicates that in the absence of an external electric
field there are stable orbits with fixed center x,,, where x,,

equals what previously we termed x* [see Eq. (2.6)]. Were we
concerned with the conductivity o, as for transverse mag-
netoresistance, then there is a collisional contribution since
by (3.25) (£ |x — x®9|¢ ') is nonzero both in its diagonal and
nondiagonal matrix elements. For the Hall effect, however,
we need 0,,; here the collisional contribution [see (2.83)] is
zero, since (§ |y — y*9|&) = 0. Consequently, for the Hall ef-
fect we have only a nondiagonal ponderomotive contribu-
tion as we stated above.

We consider the charge carriers to be electrons. Then
Jj= — ev/{2. We obtain from (3.27) and (3.28),

(C'1JcI€ U " 14,1 ) = (ie*hwg/2m2 ) — (N' + 1) AN ") 265y + (NN 4 1) 285y }E5se-

(a) (b)
We also have for the allowed transitions

€. — €, =fw, [term (a)],

€. — €, = —fw, [term (b)].

From (3.21) we thus find
o0) = —— N+1 1
w0= 225 3 v+ () o

N =012,

- <nN+ 1 )eq)(l - eWBﬁmu) -

(3.29)

(3.30)

N1y ) (1= (ny o)1 — )}, (3.31)

(In this expression we suppressed the index k, thus n,=n,,, etc.). In the second term we change N—N + 1. We then obtain

the general exact result

o3(0) = ﬁk . ;2 (V4 1){{ny) (1

(nN+ 1 )eq)(l - e—ﬂﬁw(,) - <nN+ 1 )eq

= (ny) el — &), (3:32)

The same result has been derived from the quantum mechanical Boltzmann equation (Sec. 6).

In the paper on applications®

we will investigate (3.32) in detail, and derive a result for the oscillatory Hall effect. Here we

consider only the steady Hall effect in nondegenerate semiconductors. We split (3.32) as follows (dropping the super nd since

this is the total contribution):

zz(N+ D{ (a1 —
zz<N+ D) eall —

yx(

ZB.Q

 2B0N4

From Boltzmann statistics we have
(€ = Ak 2/2m,(n) , <1):

(My) = PUNT VIRt amed (3.34)
("N+ 1 )qu/}ﬁw(, —e P [N + 3/2fiw, + € — €p+ Bhiwy] __ <nN>eq
(3.35)

The two parts within each { } of (3.33) are found to be equal;
we thus obtain

7, (0) = ;%; SV + 1{nyde,
_ %2 SV + 1y, eq-

In the last term we change N + 1-—N. We then finally find
e (ntolal ) eno

0,.(0) = ég S = 5ot = 2 637

where n,, is the equilibrium electron density. For hlgh fields
this gives p,, >~ — 1/0,, = — B /en,, the well-known
result.

Note. The nondiagonal Hall effect is the only effect of

(3.36)
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<nN+ 1 )eq )e—Bﬁw“ + <nN+ 1 )eq)(l

(ny i, >eq) +{ny >eq(1 - <nN>eq)eﬂﬁm”}

~— {ny)e))- (3.33)

—
this kind, as far as we presently see. If we repeat the above

derivation for the nondiagonal magnetoconductance, we ob-
tain no contribution. For, analogous to (3.32) we obtain the
exact result

0";2(0)
ZBO eq(l (nN+1>eq)(1 _e‘ﬁﬁ(u‘,)
+ {nyp )eq(l — <nN>eq)(1 — By, (3.38)

which differs from (3.32) by the sign of the two contributions
and by the factor /.
Again this is split as follows:

0% (0) = —*z Z(N'i' D{{AnYeq(l = (ny 41 )eq)
- (nN+ 1 )eq(l (nN)eq )eBﬁwo
sz SV 4 Dfny) gl = (ny ogle P
- <nN+1>cq(1 <nN>eq)} (339)

Since the two terms within each { } are found to cancel each
other for nondegenerate statistics we find 02¢ = 0. For de-
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generate statistics there may be a finite imaginary result; this
could contribute to the dielectric constant in metals.

4. The diagonal part for electron-phonon interaction
4.1. The general form of the transition probabilities

For electron-phonon interaction we have generally in-
stead of Eq. (1.10),

W15 SPWle-ca,E" e IE

~clegal6 e "¢ )], (4.1)
where the symbols have their usual meaning; | ) is a general
form of one particle fermion state. In case |{) = ¢*", Eq.
(4.1) condenses to LRT II, Eq. (8.52). The purpose of this
section is to show that Theorems 1 and 2 of Sec. 2 remain
valid, with the nonlinear Boltzmann operator still given by
(2.13), though w,, . is differently defined.

The transition rates w,; are calculated as in Sec. 2. De-
noting the two parts of (4.1) by the superscripts “abs” and
“em” (for absorption and emission of a phonon}, we easily
find that for given |y) and fixed ', { ", q' of the series (4.1),
the only connected states in the matrix element (y|4 ¥ *%|y)
are the states |}, -, ) such that

A, =n, for{#f and§ #L",
Ay =1—ng, fpe=1—ng,
N,=N, -8,

Likewise, lhe only connecteg states in the matrix element

(y|AV<™|y) are the states |y, .-, ) such that

ng=n, for{#{ and¢ #£”,

(4.2)

ng =1-ng, ngo.=1—ng., (4.3)
N, =N, +64.

With these data we find
Weee = QU —E "1 = ng-)ng Ny, (4.4)
Woeew = Q6= N1 —ng)neal + Ny), (4.5)

where
Qa—¢")

= (2n/#)|F (| "|e|5")|*Ble, — €+ + Ey),(4.6)
Q1'~6"4)

= Ra/A)|F (| "le "I )Pble, — € — Ey).
4.7

For the operator result (Mn,, ), we find from {1.3) k, by per-
forming the boson average (we further drop the prime on q),

(Mngo), = > (Q(6",a—¢ ") —ng-ng AN, )eq

£'t"a
+{QC =L " a1 — g Jng (1 + (No)eg))
X (o — Ngo). (4.8)
Introducing
wg'g" = E{Q (g ”q _’g ")<Nq >eq)
+ Q& '—¢ ")l + (Ngde (4.9)

we find that (4.9) takes exactly the form of (2.21). This proves
the validity of Theorems 1 and 2. Also, with the definition
(4.9), the property (2.15) remains intact.
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4.2. Magnetic transport phenomena

For the special case of Landau states, Eq. (3.23) the
matrix elements occurring in (4.6) and (4.7) are

. ke kv hk\
(§"|e’“"|§')=fd3re ke k‘¢N~(x+ y)e"‘"

may,

hkl
)
mwy/ L,L,

— ” ’
=0, vk + qyak ki+ q,JN’,N g,k 5ok o)

ik} y ik .z

Xe e

(4.10)
where, following Argyres®' we defined
] ﬁk ,” .
JN’,N”(qx’k;;”k;) = f dax ¢N~(x =+ 4 )e'q‘x
e mo,
fik
X \x+ : (4.11)
ma

Likewise
(6"~ [q.r|§ )= ‘sk;,k;_qy‘sk vkt _q,JN'N"( — gk ;’»k;)‘
(4.12)

Substituting (4.10) and (4.12) into (4.6) and (4.7), we obtain
for (4.9),

Wergr
= (2ﬂ/ﬁ)z|F(q)|2{"N'.N"(qx!k;,’k;)|26k”,k'+q<Nq >eq
q
XO(€; — €cv + Eq) + [non-(— gk [k )2
X(Sk",k'~q(1 + (Nq>eq)
X8, — € — Ey};

here 6 4., o standsford,, .. . 8,.,.. .,

remembered that § represents N, k , k.

Argyres 2! indicated thatJ,. 5 - depends only on
gt +(k, —k}) ie,ong’ + ¢ =q}. Enck et al.? have
calculated Jy. 5 -. The result is

"y 12 2 /12 2 \N'—N"
v ne(gi)? = —Lexp(—— 9 )( g )

' 2 2
) . /{2 2 2
NG

N
(4.14)

where .27 is an associated Laguerre polynomial and where
N (

A% =#/mw,. Also,
A’ql )(izqi )”"‘”'
N™ 2 2

i ) 2‘2 2
er () v

(4.15)

(4.13)

and it is to be

I(JN',N"(quz:

Since |J . - |? is the same for + g¢,, Eq. (4.13) simplifies to

2
wpge = “ESIF@P Wy (8 s o (Vodeq
q
Xa{e;' - €§~ + E(I) + 6k",k'4q(1 + (Nq>eq)
X ble; — €.+ — Ey)}. (4.16)
This is the transition rate that is to be used in the generalized

Adams-Holstein result of Eq. (2.84). Various applications
will be discussed in a forthcoming article.”
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B. QUANTUM MECHANICAL BOLTZMANN EQUATION
5. The diagonal Boltzmann equation

In this section we derive the quantum mechanical
Boltzmann equation of LRT II Sec. 8 by a faster method
than before. This method is well adapted in order to find an
extension that includes the nondiagonal part, to be set forth
in Sec. 6. The inhomogeneous Markovian master equation
reads [see LRT II, Egs. (4.30)]

R
P;jt) dpd(t)_BF(tloeq[ A4, +(A Ja ]-

The first moment equation of this is the Boltzmann equa-
tion. Thus, with {(n;), = Tr[n,p(t)],

a(”;):
ot

(5.1)

+ Tr{n,Ap5(t)}

=BF(t)Trlpeqn; [ — AsAq + (A)a]), (52)
where we noticed that n, and p., commute. We now apply

Lemma 1 of LRT II [Eq. (C1)]; for any two operators C and
D we have

Tr (CA D) =Tr(DA,C). (5.3)
Thus we obtain
Hn,),
)

3 Tr{pf(l A n, ]

= BF(t)Tr{pn ( — As44)}
+ BF (t )Tl' {peq n§ (A )d } : (54)

Using Theorem 2, Eq. (2.16), the second term to the left
becomes

a t
2nd term Ths = (&, n, ), = _( ne)

T) >3

For (4 ), we write 2,.n,.({ '|a|¢ ). The second term to the
right then involves the average

;<n§n§’>eq(§,|a‘|§,)
= > A1 )eq (Mg Vg€ 1aIE") + (7)o (C 14IE)
§'#S

= (1) 3 (g Vg 6141E ) + [(nE) — (n)?)ENdIE )
) (5.6)

the first sum is zero since (4, Yeq = 0 [see LRT 11, Eq.

(6.22")]. We thus have for (5.4)

2nd term rhs = BF (¢ ){n; ) (1 — {n; ). (¢ 14]S). (5.7)

For the first term on the right we write 4, = Y'n..({ ‘|a|{);
<

this term involves the average
Z(”g( - Adng‘ )b(g ,Ialg ’)>cq
£

= _;(%@g"’g')eq@'wg'); (5.8)

this was computed in LRT II Egs. (8.43) ff. The result is
Ist term rhs

= —BF(t)(ng)q(1 - <”c>eq);{ [(§ |alg) — (& ]als "N
X-[ng:(l - <n§'>eq)+wg'g<ng')eq]}- (5.9)
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Thus from (5.5), (5.7), and (5.9) we find the quantum Boltz-
mann equation

‘7<gj> L BF ()1 g1 — () )E 161E)
— BF()(n )l = (1))
XFUE1al6 ) = € lale N e (1 = ()
+wep (g deq 1}
= ;[w;';(ng%)(l —(ne),) — wee Ang) 1= (ng) )]
(5.10)

On the nature of the two streaming terms we commented in
LRTIL

6. The full quantum Boltzmann equation

We now start from the inhomogeneous complete evolu-
tion equation, LRT II, Eq. (4.41),

dp"(t) vy

E + L% (¢)

=F(tlpey | dB'e™ " [ —Aydy + Ay + (Ao ]-
(6.1)

We seek an equation for d ([ ¢, ),/dt. Thus, we multiply
(6.1) by cf c,, and take the trace; next we use the lemma

Tr [C(A, +iL)D ] =Tr[D(A, —iZLYC] (6.2)
{(see LRT II, Appendix C). Then we obtain

dclc.). .
—%;5-— + Tr[pR(t)A, — lfo)cz ¢ ]

=pF(t )Tr[peq( —A Ad)c; Ce, +peq(A )dcg, Ce, ]
+ F(t )f dB’' Trlp (™" A daCl cc, 1 {6.3)
where we notice that .#°° (diagonal operator) =

For the second term to the left we note that A ¢ destroys
a nondiagonal operator. Thus

Agelc,, =Aung 8.
the result for this part is by (5.5),
Trp®(tacl c., } = (B ne,) S¢,- (6.4)
For the other part of this term we have
— L%} e = i/#)[cf,c. . H®],
so that we obtain
Tr[pR(t ) —iZL%} e )]
= —2 (rlp*le
- (le O E7 (el e, 7))

= =S WP D Tl e [N, — 77, (66)

(6.5)

Wy (rlet e, 1N #,

Now if we take [¥) = |{n.}, {N,}), then [y} can only be
such that

ng, =l—ng, n.=1-—ng,
all other n, = n,,

all]V17 =N,.

(6.7)
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Since n, is lowered and n, is raised we have

E-=%,+¢€ —e,. (6.8)
Thus we find
Trlp® (el — il %} . )]

= (i/f)(€,, — 55.)2(7’lPR et ee,1v)

= (i/h)e,, — e;.)<"§. e e 6.9)

This is an off-diagonal contribution. There is no diagonal
partsincee, —e, =0forg, ={,.

For the first term on the right of (6.3) we note that
Tf[Peq( — A A, + (A )d)Cg\ng]

=Tr{p.(— A4y + (4))n,, ]5g,;3-
Thus this term yields [(5.7) + (5.9)] times &, ..

Finally, the last term of (6.3) is obtained in the following
manner: we substitute

(6.10)

() = ;ch‘ ¢, (631d16a1 — 8, ¢, ). (6.11)
Then,
Tr[peq (€714 )pa)e, ez, ]
= g};(@|d|§4)TT§Peqeﬂ'H"CZ.C; TP e M1 —8,,)
=2 gslal;)zpeq(ye” Y ylek e, 19
><<y|c; e, . (6.12)

Nowif |y) = l{ngl (N, 1), |} must satisfy the rule (6.7) to
make the matrix element (¥el, ¢z, |v) nonzero. However, in
order that (y|c}.c,, |} is nonzero, we must have £, = £, and
&, = £, by a similar argument as in Sec. 3. Thus

(rlet e, MY FleL e lv) = (1 — ng)ng 8 8, (6.13)
For ', — &, we have again (6.8).

Thus (6.12) gives
Trlpey (™" )ach ¢z, |

= 5141603 [ 2o (S ™51 — g Jg, J(1 = 8,)
7’ ’
= (£ala1E e TN — (g e ng deall = Bz ).
(6.14)
Integration over dB ' yields for the streaming term
B , 1 — Bleg, —e€g)
i a8 tabove) = Fit) 7= {1 = ()
XAng, YeglEoldIE N1 — 8. )) (6.15)

We can a posteriori combine this term with the result due to
(), for we have

BF(tKng )eq(lﬁ( <11§, ?eq)(gllalgl)
T el AT P YN | W Y0 YN T P E I
€, — €,

(6.16)

The total effect of the streaming due to (4 ), + (4 ),q is thus
the result (6.15) with the factor (1 — &, ., ) omitted.

Collecting all terms, the full quantum Boltzmann equa-
tion becomes
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a(C; cgz ) !
at

_ o Bleg, —€)
—F()1=¢ (1 (1 = (1 ) oo

€, — €,
X(6218181) — BF(t){ng ) eq(1 — (ng )eg)
X;{ (€']alg") = (&ilalg )
X [wg,( 1‘<”.c Yeo) F Wsg, (ne ) 116,
CZ weg, (ne ) (1= (ng),) — We e g ), (1 — (”g')z)]
Xbyp — (l/ﬁ)(fgz — €, )¢t e ). (6.17)

(314

7. Equivalence with the linear response results

We will show complete equivalence of the Boltzmann
procedure with the linear response procedure, by demon-
strating that the response formulas also lead to the Boltz-
mann equation (6.17).

According to the general linear response idea, we have
that

Lyaliw) = J Tdie= g, 1) (7.1)

where ¢ is the response function [see LRT I, Eq. (3.9)]. Thus
from (2.72) we have for the diagonal part of ¢.

B 5alt) ﬁz z

0" k=0
><[_(L@;+‘ng Vogr + (B b Dege (7:2)
Thus for the current J ; caused by the force F (¢ ) we find [see
LRTI, Eq. (2.20)],

a1y, = [arFin s, § letert
o &£ k=
XA{([—(4, ng)ap—+-n§ 1

X[ —(BE"n,. )b, +(%k’n§~)5§~])eq.

—(#Benglag +ngdg ]

(7.3}
But also generally, cf. (2.36), for any current average,
<AJB,d>1 = Z[ - (t@g" ng. )/bg" + <"; " )155" ] {7.4)
£

Comparing (7.3) with (7.4) we find the following identities:

(n.), zﬂJ:dTFT)Z Z _‘“”

X<[ - (‘@_ ng )ag + n; ag' ]('%(;k)ng»eqy
{7.5)
(B n.), =ﬁJd7-F(r)z 2 ‘“
Q
X([— (%:'”r)ag‘ + ”g'ag' HBE™ "ng))eg
(7.6)
We now differentiate (7.5); in differentiating the integral only

the term with k = O survives, and in differentiating the inte-
grand we replace K~k + 1. Thus we obtain

dn;), ,
—;_ =BF() Al "(%5'”4')%' + ngdgIng ) e
=
! k
—B dTFT)Z 2 t+T)
0 T k=0
XA =%, n; Jag +ng a; ](% En,)) eq
(7.7)
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The last part is just — (Z,.n,), by (7.6). We thus have

d(n
—(Ei)—{ —BF (¢ );U”;"r Yeqle = (ne B yng)eqa ]

= —<%§”;>z (7.8)
which one easily recognizes as the diagonal Boltzmann
equation.

The proof has the drawback that one cannot obtain (7.5)
and (7.6) if either one of the sets of matrix elements {5, } or
{b,} is zero, as if often the case. For the linear Boltzmann
operator one can, however, easily deduce {7.5) from (7.6) and
vice versa.

For the nondiagonal part we proceed similarly. From
{7.1) and the result for Ly, analogous to (3.18) we have the
response function

Balt)
Z (”g )eq(l
é'g.
¢'lalg Mg 1B 1¢). (7.9)

This gives for the contribution to current due to the nondia-
gonal part of p {2’ means {'#{ ")

(W), = [drFi) T (e gll = (D)
o [

1 _ e'ﬂ(‘g"‘g‘)

—5(5;~ —fg‘)

l—e ot — e/

<ng )eql

i — €z~ — €N/

X
€ — €
X (& '1alg")E "8 18- (7.10)
But generally we have also
(Apnad, = 3 (et-ce ) (E1BI). (7.11)
33
Comparing (7.10) and (7.11) we conclude that
(ctecp ),
¢ 1 — e Blec-—e)
= [[dr Firtne )l = (re-.)
o € — €,
< e:(z — 7ieg- — eg')/ﬁ(é_ yldlg n)' (7. 12)
Differentiating we find
d{ct-c;),
or
1—e Pl =< .
=F(t)<n§’>eq(1 - (n§‘>eq) € (g"a1§”)
¢ — €
— (i/f)e, — e el-cp0),, (7.13)

which corresponds to the nondiagonal part (£ * #¢ ') of (6.17).
We still note that one can also write the streaming term dif-
ferently; from equilibrium statistics one has

(ne el — (e Yl — e P =) /e, —¢,.)
= {1 )oq(1 = (ne )1 — 7775l — €,.).
(7.14)

C. INHOMOGENEOUS SYSTEMS

8. Boltzmann equation for the one particle Wigner
function

It is in the nature of the quantum mechanical results
that the streaming term associated with the spatial gradient
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is absent. This is due to the fact that we deal with ¢ operators
or occupancies of states of the set {|¢)} (which may for cer-
tain systems represent momentum states or Bloch func-
tions), the specification of which is incompatible with spatial
localization. A classical analog can be obtained, however, by
appealing to the Wigner function, see, e.g., de Groot.”> We
will show that, curiously, the nondiagonal parts of the full
quantum Boltzmann equation, lead to the recovery of the spa-
tial gradient term, necessary for inhomogeneous systems.
The many particle Wigner function is defined as
(h —*") times the Weyl transform of the density operator
p(t); thus we have 2

P(P:q,t)= (l/h 3N)Tr[p(t )A (P,‘I)], (81)
where
(/B pev,
apa)=[ae " Tlla + )@ — il 62

the subscript / stands for the coordinates of particle /. The
antisymmetrical second quantization form is obtained by
writing

a%a)= 3[40 [0 baniar (83

where :I1: denotes a normal ordered product. For one factor
of the product (8.3) we find

f g0 (@)lq + 1) a — Jv]¥la)
- fd vl V™|q — ) {q — WYl

- f d3gd'(gle |5 (Q — q + Iila)
= J(Q + v~ THQ + ). (8.4

Here capitals refer to the quantum operators. Noting that
Q = q and P = (#/i)V, we obtain with

e "fla)=fla—V) (8.5)

the following form (compare Balescu??):

pp.g.t)= p SNNJd 3Ny ofi/lpy
XTr{ple K[ (a; + b dha, — 4v)), (86)
where we wrote ’
pv= ﬁ:‘ p;v;. 87)

i=1
To change to the occupation number form used in the
rest of this article we write

¥'lg) = ne ze - ag ke,
(8.8)

Yla) = .(21!/2 ;em'q‘ﬁk(Q)Ck,

where ¢, is a periodic function on the lattice for Bloch elec-
trons and ¢, =1 for free particles; as usual =,

—{02 /87*)§d k. Substitution of (8.8) into (8.6) results in
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..QN
(87° Pk N1
xff d3Nk'd3de3Nv eiu[(p/ﬁ]—(k'+kj/zleiqtk—k’)

plpg.t) =

x[[82(a + 196 (a; — 4%, Te{ple ) [[ch cu:}.

/ (8.9)
We make the transformation
ki —ki=u; ki=Ki+£“i
or (8.10)
k; + k; = 2k, ki =K, —lu;

with the Jacobian being unity. We also develop 4, in a Four-
ier series on the reciprocal lattice

W@+ iv) = 2‘4 1B 8/2
(8.11)
prla—iv) =A@ e

We now find that the integration over d *"v and subsequently
over d **K can be carried out. The result is found to be with

p =7k

poant) = (o) - d Mg e oo
87k ) N 2

* 7
X HA K, — (172w, — (1/2)(g, + g;)(g Mk, + {1/72)u; — (1/2)(g; + gj)(g)
i
. + .
X Tripl(t )‘Hck/ —(1/2)u, — (1/2)(g; + ;)ckj + (1/72)w; — (1/2)(g; + &) * J-
J
(8.12)

We make the further change of variables u + g — g'—u. The
subscripts on 4 and ¢ now become k — g + ju and those on
A*and ¢’ becomek — g — ju. Since k can be shifted by a
reciprocal lattice vector in the extended zone scheme we can
]

replace k — g + iu—k + Ju and k — g’ — ju—k — ju. The
integrand now becomes

e A¥ 8y 1 (120, (8)
Py i /i vl J
J
= eiq"H¢ 1':', - (1/2)u,(0)¢k, +(172)y; 0),
J

where we used (8.11). Substituting into (8.12) we obtain the
second quantization form sought for

plo.g.t )0 .
(8173h ) N,

X Tr{p( ):HCL— (1720,Ck; + (1/2u;* }.
J

(8.13)

d*™u e""‘ngb b (l/2)u/(0)¢kj (12 {0)
(8.14)

For free particles we have ¢ *(0) =
result given by Balescu.?*

In the present section we need the one-particle Wigner
function, in phase-space (4 space), denoted as p,(p,q,? ). We
have in the case of Bloch electrons

¢ (0) = 1, soweobtain the

'Q iqu
ppat) = PR d2ue™ 3 _ (12000 4 12w (0)
X ek — 1/2uCh+ (1/2 ) (8.15)
and in the case of plane waves
‘{2 iq-u
pilpg,t) = PYRTE N <Clt—|l/2)uck+ll/2)u)r‘ (8.16)

8.1. Wigner function transport equation for free particles

We start from the full quantum mechanical Boltzmann
equation (6.17) with {, = k — iu, §, = k + lu. We multiply
this equation by (£2 /87°h *)e’" and integrate over u; we thus
obtain

l—e —Bl&_ (1/2m — & Hl/z»n)

‘9P1(P,¢lyf) f g
d3u ey —F(t)-
ot 87r’h 3 e (r):

€k _ (12w —

€x 4+ (1/2)u

X (nk+(l/2)n)eq(1 —{ny _ (1/2m >eq )k + %“Mk b} + (/A€ 4 12 — € i1/2u) <ck {1/2)nck+(l/2)u> }

2

= thsfd u e'quZ{wkk<nk Ye(l = (m),) = wige (me ) (1 = (e ), )}, (8.17)
where we noticed that (k|r — r*9/k)=0 for plane wave states, Further for plane waves,
€k _i1/2u — €k v s2u) = (172m)[(p — Jf)’ — (p + Jfu)’]
= —(fi/m)pu (8.18)
and
(k + Ju|v|k — tu) = (Aik/m)b, . (8.19)
We also note the Fourier inversion of (8.16) 3d term lhs = _S__fﬂjfd e iq-ul:n;nJ‘d 35 e~ T (0,4, ).
h ? — iqu
(el _/auCe s a2mde = —'J.d ge”""py(p.ast), (8.20) (8.22)
0 . . ,
- Changing the order of integration we first evaluate
and a fortiori
h3 . fd 3y '~ Vup.y,
(el 17208k + (/21 Yeq = Fjd ge= ™ P 1eq (P,G)- (8.21)
. . Now since
We will now compute the various terms of (8.17).
For the third term on the 1hs we substitute (8.18) and J. d ue v = 87°8(q — @, (8.23)
(8.21), to yield
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differentiation to q gives (i.e., operate with V_ on both sides):

_i f du e~ = 87, 5(q — §) (8.24)

hence

fd u "9~ Vg = 87°ip.V,;8(q — ). (8.25)

Carrying out the remaining integration over d g, noticing

f &G [Vibla— Dorpdt) = — Veprpat)  (8.26)

we obtain
(8.27)

which is the standard inhomogeneous streaming term of the
Boltzmann equation. It is quite peculiar that this term comes
from the nondiagonal part of the full quantum mechanical
transport equation!

For the second term on the lhs of (8.17) we obtain, notic-
ing (8.19)

2nd term lhs

n o
=50 d’u e[ —BF(t)](n ),

3rd term lhs = (p/m)V p,(p,q,1 ),

X (1 — (nk>eq)f_k_6“’0 = 81:3) 3 d3u e
o Flt) 3y ) e
— N V. 68,0 = ——r
e T E

XJ.d *u e""“—;-)—-Vk (cf _ (1726 % + (172 Y eaOu0

F(t o -
8ﬂ(’3)ﬁ .vkjd 3qp1eq (p,q)Jd 3y e™a q]su'o.

We must now elaborate on the meaning of the Kronecker
delta 8, ,. In LRT II, Sec. ITA, we indicated that diagonal
parts of many-body operators are never sharp, but are
“fuzzy.” We must therefore give a certain extension |dul? to
the volume integration in u space. We may do this by consid-
ering a wave packet rather than a plane wave, which reflects
the fact that k (and so u) is not a sharp quantum number
when the system is subject to chemical or other gradients.
Thus we write

(8.28)

J.d 3ueiu-(q — 6)5 d 3u eiu-lq — @)
|Au|?
A4 2
Il sm[ U (@x — g:)/2] (8.29)
xyz - qx )/2

where we mtegrated over ( —Au,/2,4u, /2) and similarly
for the other directions. The rhs has its maximum of Au, for
g, = ¢q,; the x-direction width is
1 fm Sin[Aux(q_x _qX)/Z]di _ 277'
Aux - ® (q-x _qx)/2 * Au .

(8.30)

X

We may thus replace the rhs of (8.29) by a function in q space
which has a magnitude |Au|*=II, ,Au, for § within the
rectangular box of volume 87°/|4u|? centered on q, and
which is zero elsewhere. Thus, carrying out the § integration
next, we have
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fd 3Ep1eq(p,i)fd u e,

~|dul® f d°301 ().
8n°/|Au|?

According to the uncertainty principle, the volume of a mi-
crocell in phase space is |Ap|*|4q|*=#|4u|*w(q) = A *; thus
w(q) = 87°/|Au|? is the minimum accessible volume in posi-
tion space centered on ¢. From (8.18) and (8.31) we thus
obtain

(8.31)

F(t) 1

v f 45,03, (832
" olg)ow Piea )

We can treat the collision term in a similar way. The part
linear in (nk ). goes as before. For the quadratic part we need

8173h3 Id3ue"‘“zwkk (e ) {my ), Bup . (8.32)

For {n,.}, and {n, ), we write

2nd term lhs =

h3 ] ]
(), = —fa“q e~ p(pq,t) (for u—0).
(m), = —J‘d3 "e " p (p,q",t) (for v—O).
Hence

(8.32) = ——— - ﬁ}h ( )fd e p,(p'qt)

XJ d*q" e """p, (pq".1)

Xj d*ue® 5,46,, -

Now we multiply (8.32") by (2 /87) § d*v €"98,, = 1. Thus
we obtain

(8.327)

8321 =5 (o5) 8 [ @0 pipa) [ ee-viarus,,

fd q" pip. 9", t)fe"“‘"“'"'d%&.o
~—3( ) (B 37| Aul®

xf d°¢ p(pas z)|Av|3f d°¢" p\(p.a", 1)
87'/|Aul’ 87'/|Av}?
1 A3

h? (q) Jota)
3

d’q'p\p'.q,¢)

v h
(q) Jo)

d’q" p(p.a’, t). (8.32")

Thus one finds

3

1
coll term = — {w . f d3qp,(fik’,q,t
h3; kkﬂ’(‘l) wlq) piAKa )

- 2] Sum

i d3— 1 ﬁk’r_;
w(‘l)—[v(q) P30 )

x [1 - a}:(;)L..,d 3('1p,(ﬁk’,('],t)”.
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Both (8.32) and (8.33) can be written in simpler form by intro-
ducing coarse-grained Wigner functions (setting p,=p):
qc/(q), (8.34)

- 1 o
ppgt)= —| d7p(p.gt)

(@) Jota)

- 1 _ _
Pea@t)=——| d7°Gp.,0,a, qcwlq). (8.35)

@(q) Jota
Since the integration involves a volume in phase-space (4 *)
which is larger than the minimum support of the Wigner
function, ** we expect g to be positive definite.?’
Collecting terms, we find the transport equation
dp(p.a.t)

B %-qu(ll,q,t) + F(t)-V,0.,(0.9)

= S{wiplfk',q,0)[1 — 7 p(fk,q,7 )]
g
— Wi Ak, q1 ) [ 1 — hp(#iK',q,0 )]} (8.36)
This result is near exact.”® If the gradient V,p is slowly vary-
ing over the cell volumes w(q), we can also replace p and p in
the first two terms on the lhs of (8.36). We have then a trans-
port equation for ﬁ(p,q,t) alone.
The classical distribution f(p,q,? ) is related to the classi-
cal limit of the Wigner function, if this limit exists (cf. M. J.
Groenewold?’). We have

n(p,q,t) = limh *4(p,q,? ), (8.37)
£ 0

where n has the dimension of a number. To obtain a density
in phase-space, we must divide by the volume of a microcell
k3. Thus

flpat) = Li@(p,d,t ) (8.38)

From (8.36) we obtain

a by 31
_ﬂgtq_f) ¥ %-qu(p,q,f) + F(t )}V, /o, (0,0)

2 (., ,
=§;fd’k [Wer £9,0:7) — wi f(P02)]. (8.39)

The effects of the exclusion principle in the collision term
have disappeared; the only quantum mechanical attribute
remaining is w,, given by the “golden rule.” It is a small
matter to rewrite the collision term in terms of the classical
cross section.

We assume elastic scattering with N, heavy obstacles.
Then w,,, = wy, and [cf. (2.25)]

Wi = R7NA /A) K| |K) Bl — &) (8.40)

For the cross section we have by definition, denoting by 2’
the solid angle of the scattered vector k' taking the sample
volume 1 cm?, :

, ) 1 3 W
o(2d2’ = ., \k’|onlyd k FNO (8.41)
Since,
% = de, . dS. _ de, k dn’ (8.42)
Vi€ | fivy,
(where S'is an energy surface) we easily obtain
o(2') = (m*A */#*47%)| (k|v|K') |2 (8.43)
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Now substituting (8.40), (8.42), and (8.43) in the collision
term we obtain

coll term — Nofdn L o) ip'at) ~ S0t ).
(8.44)

For two-body collisions we can likewise recover the stan-
dard collision term.

8.2. Wigner function transport equations for Bloch electrons

The quantum mechanical Boltzmann equation is multi-
plied by

(12 /8h *)e'*d ¥ (0), (0),

Li=k—lu &H=k+lu (8.45)
and integrated over d *u. The result is the same as (8.17),
providing that all terms except dp,/dt are multiplied by

¥ 112000y 1 (1,20 (0). We now need the Fourier inversion
of (8.15) which reads

<Clt _ 11/2|ucl§ + (1/2)u Y dx_ (1/2u O)by 4 (12 (0)

h J 3 g
= ——|d3 e (p,q,t). 8.46
)% p(p.at) (8.46)
In the terms with 8,, we use **
4(0)1* = 1. (8.47)
The procedure is similar as in the previous subsection.
The field term with F(z} = — ¢E|(¢) survives only foru =0,
since
(k+ fulvIk — ) = (1/A)V, €,8,0, (8.48)

as we show in the Appendix. Noticing (8.47), we find that the
term becomes the same as (8.32). The collision term also
remains unchanged, i.e., we find (8.33). Some new aspects
occur in the other streaming term: we have upon substituting
(8.46),

)
3 .
fd ue" u?(fk +(1/2u — €k - (/2)

87k *
Xo¥_ (172 O}y & (12 (OKC; —(172uCk + (1721 e
l. iq-u
- 8 J-d tu e viv2m — €k (1/2)
x [@*ge “plpac) (8.49)
We write

( (1/2)u.9,

—e e, . (8.50)

For the integration over d *u we now have

€x i 2m T €k (i/2m =

fd 3u [e,-u-(q —q—{i/2)Vy) eiu-(q — g+ (¢/2)V,) ]ek
= 87[6 (@ — q + (i/2)V,) — 8 (@ — ali/2)V,) e,
& 1
=167 § ————[(V,*" " 8@ — a)]* [(/2)9.)" * e, ]
7rr,Z’o(2f1+1)! [(v.) @— g ]*[(2)V,) k]
(8.51)

where * means a contraction over all tensor components to a
scalar. Carrying out the subsequent d *7 integration we ob-
tain
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. | & 1
streaming term = — 2 —V
Ao (2n 4+ 1)

l' 2n 41
X(?"k)

We note that this term is real, despite the occurrence of / in
its factors.

Collecting terms we obtain the following transport
equation for the coarse-grained Wigner function p:

dplfk,q,t)  eE 2i
el i V. 0..7k,q) — =
a[ ﬁ kpeq( q) ﬁ

7 oot ¥

(8.52)

o 1 e of i 2n 41
X m(vq) plfik,q,r) 'z_vk €k
n="~0

=21 Wipl7k,q,t ) [1 — A p(Ak',q,1 )]

k'
— Wi plik,q,t )[1 — (K g, )1} (8.53)
To obtain the classical limit, we must now state more
precisely what is meant by this. If it means a p,q description,
with no reference to the quantum mechanical energies €, of
the Bloch states, then we must write p = #ik everywhere and

(/29,7 e, (ﬁz’vp)h e, (8.54)

For the limit of the streaming term (8.48) we then have

llm——i

n+ 17 * i _—
2 2n+ 1) ————(V, " " p(p,q,t )X((Ai/2)V, )" T e,

- qu(p’q’t )'vapQ (855)
the higher-order terms giving zero. Likewise
lim — (€E/A)V,p,(B.0) = — eEV,pe,(ma).  (8.56)

The collision term is treated the same as in the previous sub-
section; we thus recover the standard classical Boltzmann
equation as given in (8.39).

However, it is customary in solid state physics to use a
semiclassical k,q description with the Hamiltonian given by
Wannier’s theorem®:

A annie: (k,) = €(k) + 77(q) = €( — iV ) + 77(q). (8.57)
The classical limit is now taken as
F(k,q,t) = lim h*3,(#k,q,t). (8.58)
#i0

Here F is the number of electrons “occupying k at time ¢ in
the neighborhood of q” (formulation of Ziman, op. cit. Sec.
7.3); more specifically, F is the number of electrons occupy-
ing k within |4k |?in the coarse graining cell w(q) centered on
q at time 7. The normalization is

2 S Flkqt)=2 d°k

cellsfdk |* | Ak ll

— 24 (45 =
= 4773 fd kF k,q,t)—N(‘l,t)

= kq1)

{8.59a)

Note that the density of states in k space, excluding spin, is
now z(k) = w(q)/87 [where all the volumes w(q) might be
chosen tobe of equal size w]; V (g, ) is the number of electrons
in w(q) at time ¢. The further normalization is
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ffd’kd g F(k,q,t)

d3
Nigt)= J
3 Vi) fw( Nigs) =
-—Nt) (8.59b)

Multiplying both sides of (8.53) by 4 * we obtain with (8.58),

OFkat) By p oo 2
at fi

& 1
X ——— |
Zo 2n + 1)
= fd *k z(k){ wye F (K9, )[1 — Fk,g,t)]

— Wy F (kg )[1 — F(K'.q,2)]}. (8.60)

In the collision term the effects due to the exclusion principle
are now retained. Equation (8.60) differs from the usual re-
sult in the occurrence of higher-order spatial derivatives of

F. Only in the effective mass approximation
€, = IA’kk:M ' these higher-order derivatives drop out.

2"+1Fk *LV 2n + 1
(Vq) (’qrt) 2 3 6‘k
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APPENDIX: MATRIX ELEMENTS OF BLOCH
FUNCTIONS

The matrix element (k|v|k’) for Bloch states is comput-
ed similarly as the diagonal matrix element by Reitz.>* We
start from the Schrodinger equation with (r|k)=1, (r):

Vit (r) = 2m/#) [ 7 (1) — € ] (). (A1)
Taking the k-gradient of both sides we find
VeVt () + (2m/B) [(Vie € )t 1) + (€ — 770V (1)]

=0. (A2)
Now, ¥, (r) = %@, (r) so that

Vit (r) = iry (r) + "V, 8, (r), (A3)
V2V, (1) = 209, 4 1) — (2m/#)e,, — 7 (0 )

+ Vi Vi éy(r)), (Ad)

where we used (A1) for the second term. Substituting (A4)
into (A2) and using (A3) we obtain

29 4 (r) + (2m/ %)V, €, )t r)
+ [V + @m/#)(e — 7)) ]e* Vi b (r) = 0. (A5)

Multiplying by — i (r) and integrating over all space we
get

(k'| — iV, |k
S ,-f.,,;, (V. (1) d *r = (m/#)V, ¢, fﬁ ()¢ (r) d °r

+ %f:ﬁ: (V2 (e*V, b, (1) d *r

+ (m/ﬁz)fzp:(r)(ek )TV, B0 d. (A6

Charbonneau, van Vliet, and Vasilopoulos 335



Since ¢ is normalized the first term gives (m/#)V, €, 6y .
For the second term we use Green’s theorem; the bilinear
concomitant vanishes since the integrand is periodic. We
thus have for this term

[V nvivne ar

- f CV A [0 - e e (A7)

where we used the Schrddinger equation (A 1). It thus cancels
the third term of (A6). The result therefore is

(K'|v|k) = (#/m)K'| — iV, |k) = (1/H)V, 68, (A8)
also

(k + {u|v|k — Ju) = (1/A)V, €,6,, (A9)
which is the result of (8.48).
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A new method is presented to determine the irreducible representations of the space group of a
crystal contained in the representation whose basis functions are the components of a tensor field
defined on the atoms of a crystal. This reducible representation is the direct product of a tensor
representation, dependent only on the tensor, and a permutation representation dependent only
on how the atoms permute under elements of the space group. The permutation representation is
first separately reduced prior to the reduction of the direct product. The permutation
representation is shown to be an induced representation and its reduction is facilitated using the
theory of induced representations. Examples and tables of results of applying this method are
given in the case of a polar vector tensor field, applicable to lattice vibrational problems, and
crystals, as the diamond structure, of space group symmetry 0;,.

PACS numbers: 61.50.Em, 02.20. +b

I. INTRODUCTION

In many problems in solid-state physics it is often neces-
sary to determine the irreducible representations of the space
group of a crystal contained in a tensor field representation,
a reducible representation of the space group whose basis
functions are components of a tensor defined on the atoms of
the crystal. In lattice vibrational problems’? the basis func-
tions of the tensor field representation are components of a
three component tensor defined on each atom, the displace-
ments of each atom. In classifying magnetic ordering in crys-
tals by irreducible representations of a nonmagnetic space
group,*~® one reduces a tensor field representation whose ba-
sis functions are the components of the atomic spins. Also, in
applying the tensor-field criterion® in the Landau theory of
continuous phase transitions, one reduces a tensor field re-
presentation, as in the case of magnetostructural phase tran-
sitions where the basis functions are components of a six-
component tensor’ defined on each atom.

The tensor field representation is the direct product of a
permutation representation of the atoms of the crystal, re-
presenting how the atoms of the crystal permute under the
space group elements of the crystal, and a tensor representa-
tion associated with the transformation of the tensor compo-
nents defined on the atoms. In the case of lattice vibrational
problems, the tensor representation is the polar vector repre-
sentation, in the case of classification of magnetic ordering, it
is the axial vector representation, and in the case of magne-
tostructural phase transitions, it is the direct product of the
polar and axial vector representations.

To determine the irreducible representations contained
in the tensor field representation one could use the standard
group theoretical projection operator method® as has been
done, for example, in the case of lattice vibrational prob-
lems."' Such a method, while of course giving the correct
irreducible representations, does not take into account the
common property of all tensor field representations defined
on a specific crystal: The permutation representation com-
ponent of the tensor field representation is the same for all
tensor field representations defined on the crystal. This com-
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monality has led to an alternate method to determine the
irreducible representations contained in the tensor field re-
presentation: First determine the irreducible representations
contained in the permutation representation, and then those
contained in the tensor field representation.

Lulek® has considered the lattice vibrational problem of
molecules using such a method. The irreducible representa-
tion of the point group of the molecule contained in the per-
mutational representation, there called the positional repre-
sentation, are determined using the theory of representations
of permutation groups. Kuzma, Kupolowski, and Lulek'®
have applied this method to the cases of the lattice vibrations
of a regular tetrahedron and cube. Birman, Kotzev, and Lit-
vin,'! in the context of the tensor-field criterion of the Lan-
dau theory of continuous phase transitions, have also used
such a method. They have derived using the theory of color
groups the k = 0 irreducible representations of a space
group contained in the permutation representation for all
possible crystals. Berenson, Kotzev, and Litvin'? have then
tabulated the k = 0 irreducible representations of a space
group in the tensor field representation, for all possible crys-
talsin the cases where the tensor representation is taken to be
the polar vector representation, the axial vector representa-
tion, the product of the polar and axial vector representa-
tions, and the symmetrized square of the polar vector
representation.

In this paper we shall consider the problem of determin-
ing all irreducible representations of the space group of a
crystal contained in a tensor field representation defined on a
crystal. In Sec. II we show that the tensor field representa-
tion defined on an arbitrary crystal is the direct sum of the
tensor field representations defined on the arbitrary crystal’s
constituent simple crystals. The structure of the permuta-
tion representation of a simple crystal is derived in Sec. III.
In Sec. IV, using the theory of induced representations, a
general method is derived to determine all irreducible repre-
sentations of the space group of a crystal contained in the
permutation representation of a simple crystal. As an exam-
ple, all irreducible representations contained in the permuta-
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tion representations of all simple crystals of a crystal of space
group symmetry 0] are derived and tabulated. Finally, in
Sec. V, we discuss determining all irreducible representa-
tions of the space group of a crystal contained in a tensor
field representation defined on a simple crystal. As an exam-
ple we consider the polar vector tensor-field representation
of the diamond structure in conjunction with the lattice vi-
brational problem in this structure.

Il. TENSOR FIELD REPRESENTATION

Consider a crystal of space group symmetry G and let
r;, i = 1,2..-, denote the atomic position vectors of the atoms
of the crystal. To each atom of the crystal we associate a g-
component tensor .7 with components .7 _, s = 1,2,...,4.
The g-component function 7 (r;),, s = 1,2,...,¢ defined on
the atomic positions r;, i = 1,2,--., is called a g-component
tensor field on the crystal. The corresponding tensor field
representaion D {F(Crys) of the space group G is that repre-
sentation of G whose basis functions are the components
T (r;)ss 8 = 1,2,...,g, i = 1,2,-, of the tensor field.

The tensor field representation D §F(Crys) can be writ-
ten as

D IF(Crys) = DEERM(Crys)x D L, (1)

where D §F*™(Crys) is the permutation representation of the
atoms of the crystal, representing how the atoms of the crys-
tal permute under elements of the space group of the crystal,
and D [ is the representation of G called the tensor represen-
tation whose basis functions are the 4 components of the
tensor 7 . It is the purpose of this paper to derive a method to
determine the irreducible representations of G contained in a
tensor field representation D SF(Crys) defined by Eq. (1).

A crystal of space group symmetry G can be partitioned
into “simple crystals.””!* Each simple crystal consists of all
atoms whose atomic position vectors can be obtained by ap-
plying all elements of the space group G to any one atomic
position vector r, and is said to be generated by G fromr. A
crystal can be considered as consisting of a certain number of
simple crystals, no two simple crystals have atoms in com-
mon, and the elements of G permute the atoms of each sim-
ple crystal among themselves.

Let the tensor field be defined on a crystal consisting of
m simple crystals generated by G fromr;, j = 1,2,...,m. Be-
cause the elements of G permute the atoms of each simple
crystal among themselves,

D E™(Crys) = DGV (r,)
+DEERM(I.2) + +D£ERM(rm)’ (2)

that is, the permutation representation of the atoms of the
crystal is the direct sum of the permutation representations
DEERM(r) j=1,2,...,m, of each of the simple crystals. Sub-
stituting Eq. (2) into Eq. (1), the tensor field representation is
written

D &F(Crys) = [D&&M(r)) + D & ™M(ry)
+ -+ DPERM(r VXD, (3)
and subsequently as
DE(Crys) =D& (r) + D) + -+ D &), (4)
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where D {f(r,), the tensor field representation of the jth sim-
ple crystal, is defined by

D§f(r) = D*M(r) X Dg. (5)
The tensor field representation of the crystal is, by Eq (4), the
direct sum of the tensor field representations associated with
each simple crystal. To determine the irreducible representa-
tion of G contained in D &F(Crys) is then equivalent to deter-
mining the irreducible representations of G contained in
each of the tensor field representations D £\ (r;),j = 1,2,...,m,
of each simple crystal. Consequently, in what follows, we
shall restrict ourselves to the case of a crystal consisting of a
single simple crystal. We shall consider a single simple crys-
tal generated by G from the atomic position vector r, and the
tensor field representation D &F(r) defined on this simple
crystal:

D r) =D Mr)XDyg. (6)

Common to all tensor field representations D F(r) defined
on a specific simple crystal generated by G from r, is the
permutation representation D 5¥*™(r) of the atoms of the
simple crystal.

IIl. PERMUTATION REPRESENTATION D25""(r)

Let D ZEF®"M(r) be the permutation representation of the
atoms of a simple crystal generated by a space group G from
the atom position vector r. The position vector r can be char-
acterized by its site space group G{r), the subgroup of ele-
ments G of G such that

Gr=r+t, (7)

where t is a primitive translation of the space group G. The
point group R(r) of G{r} is called the “site point group” of r.
One can expand the space group G into a coset decomposi-
tion with respect to G(r),

G = G{r) + G,Gfr) + - + G, Glr), (8)

and define the set of atom positions G;r, i = 1,2,...,n, where
G, is a coset representative in Eq. (8). The coordinates of this
set of atom positions, for one or two of each class of space
groups G, each r, and a specific choice of coset representa-
tives, are given in the International Tables for X-Ray Crystal-
lography."* They are called there the “coordinates of equiv-
alent positions” and the site point group R(r) is called the
“point symmetry” of each of the equivalent positions.

In addition, we characterize the position vector r from
which a simple crystal is generated by G by the “site sub-
group** H(r), the subgroup of elements of the space group G
such that

Gr=r. (9)

Elements of the site subgroup H(r) are, in general, of the
form (R |v(R ) + t) where R is an element of the site point
group R(r), ¥(R ) the nonprimitive translation associated with
R, and t, a specific primitive translation. The site subgroup
Hir) is isomorphic to the site point group R(r). However, if
the choice of the origin of the space group G is taken to be
that given in the International Tables for X-Ray Crystallog-
raphy,'* then the site point group R(r) is not necessarily a
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subgroup of the space group G. As we shall show below, it is
the site subgroup H(r) of the position vector r from which the
simple crystal is generated by G which plays a central role in
determining the irreducible representations of G contained
in the permutation representation D &¥*M(r).
To determine the structure of the permutation repre-

sentation D &F*M(r) we expand the space group G into a coset
decomposition with respect to the site subgroup Hir):

G = H{r) + GH(r) + G;H(r) + - (10)

Since all elements H(r) leave r invariant, the atomic position
vectors of the simple crystal generated by G fromr arein a
one-to-one correspondence with the cosets of Eq. (10). That
is, the atomic position vectors r;, { = 1,2,3,..., of the simple
crystal are such thatr, = G;r,{ = 1,2,3,.., where G, is a co-
set representative of Eq. (10). Since the permutation repre-
sentation D &F*M(r) is the representation of G whose basis
functions are the atomic position vectorsr; = G.r,

i = 1,2,3,-, the (i, /)th component of the matrix D &F*M(r) is
oneif Gr; = r; or zero if Gr; #r,. Consequently, the matrices
of the permutation representation D g=*™(r) are defined by

1 if G, 'GG,eHr),

DPERM r G i= [
ol ]’ 0 otherwise,

(11)
where i, j = 1,2,3,..., and G, and G; are coset representatives
of Eq. (10). It follows from Eq. (11) that the permutation
representation D ¢""M(r) is the representation of the space
group G “induced” by the identity representation D };, of
the site subgroup H(r).'*> We shall write

D&Mr) =Dy 1G (12)

to denote the permutation representation as the representa-
tion of G induced by the identity representation of the site
subgroup Hir).

IV.REDUCTION OF PERMUTATION REPRESENTATION

A. General reduction

We determine the irreducible representations of a space
group G contained in the permutation representation
D &F*M(r): Let D %™ denote the (k*,v)th irreducible repre-
sentation of the space group G, and D g, the vth irreducible
representation of the group G(k) of the wave vector k.'® We
have

DEY =D§u1G, (13)

that is, the irreducible representation D &™) of G is induced
by the irreducible representation D g, of G(k). We decom-
pose the permutation representation

DERME = S d(k* DK, (14)
)
where d (k*,v) is the number of times the irreducible repre-
sentation D & of the space group G is contained in the
permutation representation D 5E*M(r). We shall determine
the coefficients d (k*,v) of Eq. (14) using the theory of induced
representations.'”!®

The number of times the irreducible representation
D& is contained in D EFRM(r) is called the “intertwining
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number of D &™) with D §F®*™(r)” and is denoted by the sym-
bol I[D &™¥,D £¥*M(r)]. From Eq. (14) we have then that

d (k*,v) = 1[D &, D 2F*Mr)]. (15)
Using Eqs. (12) and (13) we can rewrite this as
d (k*,v) =1[D 4 1G, D ) 1G]. (16)

To evaluate the intertwining number on the right-hand
side of Eq. (16) using the Intertwining Number Theorem'®
requires the introduction of a double coset decomposition of
G: We expand the space group G into a double coset decom-
position'” with respect to the site subgroup H(r) and the
group G(k) of the wavevector k,

G = SH[rG,Glk) (17)

where the G, are double coset representatives. For each dou-
ble coset representative in Eq. (17) we define the group L,,

L, = HrnG,GK)G !, (18)
and the representation D} of the group G,G(k)G ;~ ":
D(G:G (kG ")=D & (G (k) (19)

Using the Intertwining Number Theorem,'® Eq. (16)
can be rewritten as

dk*v)=>1 [D}IL,, Dy IL; ], (20)
where the summation is over all ‘i corresponding to double
coset representatives G; of Eq. (17), with L, and D ! defined,
respectively, by Egs. (18) and (19). A symbol D § |B denotes
the representation of the subgroup B of A subduced onto B
from the representation D § of A,'” the representation of B
found by restricting the representation D § (4 ) to elements
AeB. Equation (20) can be rewritten as

dk*v)= ZI [D L. (DYIL)X(D jyyy 1L)], (21)

where D 'L is the identity representation of L;. Finally, since
by Eq. (18), L; is a subgroup of Hir), D ;,, \L, =D , and

d(k*v)=SI[D},D}IL,]. (22)

Consequently, the number 4 (k*,v) of times the irreducible
representation D ™ of the space group G is contained in the
permutation representation D ¢™*™(r) is equal to the sum,
over the index i, of the number of times the identity represen-
tation of L, is contained in the subduced representation
D}IL,.

Equation (22) can be reformulated in terms of the irre-
ducible representations D g, of the group Gi(k) of the wave-
vector k: an intertwining number on the right-hand side of
Eq. (22) is defined by

1[DL.DNL]= —— 3 yiL,), 23)
|Li ‘ L;

where |L, | is the order of the group L, and y}(L;) is the

character of D }(L,) defined by Eq. (19),

DYL,) =D }(G,G (k|G [ ")=D Y (G (k)) for the elements

G(k)=G,; 'L,G; ' of G{k). Since

D}L;)=Dgy(G, 'L,G,), |L;| = |G 'L,G;|, and
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G 'L;G, is a subgroup of G(k), we may rewrite Eq. (23) as

1
z Yo (G~ 'L,;G,),(24)

I[DL,D,VlL,] = m <

and subsequently,
I[D!, DL ])=1[D} ;. DéwlG, LG ] (25)

Substituting Eq. (25) into Eq. (22), the coefficients d (k*,v) of
Eq. (14) are given in terms of the irreducible representation
D & by

dk*) = FI[D} 4 5:DéwiG 'LG, ] (26)

Consequently, the number d (k*,v) of times the irreducible
representation D ™ of the space group G is contained in the
permutation representation D gF*M(r) is equal to the sum,
over the index i, of the number of times the identity represen-
tation of G~ 'L, G,, a subgroup of G{k), is contained in the
representation D ¢, . Equation (25) provides a three-step
method to determine the number d (k*,v) of times in an irre-
ducible representation D ™" is contained in the permuta-
tion representation D &¥*M(r):

(1) Determine the double coset representatives G, of Eq.
(17).

(2) Determine for each i the subgroup G~ 'L, G, of G(k)
using Eq.(18).

(3) Determine for each subgroup G~ 'L; G, the number
of times the identity representation is contained in
D %4 VG 'L,G, using Eq. (24). The coefficient d (k*,v) of
Eq. (14), is given by Eq. (26} as the sum of the numbers deter-
mined in the above third step.

The calculation of the number of times the identity re-
presentation is contained in D g, |G, 'L,G;, Eq. (24), can
be simplified by taking into account the structure of the irre-
ducible representations D ¢, of the group G(k) of the wave
vector k.

B. k inside the Brillouin zone

Let (R |v(R ) + t) denote an element of the group L, de-
fined by Eq. (18), R(L;) the point group of L,, and (R, |v(R;))
the double coset representatives G, of Eq. (17). Since
(R |v(R ) + t) is contained in H(r),

V(R)+t=r —Rr, 27)
and since (R |v(R ) + t) is also contained in G, 'G(k)G,,
R, 'RRk=k +K, (28)

where K is a reciprocal lattice vector. If k is inside the Bril-
louin Zone K = 0 and the matrix of the irreducible represen-
tation D (G, 'L, G,) can be written as'®

D (G . 'LG)) = exp{ik-R  '[V(R) + t — V(R,)
+ RV(R.')]}D RiK) (R, 'RR;), (29)

where D g, is the vthirreducible representation of the point
group R(k) of G(k). Using Egs. (27) and (28) one finds that the
exponential term equals one, and

Déqk;(G P lL"G.‘) =D rz(k) (R i lRRi)' (30)

Consequently, for wavevectors k within the Brillouin Zone,
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Eq. (26) becomes
d(k*v) = ZI [D R e, D R IR 'R(L)R; ], (31

where R(L;) is the point group of L,, R, the rotational part of
a double coset representative, R(k) the point group of the
wavevector k, and R ,” 'R(L,)R, a subgroup of R(k).

To determine d (k*,v) is then a point group problem en-
tailing three steps analogous to the three steps given in the
preceding subsection:

(1) Determine the double coset representatives R; in

R = SRR R(K, (32)

where R is the point group of the space group G, R(k} of G(k),
and R(r) is the site point group, the point group of Hir).

(2) Determine for each double coset representative R,
the subgroup R [ 'R(L;)R, of R(k) from

R/ 'R(L)R, = R 7 'R(r)R, R(k). (33)

(3)Determine for each subgroup R ;” 'R(L,)R; the num-
ber of times the identity representation is contained in D g,
subduced onto R ;” 'R(L;)R,. The coefficient d (k*,v), Eq.
{31), is the sum of the numbers calculated in step three above.
For the special case of k = 0, R(k) = R, there is only one
double coset representative in Eq. (32), R, = E, and
R [ 'R(L,)R, = R(r). From Eq. (31) we have

d(0,v) =1[D gy ,D g \R(r)], (34)

and the number d (0,v) of times D £ is contained in the per-
mutation representation D FER*M(r) is equal to the number of
times the identity representation is contained in D ; sub-
duced onto the site point group R{r). Tables of d (0,v) for all
space groups G and site point groups R(r) are given by Kot-
zev, Litvin, and Birman.'!

As an example we consider the space group G = 0}, and
the simple crystal generated by 0; fromr = (4, §, 1), Wyckoff
(c) position in the notation of Ref. 14. The site point group is
R(r) = D¥”. We shall determine the number of times an
irreducible representation D &"* of the space group G, with
k = (k,.k,,k,)=A, is contained in the permutation repre-
sentation D £F*M(r).

The point group R(k) = C {7, and there are two double
coset representatives, in this case, in Eq. (32), R, = E and
R, = C,,. The corresponding subgroups, Eq. (33}, are
R, 'R(L)R, = CP?and R ; 'R(L,)R, = C{?. For this
wavevector k = A, the only nonzero intertwining numbers
in Eq. (31} are

I[D E\,-’D 1C“,lC3() ] = 17
I[De, e, €] =1, 35)
I[D lCm’D :27“ 1Cm ] = 1,

where for the index v of the irreducible representation D gy,
we have used the conventions of Zak, Casher, Gluck, and
Gur.'® From Egs. (32) and (35), we have that the only nonze-
ro coefficients d (k*,v) with k = A are

d(A*,1) =2,
d(A*3)=1. (36)
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TABLE 1. Irreducible representations G %" contained in the permutation representation D &=*M(r) of a simple crystal generated by G = 0}, from a point r:
The points r are denoted in the Wyckoff position notation of Ref. 14: (a) = (0,0,0), (b} = (1.4.4), (©) (L34, (d) = (E53),

i(e:) = (x,x,x), (f) = (x,0,0), (8) = (x,%,2), (h) = (1,x,4 — x), and (i) = (x,,z). The number d (k *,v) of times D ¥ " is contained in D PERM(z) is found at the '
intersection of the vth row of the & th subtable, and the column under the Wycokoff notation for the point 7. The notation for k and indexation of v is that of

Ref. 20.
ro@ b @ 4 @ m ® h row ® © @ @ O @ ® 6O
11 1 1 1 1 1 1 1 1
2 1 K
3 1 1 1 2 1 1 2 2 3 4 1 71T 12
4 1 1 1 1 2 2 2 2 1 2 5 512
s 1 1 3 301 1 1 1 3 47 5 12
6 1 1 4 1 1 1 2 50712
71 1 1 1 1 1
8 1 1 1 2 L
9 i 2 3 11 1 1 1 2 2 3 2 4
10 1 1 2 1 3 5 1 2 4
3 1 1 2 4 4 8
A 4 i i 1 2 3 2 4
1 1 1 1 2 3 4 3 6 5001 1 1 1 2 4
2 1 2 36 6 1 1 2 4 4 8
3 | 3 36
4 1 1 1 1 2 3 3 36 U
5 ! ! 2 2 6 6 12 11 1 1 1 3 4 7 5 12
21 { 1 2 34 7 1 12
z 3 1 1 1 2 5 712
11 1 1 1 3 47 7 12 4 1 2 5 5 12
2 1 1 1 2 s 512
3 1 1 1 2 5 712 z
4 1 1 1 1 347 5 12 1 ) 2 2 4 6 12 12 24
A ¢
12 2 2 2 4 4 5 4 8 1 1 1 2 2 4 6 12 12 24
2 34 8 2 1 1 2 2 4 6 12 12 2
3 1 1 2 4 8 8§ 16
_ s
= i 1 1 1 1 3 4 7 s 12
roo 1 2 2 4 6 12 12 24 2 1 i ) 9 3 4 7 7 12
21 1 2 2 4 6 12 12 24 3 1 1 1 2 5 712
4 1 2 5 5 12
2
1 2 2 2 2 6 8 14 12 24 A
2 2 2 2 4 10 12 24 1 ) 2 2 4 6 12 12 24
2 1 2 2 4 6 12 12 2
X
11 1 ) 1 2 2 4 3 6 B
2 22 3 6 11 I 2 2 4 6 12 12 24
3 1 1 1 1 3 4 6 2 1 1 2 2 4 6 12 12 24
4 1 1 3 26
. M
— 1 1 > PEP— 2 2 3 3 6 8 14 12 24
2 1 1 2 4 10 12 24
2 1 1 1 2 36 6 12
N
11 1 2 2 4 6 12 12 24
Consequently, the permutation representation D FERM(r) for 2 ! 2z 4 6 12 12 AN

G =0; and r = (}, }, }), contains the irreducible representa-
tion D¢™" twice and D ™ once, and no other irreducible
representations of the space group G = 0], with the wavevec-
tor k = A. This information can be found in Table I at the
intersection of the ““c” column and the first and third rows of
subtable A.

C. k on the Brillouin Zone

For wavevectors k on the Brillouin Zone, in place of Eq.

(29), one writes'®
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D% (G 'L,G) =" FERD Y (RR(L)R,),

(37)

where the primitive translation t(R ,~ 'R (L,)R,) is deter-

mined by
G, 'L,G,

= (R, 'R(LJR, VR 'R (L,)R,) + tR 'R (L,IR,))

D. B. Litvin
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and D, is the vth irreducible ray representation'® of the
point group R(k) of the wavevector k.

Using Eq. (37), Eq. (26) can be rewritten for wavevectors
k on the Brillouin Zone, as

d(k*v) = ZI [D X, 'R(l,,iR,’e’k.t—;ilM IR 7 'R(L,)R, ],
(39)

where D rug 18 the vth irreducible ray representation of Rk),
and t=t(R ;'R (L,)R,) is defined by Eq. (38).

The coefficients d (k*,v) are determined again by a
three-step procedure:

(1) The double coset representatives G, are determined
from Eq. (17).

(2) The subgroups R ;” 'R(L;)R, of R(k) are determined
from Eq. (33), and the translations t(R ,” 'R(L,)R;) from Eq.
(38).

(3) Determine for each subgroup R, R(L;)R; the number
of times the identity representation is contained in e™*D Rik)
subduced onto R ;" 'R(L,)R,. The coefficient d (k*,v), Eq.
(39), is the sum of the numbers calculated in step three above.

As an example we again consider the space group
G = 0], and the simple crystal generated by 0] from the (c)
positionr = (4, L, §). We shall determine the number of times
irreducible representations D & with k = (37/2a,
37/2a,0)=K are contained in the permutation representa-
tion D &F*M(r). The site subgroup

H(r) = (C$27)|0,0,0) + (T|}P 1, 1(C%$2710,0,0) and G(k) con-
sists of the elements (E |0,0,0),(m"|}, 1, 1), (m"™"]0,0,0),
(C$0,0,0) and all primitive translations of G = 0] . There
are two double coset representatives, Eq. (17), G, = (£ |0,0,0)
and G, = (C3]0,0,0). The corresponding subgroups of

R(k) = C5>™? are R 7 'R(L,)R, = C¥ with
t{E)=tm?)=0,and R; 'R(L)R, = C¥ witht(E) =0
and t(C3") = (0, — 1, — 1). Using Eq. (39) and the numbering
of Ref. 19 for the index v of irreducible ray representations,
the nonzero coefficients d (k*,v) for k = K, are in this
example:

d(K*,1) =2,
d(K*3) =1, (40)
d(K*4) = 1.

Consequently, the permutation representation D &5*™(r) for
G=0] andr = (4 & 3) contains the irreducible representa-
tion D &™" twice, the irreducible representations D ¥** and
D ¥"* each once, and no other irreducible representations
with the wavevector k = K. This information is found in
Table I at the intersection of the (c) column and rows of
subtable K.

In Table I we have tabulated all irreducible representa-
tions of the space group G = 0] contained in the permuta-
tion representations D £5RM(r) for all simple crystals generat-
edby G=0].

TABLEII The irreducible representations D  ,, contained in the direct product D ., X{D ¢ LR (k ) for G = 0} and the polar vector tensor representation
D[ = D: Theirreducible representations D ., contained in the direct product are listed to the right of the irreducible representation D * - Irreducible
representations D i ., are denoted by k. in the notation and indexation of Ref. 20.

r, Ty 0, 26, + 6, zZ, 3z,
r, r, o, 6, + 26,
r.‘ I-\9+r|0 Ql Q|+2Q2
r, P4 Mo+ Ty + Ty 0. 20, + 0,
rs Fo+ T+ T+ 1y
r, I X, X+ X, + X, S, S\ +S,+S,
I, r, X, X+ X+ X, S, S +S,+S,
Iy r,+r; X, X+ X, + X, S, S+ 8+ 5,
r, Do+ D+ T+ T X, X +X+ X, Sy S+ S8 +8,
Iy N+ I+ + T
A, 24, + A4,
W, W, +2Ww, A4, A, +24,
4, 4, + 45 W, W, + W,
4, A, + 4, B, 2B, + B,
4, A, + 4, B, B, + 2B,
4, 4, + 4, K, K+ K +K,
4, A +4,+4,+4,+ 4, K, K +K,+K, M, M, +2M,
K, K +K,+K, M, M, + M,
K, K, + K+ K,
Z, 4+ 2+ Z, N, 2N, + N,
Z, 2, +2,+5, N, N, +2N,
Z, I,+2,+ 2, L, Ls+ L,
z, I +2,+ 3, L, L,+ L,
L, L,+Ly+ 2L,
L, Ly+ L,
A, Ay + A4, Ly L +L,
A, A, + A, L L, +L,+2L,
Ay A+ 4,424,
U, U+U,+ U,
= 25,4+ 5, U, U +U,+U,
=) 2, +25, U, U+ U+ U,
U, UL,+U,+ U,

342 J. Math. Phys., Vol. 23, No. 2, February 1982

D. B. Litvin 342



V. REDUCTION OF TENSOR FIELD REPRESENTATION

The tensor field representation D }F(r) of a simple crys-
tal is defined by Eq. (6)

D) =D g™ XDy, (6)

where D FERM(r) is the permutation representation of the
atomic positions of the simple crystal, and D [ is the tensor
representation. In the preceding section we have derived a
method to reduce the permutation representation and here
shall assume that the coefficients d (k*,v) of Eq. {13) are
known. Substituting Eq. (13} into Eq. (6) we have

D= dk*[Dg"xDg]. (41)

To determine the irreducible representations in D .F(r) one
must reduce the direct product of irreducible representa-
tions D %" and the tensor representation D [ . If

DEXDE =3 Clk*vk*ADE, (42)
kT
then the reduced form of the tensor field representation is

DFiry= Y bk*vDE™, {43)
k*,v
where
bik* ) = 2 d (k*HC (k*7k*v). (44)
k>

We shall consider here tensor representations D §
which are independent of the translational components of
the elements of G, that is, which are k = O representations of
G. Consequently, in Eq. (42), k* = k*. Abbreviating
C (k*,v;k*,v) by C (k*,v,¥), we can write Egs. (42} and (44},
respectively, as

DEVXDE =S CK*v,ADE (45)
and
b(k*,v) = Sd (k*7)C (k*,7,v), (46)

where the coefficients C (k*,¥,v} are defined as the intertwin-
ing numbers

Ck*vv)=1[DE",DEYXDE]. (47)
Using Eq. (3), this can be rewritten as

C(k*¥,v) = I[D gu»D gy X (D G 1Glk))] (48)
and since D (; is a k = 0 representation of G,

C(k*¥,v) = I[D gD g X (D & IR(K) ], (49)

where, if k is a wavevector inside the Brillouin Zone, D g,
and D y,, are irreducible representations of the point group
R(k), and if k is on the Brillouin Zone, D gy, and D g, are
replaced by D g, and D fw , irreducible ray representations
of R(k). For the space group G = 0] and D} = D, the
polar vector representation, the irreducible representations
D 3y, contained in D gy, X (D & LR(k)) have been calculated
and are tabulated in Table II. From this table the coefficients
C (k*,%,v) can be found for the case G =0, and DZ =D ..
For example, for k = A from Table II one finds the nonzero
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coefficients C (A*,v,v):
C(A%1,1)= C(A%,1,3) =1,

C(A*2,2)=C(A*2,3) =1,
(50

C(A%3,1)=C(A*32)=1,

C(A*33)=2

The number b (k*,v), Eq. (43), of times an irreducible
representation D ™" is contained in a tensor field represen-
tation D &F(r) is determined from Eq. (46), with the coeffi-
cients d (k*,#) calculated from Eq. (31) and C (k*,v,v) from
Eq. (49). For k = A, the nonzero coefficients d (A*,V) are giv-
en in Eq. (36) and the nonzero coefficients C (A*,¥,v) in Eq.
(50). Using Eq. {45) we have

b{A*1)=3,
b(A*2) =1, (S1)
b(A*3)=4.

Consequently, the tensor field representation D IF(r) for
G=0],r=(4 1), D =D, and k = A, contains the ir-
reducible representation D ™" three times, D ¢ once, and
D %™ four times.

For this case, where D, = D ¢, is the polar vector re-
presentation, the irreducible representations contained in
the tensor field representation D § (r), Eq. {6), are the lattice
vibration irreducible representations of the simple crystal
generated by G from r. For the diamond structure, G = 0;,
r = (0,0,0), the (a) position according to Ref. 14, we find for
k = A, from Eq. (46) and Tables I and II, the nonzero coeffi-
cients are b {A*,1) = b {A*,3) = 2. That is, the lattice vibra-
tion decomposition for the diamond structure at k = A is
2D3"Y + 2D %™ in agreement with Ref. 20.
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Erratum: Jet bundles and path structures [J. Math. Phys. 21, 1340 (1980)]

R. A. Coleman
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H. Korte
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(Received 22 October 1981; accepted for publication 30 October 1981)

PACS numbers: 04.20. — g, 99.10. + g

1. In the 6th line from the bottom of the right column

of p. 1340, replace
“the space of one-directions D, (M )” by “the set of bases

of B, (M).”

2. In the first paragraph of Sec. 3, replace “u(s,)Is,” by
“plsy) = 5.7

3. Inthelast line of Eq. (3.6}, delete the superfluous left
bracket.

4. The last line of Eq. (4.20) should be
“H2Xn ER+ X))

5. In Eq. (5.16), replace “f},” by “F},.”

345 J. Math. Phys. 23(2), February 1982

6. In the second line of Eq. (5.18), “Z7/” should be

oo fa
=5

7. In the numerator of the third line of Eq. (5.19),
“2f 3£%” should be “2f 7 £4.”

8. In the statement of Theorem 7 on p. 1347 and on
lines 1 and 5 of the left column of p. 1348, insert “the set of
bases of” prior to “D, (M ).”

9. On line 6 of the left column of p. 1348 change
“points” to “bases.”

10. Following Eq. (6.26), the three occurrences of “V,,”
should be “Va.”
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