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We use the canonical transform realization of SL(2, R ) in order to find all matrix elements and 
integral kernels for the unitary irreducible representations of this group. Explicit results are given 
for all mixed bases and subgroup reductions. These provide the full multiparameter set of integral 
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1. INTRODUCTION 

The complete classification of the Unitary Irreducible 
representations (UIRs) of the three-dimensional Lorentz 
group SO(2, 1) and of its twofold covering group SL(2, R ) 
were given by Bargmann in his classic 1947 article,1 where 
one can find the UIR matrix elements-rows and columns 
classified by the UIRs of the compact subgroup SO(2)-in 

L2 

explicit form. This group, its covering groups SO(2, 1)~ 

1 00 ----

SUr 1, 1)~Sp(2, R );:::; SL(2, R ) ~ SL(2, R ) and its represen-

tations were further studied by Barut and Fronsdal,2 Pu­
kanski/ Sally, 1r.,4 and in a book by Lang.5 

The study of group representations in different bases is 
of interest both from the mathematical and the physical 
point of view. The intimate connections between the repre­
sentations of Lie groups and the special functions of math­
ematical physics have long been recognized and treated in 
textbooks.6 In physics, subgroup reductions corresponding 
to different bases of the Lorentz and other groups lead to 
various ways to correlate or interpret data, as in the descrip­
tion of the high-energy scattering dynamics,7 which requires 
the reduction SO(2, 1):J SOt 1, 1) among others. This interest 
coincided with the investigations ofMukunda,R-11 Barut,2.12 
Lindblad and Nagel, 13 and others, who analyzed this chain 
in some detail and computed the generalized representation 
matrices (or integral kernels) of one-parameter subgroups 
and found the coupling coefficients. 

In the study of the role of canonical transformations in 
quantum mechanics, the work of Moshinsky and 
Quesne l4.15 started from linear transformations between co­
ordinate and momentum observables and lead to the oscilla­
tor (metaplectic) representation ofSp(2, R ). In contrast to the 
realizations given by Bargmann 1 and by Gel'fand et ai., 16 in 
which the group acts as a Lie transformation group on func­
tions of a coset manifold, the group actions in the construc­
tions of Moshinsky, 14.15.17 Seligman, Wolf, IR-23 Burdet, Per­
rin and Perroud,24 and present in the work of others, 25-27 is 
an integral transform realization ofSL(2, R ) on y2(R ) Hil­
bert spaces. This group of integral transforms has been 
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called canonical transforms. IX.2X It is unique in that the asso­
ciated Lie algebra is an algebra of second-order differential 
operators on a dense common domain in these Hilbert 
spaces. The action is thus distinct from-although unitarily 
equivalent20.2 1 to-the SL(2, R) action as a Lie transforma­
tion group on coset spaces, of the Lie-Bargmann multiplier 
representations29 on the unit circle or disk. 

The canonical transform realization has provided a de­
gree of uniformity in the treatment of the discrete series l

'! of 
UIRs on the one hand and the continuous series21 of UIRs 
on the other. In this article it has enabled us to evaluate, in a 
straightforward and unified way, the UIR matrix elements 
and integral kernels of finite SL(2, R ) elements. In contrast 
with some of the previous investigations, this approach deals 
with the general SL(2, R ) group element, rather than with 
specific one-parameter subgroups. Although Bargmann's 
results on UIRs ofSL(2, R ) in the compact subgroup basis30 

are well known, it is also true that other continuous noncom­
pact and mixed-basis reductions have so far not received 
uniform consideration2.9.lo.12,31-13 and are scattered in the 
literature. The discrete series ofUIRs in all subgroup reduc­
tions was undertaken by Boyer and W 01(,4 using canonical 
transforms. We repeat their results here since the journal is 
not generally available and the article contains some errata. 
The mixed-basis matrix elements of the continuous series 
were treated by Kalnins,31 who gave expressions for one­
parameter subgroups in terms of Whittaker and Laguerre 
functions of the second kind. 35 All our expressions are given 
in terms of confluent and Gauss hypergeometric functions, 
and have uniformity of notation, normalization, and phase 
conventions. The purpose of this paper is to give a compre­
hensive derivation and listing of all subgroup reductions. 

The plan of the article is as follows. In Sec. 2 we display 
the needed formulas from the theory of canonical transforms 
for the general method of construction and, since we want to 
describe all VIR matrix elements and integral kernels, we 
organize the notation properly in due accordance with Barg­
mann's conventions. In Sec. 3 and 4 we give the results for 
the discrete and continuous (nonexceptional and exception­
al) representation series. The first subsection of each lists the 
subgroup-adapted basis functions, the second treats the 
mixed-basis expressions, while the third subsection treats 
the subgroup reductions, i.e., the cases when the row and 
column variables refer to the same subgroup. These are ex-
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pressed as Gauss or confluent hypergeometric functions 
and, alternatively, as cylinder and Whittaker functions3o

•
37 

of the three independent SL(2, R ) parameters. Certain cases 
of interest are pointed out in a further subsection. Compari­
son with alternative derivations available in the literature is 
pointed out whenever we are aware of such results. 

The representation matrix elements for the compact 
subgroup chain were obtained by Bargmann as solutions to 
differential equations38 with boundary conditions imposed 
by the group identity. We come to the evaluation of an inte­
gral as the last step to the same end. We make use of a meth­
od by Majumdar and Basu32 on hypergeometric series Mel­
lin expansions to solve three of the six chains in each series. 
In the special case of the continuous series in the compact 
subgroup reduction, such an integral (a Gaussian of imagi­
nary width times two Whittaker functions, one with a res­
caled argument) is not available in the literature. Through 
Bargmann's result this is evaluated. 

In Sec. 5 we point out that the six different mixed-basis 
and subgroup-reduced representation matrix elements con­
stitute six families of SL(2, R ) integral and discrete trans­
forms, as well as series expansions, of which the set of ca­
nonical transforms is but one. The Appendix summarizes 
some information about the groups SU(1, 1), SL(2, R ), and 
their UIRs as classified by Bargmann. Throughout this arti­
cle Z and R stand for the set of integers and real numbers. 
Boldfaced symbols indicate vectors or matrices. For brevity, 
we shall speak ofUIR matrix elements encompassing both 
the ordinary and generalized (i.e., integral transform kernel) 
cases. 

As a general observation, we should remark that the 
canonical transform realization ofSL(2, R ) can be regarded 
as a complementary alternative to Bargmann's treatment of 
the same group. The latter is simpler in certain respects, 
particularly when dealing with the compact subgroup chain, 
while the former seems to be most appropriate for noncom­
pact subgroup chains. 

2. CANONICAL TRANSFORMS 

A. The construction of SL(2, R) representations 

The determination of representation matrices (or inte­
gral kernels) for group elementsgEG may proceed as follows: 
Provided (i) one has a Hilbert space JY of functionsj(r), r in 
some carrier space X, endowed with a sesquilinear positive 
definite inner product h')' where the action of G is well de­
fined and onto, 

(2.1) 

(ii) one has a complete orthonormal, or generalized Dirac­
orthonormal basis for JY, I ifJ). (r) l)'EA (A being the range of 
the label specifying the basis vectors uniquely), one can build 
a representation D: G_HomA as 

(2.2a) 

(2.2b) 

The completeness of the (possibly generalized) basis function 
set will then guarantee the representation property 
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where the symbol SA 'EA stands for summation in the case of 
proper, and integration in the case of generalized, bases, The 
unitarity and irreducibility properties ofD follow from simi­
lar requirements for the action (2.1) on JY. 

The reasons for which this straightforward program of­
ten fails to provide a definite result have to do more with 
knowing the "best" choice of basis functions! ifJ). (r) l AEA and 
the problem of explicit computation of the integral in (2.2b), 
than with matters of principle. The bases are usually chosen 
as the eigenvectors of one or more operators in the Lie alge­
bra-so that subgroup reductions result-while the space 
JY' is an !f 2(X) space on a coset manifold X = G / H (or 
H \. G) with some convenient subgroup He G. A closely re­
lated approach to part (ii) of evaluation of (2.2b) calls for 
(ii') finding these functions for various one-parameter 
subgroups of G as solutions of differential equations ob­
tained from the subgroup generators, subject to the bound­
ary conditions D(e) = 1 at the group identity eEG. 

The group G which we consider here is SL(2, R ): 

{g = e !)la,b,c,dER, det g = I}. (2.3) 

Starting with Bargmann I a number of authors have imple­
mented the program (i)-(ii) or (i)-(ii'), using for the support­
ing space X the coset space provided by the I wasawa decom­
position NA \.NAK = SI (i,e., the circle) and Bargmann's 
multiplier action. 29 This is unitary in !f2(SI) for the continu­
ous non exceptional representation series29

; for the continu­
ous exceptional and discrete series it is 'y 2

n c(SI) and 
y2 n o(Sd with non local measures39.40 n C and n D, The lat­
ter is equivalent20 to a space of analytic functions on the unit 
disk29 or on the complex half-plane. 10 These realizations are 
very appropriate for finding the SL(2, R ) representation ma­
trices reduced with respect to the compact SO(2) subgroup, 
since, the ensuing analysis makes use of Fourier series on 
y 2(S I) for UIRs belonging to the continuous class, or Hardy 
spaces for those belonging to the discrete series. 39 When one 
makes use of the same action and spaces for the reduction 
under a noncompact subgroup, calculations become 
awkward. 

The Hilbert spaces and SL(2, R ) action we use in this 
article have been developed in Refs, 9, 15, 19,21, and 22 for 
Sp(2, R )=SL(2, R ), as well as the oscillator representa­
tion 14,18 ofSp(2N, R ) on an N-dimensional carrier spaceR N. 

As we shall see in implementing part (ii) of the program out­
lined above, these techniques are best suited for noncom pact 
subgroup reduction. 

B. The discrete series Df 

The oscillator representation of the subgroup 
SO(2) X SL(2, R ) ofSp(4, R ), restricted to a given one-dimen­
sional UIR M ofSO(2), MEZ, generates the conjugate SL(2, 
R) representation 15,19.22.27 belonging to the discrete series 
D t with k = (1 + 1M I )/2. When the two-dimensional car­
rier space R 2 is parametrized in polar coordinates, this repre­
sentation is realized as an integral transform group on the 
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radial variable rER + and defines the k-radial canonical 
transform on the Hilbert space o?2(R +). The inner product 
is thus the standard one, 

(f, h ) = LX> dr f(r)*h (r), (2.4) 

and the action of the group element g is given by 

[e~ l1(r) = i= dr'C;(r, r'if(r'), g = e !), (2.5a) 

where the integral kernel C; (r, r') is given by an imaginary 
Gaussian times a Bessel function: 

C;(r, r') 

= e- i"kb -1(rr')1/2 exp(i[dr + ar'2]/2b ).12k _ I (rr'lb), 
(2.5b) 

2k - 1 = 0,1,2, ... , i.e., k =~, 1,~, 2, .... (2.5c) 

When g is a lower-triangular matrix (b = 0) one finds from 
the asymptotic properties of the Bessel function41 that Eq. 
(2.5a) becomes the multiplier action 

[ek G a~ I)f ](r) = (sgn a)2k lal- 1/2 exp(icr/2a)f(r/lal)· 

(2.5d) 

We shall write ek (g) for e; whenever g is displayed as a 
matrix. The k-canonical transform (2.5) is unitary under the 
inner product (2.4) and a Parseval relation (f, h ) 

= (e;f, e;h) holds. 
The Lie generators of e; are second-order differential 

operators42 given by 

(2.6a) 

=-- r-+1 J y i (d ) 
2 2 dr 2' 

(2.6b) 

J y 1 ( d 2 r ') 
0 =- - -+-+r 

4 dr r2 ' 
(2.6c) 

on a space dense in 12(R +), and r is related to k through 

r = (2k - 1)2 -1, (2.7) 

so that r = - 1, ~, ¥, .... These generators close into a Lie 
algebra sl(2, R ) under commutation. We shall also come to 
use 

(2.8a) 

(2.8b) 

The Casimir invariant of sl(2, R ) is a multiple of the identity: 

Q = (Jff + (Jrl2 - (Jl{f = qt, (2.9a) 

q = - 1r + t; = k (1 - k ), (2.9b) 

i.e., q = 1, 0, -~, - 2, .... 
The association of (2.6)-(2.8) with the one-parameter sub­
groups of SL(2, R ) is as follows 

exp(iaJI)>-+MI(a) 

(
cosh al2 

- - sinh al2 
- sinh a/2) 
cosh a/2 ESO(I, 1)1' 
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(2.lOa) 

(
COS( r/2) 

exp(irJo)t--+Mo(r) = sin( r/2) 

exp(~ 12))ESO(I, lho 
(2.lOb) 

- sin( r/2)) 
cos( r/2) ESO(2)o, 

(2.1Oc) 

(2.lOd) 

(2.lOe) 

All nonequivalent one-parameter subgroups ofSL(2, R ) are 
present in (2.10): the compact rotation elliptic subgroup 
SO(2), the noncompact Euclidean parabolic subgroup E(I), 
and the boost hyperbolic subgroup SO(I, 1). For the latter 
two we have the following equivalence relations between the 
equivalent pairs (2. lOa)-(2. lOb) and (2.lOd)-(2.lOe): 

S = 2- 1/2C - 1) 
1 ' (2.11a) 

( 0 1) . 
F= -1 0 =S-2.(2.11b) 

The spectrum of J I{ in (2.6c) for r>~ in y2(R +) has a lower 
bound given by its corresponding k> 1. (For k = ! or 
r = - ! this is also the case for the self-adjoint extension 
specified in Sec. 3) The k-radial canonical transforms (2.5) 
thus belong to the lower-bound UIRs D k+ of SL(2, R ). 

The UIRs D k- are obtained from the D k+ ones through 
the sl(2, R ) outer automorphism43 

JI{<c->- - JI{, 1\ <c->- - Jf, JI<c->-Jr, J\ <c->- - JY± . 
(2.12a) 

This exchanges the raising and lowering operators with a 
change of sign: 

(2.12b) 

The automorphism acts on the SL(2, R ) group elements44 as 

-b) =g1 d . (2.12c) 

The D k- matrix elements can be thus expressed in terms of 
the corresponding D t ones, as will be detailed for the var­
ious subgroup reductions, at the end of the next section. 

C. The continuous nonexceptional series C; 

The oscillator representation ofSp(4, R ) can also be re­
duced with respect to an O( 1, 1) X SL(2, R ) subgroup 11.21.22 
by making use of hyperbolic coordinates on the plane. The 
resulting reduction, on being restricted to a definite 
UIR (p, 2s) of 0(1, 1),p = ± 1, sER, yields a conjugate re­
duction of SL(2, R ) to one of the continuous series of UIRs 
C:. The case of vector (e = 0) and spinor (e = !) representa­
tions correspond to even (p = + 1) and odd( p = - 1) par­
ity representations ofO( 1, 1) with q = l + S2>!. Since hyper­
bolic coordinates require two coordinate patches to cover 
the plane, the "hyperbolic radial" carrier space will be 
X = R + + R + and the Hilbert space correspondingly atwo­
component y2 space of functions 
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fir) = (/1(r) ) = 1I.I;(r)ll, j = I, - I, .I;(r)E2"2(R +). 
I-I(r) 

(2.13) 

The inner product in this Hilbert space 2";1 (R +) 
= y2(R +) +- 2"2(R +) will be 

(f, h) = j=~ I fX> dr .I;(r)*h;!r). (2.14) 

Calling k = ! + is, this reduction leads to the (E, k )-hyper­
bolic canonical transform 

[C~,k f]j(r) = j';± I f" dr' [C~k]j,j'(r,r').I;.(r'), (2.ISa) 

The 2 X 2 matrix integral kernel C:,k(r, r') is given by a Gaus­
sian times Hankel and Macdonald functions of imaginary 
index. For 2k - 1 = 2is, sER,po = I,P1/2 = - I, we can 
write45 

[C~,k L. (r, r') = GgJJ' (r, r')H jf( - rr'lb ), (2.ISb) 

G. (r, r') = (21Tlb 1)-I(rr') 1/2exp(i[djr + aj'r'2]12b), 
gJJ (2.1Sc) 

H~',7(s) = P.H'!I, _ I (s) = p.Hr',7( - s) = Hr:: -k(S) 

= i1T[e -1rsH~li~(S + iO+) - p.e1T'H~~~(s - iO+)] 

= 2i1T( - sgnS)2'[ - gl/2 _ ,(k )J2I,(ls I) 
+ i g,(k )Y2i' (Is I)]. (2,ISd) 

Hr'," i (s) = p.H·'\ds) = p,H~:k_ I ( - s) = p.Hr:i_-/(s) 

= 4( - sgnS f'g.(k )K2i,(ls I), (2.1Se) 

{
k - ~ = is, 

€= 0: -
k - ~ = a, 

s;;.o . {COSh 1TS 
, go(k) = sm 1Tk = . o < a < ~ cos 1Ta 

- (2.1 Sf) 

E = ~: k - ! = is, S> 0, g I o(k ) = icos1Tk = sinh1Ts, 
(2.1Sg) 

In the last two equations we are defining the function g, (k ) 
for values of k which will make it applicable to the exception­
al continuous series discussed in the next subsection. Note 
that for S < 0, arg(s ± iO+) = ± 1T, so (2.1 Sd) valuates H ~ii~ 
above the branch cut of the function (placed along the nega­
tive real half-axis), and H ~~I, is valuated below the cut. 

When gin Eq. (2.3) is lower-triangular (b = 0), as for the 
oscillator radial case (2,5), one finds from the asymptotic 
properties of the cylinder functions that Eq. (2.1 Sa) becomes 
the multiplier action 

[I[;" C aa~ 1) f](r) = (sgn a)2·l a l-1/ 2exp(ijcr/2a).I;(rllal)· 

} (2.ISh) 

The (E, k i-hyperbolic canonical transform is unitary under 
(2.14), and a corresponding Parseval relation holds. 

Here too, the Lie generators of the integral transform 
action are second-order differential operators, but arranged 
in 2 X 2 matrix form. In terms of the formal operators (2.6) 
they are i 1,2 i 
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(
Jr 

JY -
1- 0 

(
Ji 

JY -
2 - 0 

o ) = IljtS.JrJl, 
J 1" JJ 

- 1 

0) = IltS.Jrll, JY JJ 
2 
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(2.16a) 

(2,16b) 

o ) = II jtSjJ'JI; II, 
-JI; 

o ) = II jtS.J 1'+ II. _ JY }J_ 
± 

(2.16c) 

(2,16d) 

Again y is related to k through (2.7), but now as k is in the 
range (2.ISf) and (2.ISg) [instead of (2.Scll, we have y<. - a. 
As the subgroup assignments (2.10) are representation-inde­
pendent statements, they continue to hold here as well. The 
Casimir invariant ofSL(2, R ) is now q;;.1, corresponding to 
the continuous nonexceptional series ofUIRs. The one point 
we must clarify in this regard (See the Appendix) is that for 
spinor representations (E = !) the hyperbolic canonical 
transforms (2.15) do not include the point k = ! (i.e., s = 0 or 
q = !). Indeed, from (2.ISe) we can verify that for k = ! + is, 
s-+O+ the off-diagonal kernel elements (j=ff) vanish and 
hence the two j-component spaces uncouple. The diagonal 
elements are now -Jo(s), that is, they are the D 1;;2 (k = ~)­
radial canonical transform kernel for the upper component, 
and the D 1/2 one for the lower component, as is clearly sug­
gested by (2.12a)-(2.16). 

D. The continuous exceptional series c:; 
The oscillator representation of Sp(4, R ) does not con­

tain the exceptional continuous representation series of any 
of its SL(2, R ) subgroups. However, there exist unique self­
adjoint extensions46 of the generators (2.16) in Yil (R +), 
which enable us to reach this series by analytic continuation 
in the variable k in (2.ISf) to values off k = !. in the range 

~ < k < 1 (i.e., 0 < 2k - 1 = 2a < I), fort = 0 (P. = 1). 
- (2.17) 

For these UIRs -! <y <~, i.e., 0 <q <i. 
The features one must check are that the integral ker­

nels corresponding to these values of k continue to map 
fil (R +) functions into functions in the same space, and 
that the representation property (2.2c) holds. That this is the 
case follows from the integrability properties of cylinder 
functions in the range ( - 1. 1) of the index, in particular 
their behavior at zero and infinity, and from the complete­
ness relations for the similarly extended basis functions, to 
be seen in Sec. 4. 

Again, as for the € =!, k = ! + is, s-+O+ case seen 
above, when € = 0 and k-l - the integral kernel matrix 
(2.13) becomes diagonal and the twoj components uncouple. 
In the limit, the upper and lower-diagonal components be­
come proportional to J 1(s), and belong to the D 1+ and D 1-

representations. 
We have assembled in the last subsections the tools for 

the calculation of the matrix elements ofSL(2, R ) in point (i) 
of our program. In the next two sections we shall implement 
point (ii) for the discrete and continuous UIRs. 

E. Notation 

A word about notation: we shall use the eigenbases of 
J 1 a = 0 1 2 + - generating the discrete UIRs D ,,' . 
Vv': denot~ tl~ei~ eig~nfu~ctions by "CP ~ (r), A being a function 
of the eigenvalue. When J;; is in the elliptic orbit (a = 0) the 
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eigenvalue set of JI;' is discrete and we shall denote its eigen­
valuesA by m. The range will be understood by the context. 
When J~ is in the hyperbolic orbit (a = 1,2) or in the para­
bolic orbit (a = +, -), its eigenvalue set is continuous. In 
the first case A will be denoted by IlER, the eigenvalue under 
J \.2 being Il. In the second case A will be called pER +, the 
eigenvalues of J Y± beingp2/2. Eigenbases for the D k- UIRs 
will not be needed separately. In the continuous series C; 
the eigenbases of J ~ will be similarly denoted by a\fl~.k(r), 
these are two-component functions with elements al/l~'J, 
j = I, - 1. We use m again for A, the eigenvalue underJ!;'. 
The multiplicity of the eigenvalues of the generators in the 
hyperbolic and parabolic orbits is now doubled, however. 
For the former we use for A the pair (K, Il), K = ± I, IlER, 
and for the latter (sgn p, Ipl) = p,pER, the eigenvalues being 
again Il and p2/2 under the respective J Y's. 

The representations D(g) constructed in (2.2) have their 
matrix elements 

".{3D k (g)_(Gcpk Ck{3cpk)_ [{3.GDk (g-I)]* 
A,A' - A ,~ A' - A ',A , 

(2.18a) 

G,{3 D "k (g) _ (G\fI,.k C"k (3 \fI"k) _ [{3,G D "k (g - I)] * 
A,A' - A' II A' - A ',A , 

(2.18b) 

in the appropriate inner product. When a = f3 we write aD .. 
for G.a D.. . The cases a i= f3 and a = f3 in (2.18) will be called 
mixed-basis and subgroup-reduced UIR matrix elements. 
We shall work mostly with the D k+ UIRs and use (2.18a). In 
Sec. 3D, when we express the D k- UIRs in terms of the D t 
ones, we shall writeD ~ I - I andD ~ I + I to distinguish be­
tween them. 

3. THE DISCRETE SERIES Of 

In this section we present the evaluation of the matrix 
elements (or integral kernels) of finite SL(2, R) transforma­
tions for the UIRs belonging to the discrete series D k± • The 
first subsection gives the E(I), SO(I, I), and SO(2) subgroup­
adapted eigenfunctions, while the second and third subsec­
tions provide the explicit evaluation of D t mixed-basis and 
subgroup-reduced cases respectively. The last subsection re­
lates these results to those of the D k- representations. 

A. The subgroup-adapted eigenfunctions 

i. E (1) C SL (2, R ). The two operators generating conjugate 
E( 1) subgroups [c.r. Eqs. (2.lOd) and (2.lOe)] are, as given by 
(2.8a), and (2.8b),JY+ andJY_ . They are unitarily equivalent 
through the Hankel transform (2.11 b). 

The eigenfunctions of JY+ in Sf2(R +) are, for 
r = (2k - 1)2 -!, 
+</>~(r)=eirrk(pr)1/2J2k_l(pr), pER+, k=!,I,~, ... , 

(3.1) 

with eigenvaluep2/2ER +. The phase has been chosen so that 
the phase of the -cp ~ functions, below, be as simple as 
possible. 

A more convenient operator in the E( I) orbit is J ~ , as 
its eigenfunctions are simply 

-CPp(r)=D(p-r) = [c; +</>~](r), rER+, (3.2a) 
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with eigenvalue p2 /2. These are Dirac-orthonormal and 
complete: 

(-CPp' -CPp') = D(p - p'), 

(3.2b) 

andindependentofk. 

ii. SO (I, 1) CSL (2, R ). Here again we have two operators 
generating conjugate SO(I, 1) subgroups [c.f. Eqs. (2. lOa) 
and (2. lOb) and (2.lla)]: Jf and JI, as given by (2.Sa) and 
(2.Sb). The latter is the simpler one, and its eigenfunctions 
are 

with eigenvalue Il. They are Dirac-orthonormal and 
complete: 

(3.3a) 

ecp 1" 2cp 1'.) = D(p. -Il'), f: 00 dll 2</> I' (r)* 2</> I' (r') = 6(r - r/j, 

(3.3b) 

and independent of k. The expansion in terms of them is-up 
to a factor-the positive Mellin transformation,47 so an ap­
propriate phase choice has been made. 

The J f Dirac-normalized eigenfunctions may be found 
from (3.3a) and (2.11a) to be 

ICP;(r) = [c~ 2CPl' ](r) 
= Ckeirrk12r-'/2M.. (- ir) 

I' II'.k -- 112 

= C k rlk - 1/2eir/2 F [k - ill. _ ir] (3.4a) 
I' I I 2k' , 

C; = eirrk/22ill1T-1/2errll12r(k + ill)/r(2k). (3.4b) 

and where M., (.) is one of the Whittaker functions.48 They 
correspond to eigenvaluell under Jf, and are Dirac-orthon­
ormal and complete as in (3.3b). 

iii. SO (2)CSL (2,R ). The compact SO(2) subgroup is generat­
ed by J I;' as given in Eq. (2.6c). Its normalized eigenfunctions 
are given by 

0cp ~ (r) = [2n!/(2k + n _ l)l]'/2r k - l12e - r/2L ~k - II(r) 

= [2(2k + n - 1)!/nl(2k - l)l]'12r -'/2M m ,k_'12(r) 
= [2(2k + n - 1)!/nl]'/2[(2k - l)l]-lr k - 1/2e - r12 

X IFI[2~n;r], 
m = k + n, n = 0, 1, 2, ... (3.Sa) 

with eigenvalue m = k, k + 1, .... The phase of these func­
tions has been chosen following Bargmann's convention,49 
namely, such that the raising and lowering operators 
J f ± iJ r have real, positive, matrix elements. They are orth­
onormal and complete (dense) in Sf2(R +): 

(oCP ~, oCP~. ) = 15 m,m', f o</> ~ (r)* 0cp ~ (r') = 6(r - r/). 
m=k 

(3.Sb) 

B. The mixed-basis matrix elements 

i.E(I)CSL (2,R PSO(2).ForallgESL(2,R )wemayperform 
the Iwasawa decomposition 
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o ) (COS () /2 
ii - I sin () 12 

- sin () 12) 
cos () 12 ' 

(3.6a) 

where 

ei8 = (a - ib )I(a + ib), ii = (a2 + b 2)1/2, ii c = ae + bd. 
(3.6b) 

Application of C; decomposed as above, multiplies the J 1; 
eigenfunction by eim8, followed subsequently by a multiplier 
Lie transformation, Eq. (2.5d). Thus 

[C; o(/> ~ ](r) = [(a - ib )I(a + ib )]m(a2 + b 2)-1/4 

xexp(ir[ae + bd ]!2[a2 + b 2]) 

X°(/> ~(r/[a2 + b 2]112). (3.7) 

Since the J Y_ eigenfunctions are simple Dirac deltas, we 
immediately obtain 

-.OD~m(: !) = (-(/>p, CkG !) o(/>~) 
= [Ck

(: !)o(/>~](p)= +'OD~m(~a :b) 

= [0. -D ~p ( ~ e ~ b) ]* 
= (a - ib )m [ 2r (k + m) ] 1/2 (a2 + b 2) - k 

a + ib (m - k )! r (2k ) 

Xp2k -[ 1/2 e( xp( -k p; ~; :~]) 
- m-) p 

X IFI 2k ; a2 + b 2 . 
(3.8) 

The overlap coefficient between the E(1)_ and SO(2)0 
subgroup chains is obtained by setting g = 1, i.e., a = 1 = d, 
b = 0 = e in Eq. (3.8). This is o(/> ~ (p), i.e., this change of 
basis is basically the Laguerre series expansion of functions 
of peR +. 

ii. SO(I, I)CSL (2, R ):JSO(2). This mixed basis element is 
essentially the Mellin transform ofEq. (3.8), and is given bysO 

2,oD k (a b) 
I'm e d 

= (2(/> 1" C
k 

G !) 04) ~ ) 

(
2- 1/2(a-e) 2-1/2(b_d)) _ 1,0D k 

- I'm 2-1/2(a+e) 2-1/2(b+d) 

=2k il'[ r(k+m) ]112 r(k-Ijt) 
217'(m - k)! r(2k) 

X (a + ib ) - m(a - ib t - k + il'(d _ ie) - k + il' 

[ 
- (m - k ), k - ljt 2 ] 

X 2FI ; ------
2k (a - ib )(d - ie) 

= ( - l)m - k2m - il'[217'(m - k )!r(k + mll - 1/2r(m - iii) 

X (a + ib ) - m(a - ib )il'(d _ ie) - m + il' 

X 2FI [ - (m 1- k), 1 -. k - m ; Ha _ ib)(d _ Ie)]. 
- m + Iii 

(3.9) 

In all power-function factors, the principal branch of this 
function is to be taken in an obvious way. The hypergeome-
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tric function is a polynomial of degree m - k = n so no mul­
tivaluation problems occur on its account. 

The overlap coefficient between these two chains in the 
discrete series is obtained by setting g = 1. Using an identity 
for the hypergeometric functionS I we find 
(2(/> o(/> k ) = 2,oD k (1) 

Ii.' m J-lm 

= ( _ l)m - k 2k - il' T(m - iii) 
[217'(m - k )!r(k + m)] 1/2 

X F [ - (m - k ), k + Ijt. _ 1] (3. lOa) 
1 I 1 + . , . -m Iii 

Correspondingly 

(I(/> k o(/> k ) 
lJ.' m 

= 2,oD k (2 - I/l( 1 1)) = e - im1T12(2(/> o</> k ) 
I,m _ 1 1 I' , m , 

(3. lOb) 

which may be compared with prior results. 52 

iii.E (I)CSL (2,R ) :JSO (1,1). TheapplicationofC; t0 2(/>ll in 
Eq. (3.3a) is up to a factor the Mellin transform of the k­
canonical transform kernel (2.5b) with respect to the second 
argument r'. Although integrals of this type appear in the 
standard tables,53 if we want to have expressions valid for all 
group parameters, positive as well as negative, care must be 
taken to choose the appropriate parameter products and ra­
tios so that the ensuing complex power function be evaluated 
in a definite way: We choose here the principal sheet (with 
the branch cut along the negative real axis). Following the 
general method of finding the Mellin transforms of hyper­
geometric functions due to Majumdar and Basu,39 which 
will be explained in some detail in the next section, we find 
the value of the integral to be 

-,lD ~I' e !)= ( -</>P' C
k e !) 2</>1' ) = [Ck 

(: !) 24)1' liP) 

= e- i11'k2 - k + il'17'-1/2 r(k + Ijt) 
r(2k) 

X b - 2k ( _ ial b ) - k - il' 

Xp2k - 1/2 exp(idpl/2b ) 

X F [k + iii. - ip2 ] (3.11) 
1 I 2k ' 2ab . 

The complex-power function argument - ialb lies, for all 
signs of a and b on the imaginary axis. 54 Valuation on the 
principal sheet means that the phase of - ialb is - 17'12 for 
sgnab = 1 and 17'/2 for sgnab = - 1. 

The overlap coefficient between these two chains may 
be obtained as the limit g-+1 in Eq. (3.11), or directly, as 

(- (/>P' 2(/>1') = -,2D ~I' (1) = 17'- 1/2p - 1/2 + 2il', (3.12) 

which is47 21/2 times the positive Mellin transform kernel, of 
argument 21i, between a function of peR + and its transform 
function of lieR. 

c. The matrix elements in the subgroup bases 

i. E (1) C SL (2, R ). In this generalized basis the integral kernel 
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is the simplest to obtain, as no integrations need be 
performed: 

_ k (a b) (_ k (a b) _ ) k (a b) , D pp' cd = if>p'C cd if>p' =C cd (p,p) 

= e - hrkb -!(pp')! /2exp(i[dp2 + ap'2]!2b ).12k _ I (pp'/b) 
= 2(2ib) - 2k [F(2k)] -I /Pp')2k - 112 

[
2k - 1 2in'P'] 

Xexp(i[dp2 - 2pp' + ap'2]!2b) IF! 4k _ ~; -~- . 

(3.13) 

For gEE( 1), the subgroup generated by JY_ [c.f. Eq. (2.lOe)], 
the kernel becomes diagonal. In fact, it is diagonal for the 
two-parameter subgroup generated by the first-order differ­
ential operators, for which (2.13) converges weakly to 

- D ~p' (: a~ I) = (sgn a)2k lal- 1I2 

X exp(icp2/2a)o( p' - p/la I). (3.14) 

From this form it is manifest that - D ~p' (1) = o( P - p'), the 
unit operator in 'y2(R +), while - D ~p' ( - 1) 
= ( - 1 )2kO( P - p'). The composition property is satisfied, 

i.e., Eq. (2.2c) under f R + dp .. , as under this measure the 
eigenbasis is Dirac-orthonormal and complete. 

The matrix elements between the J Y+ eigenfunctions 
can now be immediately computed: 

=-D k ,( d 
pp -b (3.15) 

The matrix elements (3.14) and (3.15) are manifestly unitary. 
This is a direct consequence of the unitarity of the canonical 
transforms. 

The E( 1) reduction shows in particular that the Bessel 
functions in + if> ~(r) are self-reciprocating55 under the k-ra­
dial canonical transforms,- i.e., the C; -transform of + if> ~ 
may be written as a multiplier function times a function of 
the transformed argument: 

[Ck 
(: !) + if> ~ ](r) 

= [Ck
(: a~!) exp( - iba-IJ~) +if>~ ](r) 

= lal- 1/2exp( - ibp2/2a)exp(icr/2a) +if>~(r/lal). 
(3.16) 

Here we have made use of the decomposition of g as a lower­
triangular matrix times M+(b fa) [c f. Eqs. (2.lOd) and 

2Dk (a b) -f"" d H2Dk (0 
".,,' c d - _ "" p. ".,," - 1 

1) 2 k (- c o D ,,".,,' a 

(2.lOe)]; the latter factor gives rise to the phase 
exp( - ibp2/2a) while the former is the point transformation 
as given by Eq. (2.5c). Similar self-reciprocation formulas 
hold for other subgroup-reduced matrix elements through­
out this article. 
ii.SO (1, I)CSL (2,R ). This matrix element56 is essentially the 
Mellin transform ofEq. (3.11) with respect to the argument 
p. Again, as the general method for evaluating Mellin trans­
forms of hyper geometric functions39 is presented in the next 
section, we simply quote here the result: 

2 D k ,(a b) = (2if> , Ck (a b) 2if> ,) 
"" cd "cd" 

= I D k ,((a - b - c + d )/2 (a + b - c - d )/2) 
"" (a - b + c - d )/2 (a + b + c + d )/2 

= e - i1Tk 2ilJl' -,,) F (k - ip.)F (k + ip.') 
21TF(2k) 

( 
_ ia ) - k - i,,' ( _ id ) - k + i" Xb -2k __ __ 
b b 

F [k - ip.,k + ip.' . _1_] 
X 2 ! 2k ' ad . (3.17) 

As in (3.11), we give this expression in terms of complex 
power functions, taking care that these variables be evaluat­
ed for points along the imaginary axis, in the principal sheet 
of the power functions, where the cut is chosen along the 
negative real half-axis. 57 An alternative expression in terms 
of the absolute values of a, b, and d may be written through 

b - 2k ( _ ia/ b ) - k - i,,' ( _ id I b ) - k + i,,' 

= (sgnb )2kexp(i!1T[k + ip.']sgnab) 

X exp(i!1T[k - ip.] sgnbd )Ial - k - i,,' 

XlblilJl'-")ldl- k + i". (3.18) 

One can obtain from these expressions the diagonal and anti­
diagonal cases 

2D;",(~ a~I)=(sgna)2klal-2i"o(JL_p.')' (3.19) 

2 k (0 1) 
D ",,' _ 1 0 
= e - i1Tk 2 - 2i" [F (k - ip.)/F (k + ip.) ]o(JL + p.') 

=exp i( - 1Tk - 2p.ln2 + 2arg[k - ip.])O(JL + p.'). (3.20) 

From (3.19) we verify that 2Dk( ± 1) = (± 1)2k 1, while 
(3.20) is the Fourier-Hankel transform in the Mellin basis. 
The representations are unitary in all cases. The direct evalu­
ation of (3.20) allows us to give alternative forms for (3.17) 
through 

= e - i1Tk2 - 2i"[F(k _ ip.)/F(k + ip.)] 2D k_ ,( - c 
"," a 

~d) 
-a). =e - i1Tk 22i

,,' [F (k + ip.')/F (k - ip.')] 2D;. _".(! 
-c 

(3.21) 

iii. SO (2)CSL (2,R ). This matrix element is the inner product ofEq. (3.7)with 0cp ~. The resulting integral in available from the 
tables. 58 It is 
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°D ~m-(: ~) = (0(1) ~, Ck 
(: ~) O(l)~.) 

= 22kF(m + m')[F(k + m)F(l - k + m)F(k + m')F(l - k + m')]-tl2 

X [(d - a) - i(b + c)]m-k [(a - d) - i(b + c)]m'~k [(a + d) + i(b - c)]-m-m' 

F [ 
- (m - k), - (m' - k). a2 + b 2 + c2 + d 2 + 2 ] 

X 2 I , 2 2 
1 - m - m' a + b + c2 + d 2 - 2 

= (- l)m-kF(m + m')[F(k + m)F(l - k + m)F(k + m')F(l - k + m')]1/2 

Xao - m - m'fJ m - kfJ Om' - k F [ - (m - k), - (m' - k) . EE]. 
2 I 1 _ m - m' , IfJI 2 

(3.22) 

In the last expression we have given the SL(2, R ) representa­
tion matrix elements in terms of the complex SUI 1, 1) param­
eters of Bargmann through (A3). The hypergeometric func­
tion appearing above is actually a polynomial of degree 
minim - k, m' - k). One also checks easily that 
°nk 

( ± 1) = ( ± 1 )2k 1 and that the representation matrix is 
unitary. 

The expression (3.22) for the UIR matrix elements gives 
the value of the group unit at the point at infinity of the 
hypergeometric function. We can bring59 (3.22) to coincide 
with the form given by Bargmann,60 which values the group 
unit at the zero of the hypergeometric function, taking care 
to distinguish the cases m;;.m' from m<m'. 

D. The Dk- representations 

The discrete representation series D k- is obtained from 
theD k+ series through the group automorphism (2.12c), i.e., 
nk ( - J(g) = nk ( + J(gA ). The basis functions a(l) ~ (r) are now to 
be taken as eigenfunctions of the algebra generators ifaJ~, 
whereifa = -Ifora=O, 1, +, - andifa = Ifora=2, 
with eigenvalue if a times the eigenvalue of the J ~ represen­
tation generator. In addition, for the SO(2) subgroup chain, if 
we are to follow Bargmann's phase convention49 of having 
the raising and lowering operators represented by matrices 
with positive elements, (2.12b) implies that the phase of the 
basis functions 0(1) ~ (r) must be mUltiplied by a sign factor 
r;; = ( - I)m - k [recall (3.5b)). For convenience we set r:; 
= 1 for all other a #0. We can then write all D k- mixed-

basis and subgroup-reduced matrix elements in terms of the 
D k+ expressions given above in this section as 

-b) 
d ' 

(3.23a) 
I 

{
I, 

(7'a = -1, 
a=2, +, -
a =0,1 

A { 1, a = 1,2, +, 
(3.23b) T -

a - (_ l)m -~ k, a = ° 
4. THE CONTINUOUS SERIES ~ 

In this section we follow the same general strategy in 
finding the unitary irreducible matrix elements (or integral 
kernels) corresponding to the continuous series C:. The dif­
ference is that here we use the hyperbolic canonical trans­
forms of Sec. 2e, rather than the radial ones employed 
above. The function space has now two components, the in­
ner product is given by Eq. (2.14), the group action by (2.15), 
and the subgroup generators by Eqs. (2.16). The noncompact 
subgroup generators J_ and J 2 ofE(1)_ and SO(I, 1b are 
just as simple as those in the last section-although their 
spectra are doubly degenerate. The eigenfunctions of J o and 
J 1 are in general less simple: linear combinations of the first 
and second solutions of the confluent hypergeometric differ­
ential equation. Although the J o eigenfunctions sum up to a 
Whittaker function,61 the J 1 eigenfunctions do not. 

A. The subgroup-adapted eigenfunctions 

i. E {l)CSL (2,R ). The simplest operator in the parabolic or­
bit, as for its discrete counterpart, is J _, given by (2.16c). Its 
generalized eigenfunctions are 

p;;'o 

~) -'III pi (r), p < 0, 

(4.1a) 

with eigenvalue (sgn p) p 2/2. The spectrum of J _ in the con­
tinuous series UIRs thus ranges over R, rather than over R + 

as in the discrete ones. In (4.1a) a definite choice of phase has 
been made. The set off unctions (4.1a) is Dirac-orthonormal 
and complete in 'ziI(R +): 

(4.Ib) 

From Eqs. (4.1a) and the hyperbolic inverse Fourier canonical transform [Eqs. (2.15) for F- 1 as given in (2.11 b)} we find 
the JY+ generalized eigenfunctions to be 

+ Ek _ (pr)1/2 r::~~1 ( -prj ) _ ((21T)-1IZ[e - i1l"/4WO.2k_ 1 (2ipr) + Peei1l"/4Wo.2k -1 ( - 2iPr)]) 
'lip (r) - -- k - 1/2 ' p;;'O, 

217' e_ 1.1 ( - prj (2/17') Pege(k) WO,2k _ 1 (2pr) 
(4.2a) 
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+\TIEk(r) = (I plr)1/2 ( H~~ - dpr) ) =p (0 1) +'IIEk (r) 0 
Tp 21T \HE~ 1,- dpr) E 1 0 Ipl' p<. , 

where the H;J(t) are given in (2.15d)-(2.15e). We have ex­
pressed the Hankel and Macdonald functions in terms of 
Whittaker functions61 of argument phase 0 and ± 1T/2. As 
in (4.1a), (4.2) correspond to the eigenvalue (sgn p) p2/2ER. 
Recall that for the continuous nonexceptional series 
2k - 1 = 2is, s;;;.O for E = 0 ands> 0 for E =~, while for the 
exceptional interval E = 0, 2k - 1 = 2(}", 0 < ()" < ~. 
ii.SO (1, I)CSL (2,R). The simplest operator in the hyperbol­
ic orbit is J 2, as given by (2. 16b). Notice that the signs of the 
entries are the same. The spectrum of J2 covers R once in 
'y2(R +), while that of J 2 does so twice in .YiI(R +). The 
normalized eigenfunctions 2'11 K,1l (r) thus require an extra di­
chotomic index K = ± 1, and are 

2'11K,Il(r) = (21T)-1/2C)r-I12+2ill, K = ± 1,J.lER, 

(4.3a) 

belonging to the eigenvalue J.l under J 2• The dichotomic in­
dex K has been introduced by Mukunda and Radhakrish­
nan II; it can be seen as the eigenvalue of 2'11 K,1l (r) under a 
transformation in .YidR +) given by A:!j(r)-! _j(r), which 
may be represented62 as 

The statement of Dirac orthonormality and completeness is 

(2'11K'Il' 2'11K'.Il') = oK,K'o(P - J.l'), 

K~ I f: 00 dJ.l2qtK,Il)r)* 2qtK,lll(r') = ojJ'o(r - r'). 

(4.3b) 

The eigenfunctions 1'II!:;(r) of Jr [Eq. (2.16a)], on the 
other hand, using (2.11a) are given by63 

I qt E.k .(r) K,Il,j 

= [C~k 2'11K,1l ]j(r) = ( - 1)2E(21T)-3/22ill + IgE(k) 

X [e - ijrrjk + W2{PE G ;,j(r) + G ~,j k(r)} 

+ Keijrrjk + W2{G ;,j(r) + G ~.j k(r)}], (4.4a) 

G Z,j(r) = r (1 - 2k)r (k + iJ.l)rk - leijr'/2 

X IFI(k - iJ.l; 2k; - ijr). 

They are obtained from Eqs. (4.17)-(4.18), below. 

(4.2b) 

(4.4b) 

iii. SO (2)CSL (2, R). For the continuous series C: ofUIRs 
belonging to the nonexceptional or exceptional series, the 
eigenfunctions of the compact generator 
J!; are given by 

DqiE,k(r) = gE(k) 
m 1Tr1/2 

X (( - l)m-E[2r(k - m)r(1 - k - m)]1/2Wm ,k_1/2(r)) 

[2r(k+m)r(l-k+m)]1/2W_ m ,k_1I2(r) . 

(4.5a) 

These eigenfunctions belong to the eigenvalue m under J!;. 
We have chosen the phase in accordance with Bargmann's 
convention,64 i.e., such that the raising and lowering opera­
tors have positive matrix elements, They are orthonormal 
and complete in Yil (R +): 

" OqtE,k.(r)* 0qtE,k, (r') = o,o(r - r'). L m.J m,l ).} (4.5b) 
mEZ 

B. The mixed-basis matrix elements 

i.E(I)CSL (2,R PSO (2). Application of(:::k decomposed as 
in (3.6) gives 

[CE,k DqiE,k](r) = (a - ib )m(a2 + b 2)-1/4 
K m j a + ib 

(
ijr[ac + bd]) xexp 
2[a2 + b 2] 

Xoqt~~j(r/[a2 + b 2]1/2). (4.6) 

This formula displays the Whittaker functions (4.5a) as self­
reciprocating under the corresponding hyperbolic canonical 
transforms.65 Since the J _ eigenfunctions are simple Dirac 
deltas, we obtain66 

( )m_E(a-ib)m gE(k) (p2[a-ibSgnp ][d-iCsgnp ]) = - sgnp -- exp 
a+ib 1Tlp11/2 2(a2+b 2) 

X r(1-2k) p [{ [ 
2r(k-m ) ]112 [ p2 ]k 

r(l-k-m p ) a2+b 2 

[
k - m p2]} ] X IFI p; 2 2 + {k++ 1 - k} , 

2k a +b 

mp = m sgnp. (4.7) 
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The overlap coefficient between the E(I)_ and SO(2)0 sub­
group chains is easily found from (4.7) for g = 1 and is 
°'l'~~sgnp (I pl). This change of basis thus represents basically 
the Whittaker series expansion (mE Z) of a function of pER. 

ii.SO(I,I)CSL (2,R ):JSO(2). The evaluation ofthis mixed­
basis matrix element will be given in some detail because the 
method presented here has been used to obtain all the matrix 
elements carrying SO(I, 1) reductions, both in the continu­
ous and in the discrete series in the last section, where its 
discussion was postponed. The method32 essentially consists 
of a Taylor expansion of [C~ OW~k ](r) followed by a Mellin­
Barnes transformation. 

The Taylor expansion of the Gaussian and ,F, func­
tions appearing in (4.7) [for I pl>---+r and sgn p>---+Jl yields, after 
an exchange of summations which allows us to recognize one 
of them as a 2F, series, 

[C~ OW~k]j (r) 

= (_ Jr-·(a - ~b)m g.(k) [2F(k _ jm)F(l _ k _ jm)] 1/2 
a + lb 1T 

X [X{ +X~ -k]' (4.8) 

where 

j _ ( qj)I12-
j
m ( r )112 X k - -- -

t lal 

00 (- l)nF(l _ 2k _ n)( _ q.,z)k - 112 + n XI J 
n=O n!F(l- k -jm - n) 

F [k - jm, 1 - k - jm. qj] 
X 2 1

1k
, ,1 + - , 

- -Jm - n t 
(4.9a) 

and where we are using the abbreviations from (3.6b) for a 
andc, and 

qj = - (1 - ija C)/2a--2, t - l/az, j = ± 1. (4.9b) 

The terms in the sum over n are now recognized as the resi­
dues,atz=zn= -k-n, -1+k-n,(n=O,I,2, ... )of 
the following meromorphic function: 

-.J 

2.0 D ,.k (a b) 
K.!J.;m e d = (2'1'K'!J.' CE.ke !) O'l'~k) 

(
2- 1/2(a - e) 2- '12(b - d)) 

= 1.0D E•k 

K.!J.;m 2-1/2(a+e) 2-1/2(b+d) 

X(z) = - -.!... _r_ ( _ q.,z) - 112 - z ( 
q. ) 112 - jm ( ) 112 

t lal J 

X F (k + z)F (1 - k + z) 
F(1 +z-jm) 

[
k- j m,l-k- j m. qj] 

X 2FI 1 . , 1 + - . 
+z-Jm t 

(4.10) 

Since for fixed {;, F (e) - I 2FI (a, b; e; (; ) is an entire function of 
the parameters, Xj(z) is a meromorphic function falling to 
zero rapidly as Izl- 00 in the region Re Z < 0. The singulari­
ties of Xj(z) are simple poles arising from the Gamma func­
tions in the factor F (k + z)F (1 - k + z) and are located at 
the points z = Zn' 

For the nonexceptional UIRs, k - ! is pure imaginary 
and the poles lie symmetrically with respect to the real axis. 
For the exceptional UIRs k is real, but no two pole pointszn 

are coincident. 
If we now choose a closed contour ~ consisting of the 

infinite semicircle .Y on the left, and the imaginary axis, we 
obtain 

1 f 00 -. dzX(z) = I Res[x(z)].= -k-n 
2m .(,' n =0 

+ ! Res [X (z)].= -I+k-n' (4.11) 
n=O 

The first and second terms on the right-hand side, by our 
previous analysis, are respectively equal to X{ and X~ _ k 

and hence the integral in (4.11) vanishes on .Y, as can be 
easily verified. We obtain 

X~ +X~ -k = _I_I'" dA x( - iA). (4.12) 
21T - '" 

This expression, replaced in (4.8), represents the solution of 
the problem of finding the integral of 2'1' K.!J. (r) with it, since 
the latter integral is essentially the Mellin transform of(4.8), 
integrated over r for the value - J-L; we note that (4.12) is 
expressed as an inverse Mellin transform of the coefficient 
(function of A ) of the r - 112 + 2i,.\ factor in (4.10). The value of 
this coefficient for Z = - J-L and summed over the two j com­
ponents will be the inner product O[2'1'K.!J. with (4.8). We thus 
obtain67 

= g.(k )1T- 312F(k - iJ-L)F(1 - k - iJ-L)(a + ib) - m - i!J.(a - ib r - i!J. 

"( .)m_EII-J1I2 [F(k-jm)F(I-k-Jm)]1/
2 

X ~ -J K 
j=±1 F(1-iJ-L-jm) 

X 2FI [k - iJ-L, .1 - ~ - iJ-L; !(a _ ijb )(d - ije)]. 
1 - 1J-L - Jm 

The overlap coefficient between these two chains68 in the continuous series is obtained by setting g = 1: 

[F(k -J'm)F(1 - k - Jm)] 1/2 
(2'1'K.!J.' OW~k) = gE(k )1T- 3/2F(k - iJ-L)F (1 - k - iJ-L) I (- j)m - 'KII -j1/2 ~-'----=---'----'----"--'-=--

j=±l F(I-iJ-L-jm) 

F [k - iJ-L, 1 - k - iJ-L. ] 
X 2 1 1 . . ,! . 

-1J-L - Jm 
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iii. E (I)CSL (2, R )-:JSO (1, 1). As in all cases involving E(I), the calculation here consists in applying C:·k on 2\11K.I" that is, 
performing the integral in 

[C:·k 2\11K.1' t(r) = L (00 dr'[C:·k]jJ"(r, r') 2tJ1K.l'l(r/), (4.15) 
l ~ ± 1 Jo 

of the kernel [C:· k ]j/ (r, r') with the Mellin basis function. We resort to the expansion of the hyperbolic canonical transform 
kernel in Taylor series and to the Mellin-Barnes contour deformation presented above. We obtain 

[C:·
k 

2\11 K.I' ]j(r) = A ::~'I'.j(r) + KB ::~'I'.j(r), 
where 

(4.16) 

A (a b)E.k r = K A ( - a b)E.k r = (sgnb )2EgE(k) ( - ia) - 112 - il'r1/2 ex (idr) 
Cd K'I'.I() PE c -d K'I'._I() (21T) 3/2 Ibl 2b p 2b 

X [PE{F(I - 2k )F(k + iJl )( ~b )k-1I2 IFI[k ;/Jl; ;::]} + {k++1 - k}], (4.17) 

(
a b)E.k _ ( - a b) _ (sgn b )2EgE(k) (~) - 112 - il' 1/2 (idr) 

B (r) - KPEB (r) - 3/2 r exp 
c d K.I'.1 C - d K.I'. - 1 (21T) Ib I 2b 2b 

X[{F(1-2k)F(k+iJl{ ;::r-l/\Fl[k;kiJl; ;::]} +{k++I-k}] 

(sgnb )2£+ IgE(k) ( ia ) - /fl ( ir ). . . = 3/2 - r- 1/2exp--[ad+bc] F(k+IJl)F(I-k+IJl)W_ il'k_1I2(-lrl2ab), 
(21T) 2b 4ab . 

which come, respectively, from the Mellin transforms of the 
on- and off-diagonal integral kernel elements. We remind 
the reader again that the complex power functions are to be 
evaluated inthe principal sheet. 

Since the E( 1) _ basis has simple Dirac deltas, we imme­
diately obtain69 

-.2D E•k (a b) 
P;K.I' C d ( _ Ek(a b) 2 ) = \lip, C· c d \IIK.I' 

(
a b)E.k (a b)E.k 

=A cd (Ipl) +B cd (Ipl)· 
K.I'.'gnp K.I' .• gnp (4.19) 

The overlap coefficient between these two chains may 
be obtained upon letting g-+l, or directly as 

( -\lip, 2\11 K.I') = 2 tJlK'I' .• gnp (I pi). (4.20) 

C. The matrix elements in the subgroup bases 

i. E (1) C SL (2, R ). The integral kernel representations of 
SL(2, R ) in this chain are given by the hyperbolic canonical 
transform integral kernel, which we may rewrite in terms of 
the confluent hypergeometric function as follows: 

-DE.k.(a b) = (-\II ,CE.k(a b)_\II.) 
P.Pcd P cd P 

= CE.k(a b) (I pi, Ip/I) 
c d .gnp •• gnp' 

= (sgnb )2PE (I + .gnp·)/2(1Tlb I )-lgE(k) 

X I pp/1 1/2exp(i[djp2 - 21]pp' + aj'p'2]12b) 

X [ {r (1 _ 2k) I ~ 12k - I 

F [2k - 112. 2iPP']} 
X I I 4k - l' 1]b 

(4.18) 
, ti / 
where 1] = 1 for sgnp = sgnp', and 1] = - i or sgnp # sgnp . 
In particular, for the b = 0 subgroup we have, as from Eqs. 
(2.15h), 

-DE.k.(a 0) 
p.p c a-I 

= (sgna)2k lal- 1/2exp(i(sgnp)cp2/2a)6(P' - p/la I). 
(4.22) 

In the E(2)+ reduction, as in (3.17), 

+ D E.k, (a b) = (+\IIE.k, CE.k (a b) + tJlE .. k) 
PoP cd P cd P 

= -DE.k.( d -a C). 
p.p -b (4.23) 

ii. SO (1, 1) CSL (2, R ). These matrix elements are essentially 
the Mellin transforms of (4.16)-(4.18), and can be obtained 
by the same technique32 of Taylor expansion and Mellin­
Barnes contour deformation. The Taylor expansion of, for 
example, the function (4.17) yields 

A(: !r k 

(r) 
K.I'. I 

( - sgnb )2EgE(k) ( - ir) - 112 - il' 1/2 
= (21T)3/2Ibl 2ab r [Yk +PEYI-k]' 

with 

Yk = exp(i1T[2k - l][a + P ]14) 
XF(I- 2k)F(k + iJl)lad 1112-k 

(4.24) 

X ~ (-1)" (_idr)-1/2+k+n F[-n,k+iJl._l_] 
n~o n! 2b 2 I 2k ' ad ' 

(4.25) 

where we denote for brevity a = sgn(ab ), P = sgn(bd). The 
terms in this series can be identified as the residues of the 

+ {k++1 - k J]. (4.21) meromorphic function 
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=r(k+Z)( -idr)-'/2-Z F [k+Z,k+if1,_l_] 
2b 2 1 2k ' ad 

(4,26) 

at the simple poles at Z = zn = - k - n. Through the same 
argument as in (4,9)-(4.12), we may express 

Yk =exp(i1r[2k-l][a+/3l/4)r(1-2k) 

Xr(k + if1)lad 1'/2-k_
1_foo dJ. vk( - iJ.), (4.27) 

21T - 00 

As before, the function V k (z) on the integration contour in 
(4.27) contains the kernel r - '/2 + 2i.<, so (4.27) is the inverse 
Mellin transform of the coefficient of that term in (4.26), The 
corresponding Mellin transform of B term (4.18) follows 
(4.24)-(4.27) with the same meromorphic function (4.26), but 
with different linear combination coefficients which origi­
nate from the corresponding coefficients in the two sum­
mands of(4.17) vs (4.18). We consequently find70 

2D"k (a b) 
K.I".K', 1"' e d 

= (2'11K'1" , C
k
(; !) 2'11K"I"') 

= ( - sgnb f'(21T)-2g,(k) 

X [('Tk + KK'p,'Tk-' + K'OK + KP,O k-')Tk 

+ (P,'T'_k +KK''T,-_\ +K'O'_k +Kp,O'-_'k)T'_k]' 
(4,28a) 

Tk = r(1 - 2k )F(k - if1)r(k + if1')lal- k - il l'12b lil/t' -I'l 

Id 1- k + il" F [k - if1, k + if1', _1_] (4,28b) 
2 , 2k ' ad ' 

'T k = exp(Q1T [ ( k + Iii J sgnab + (k - if1 J sgnbd ]), (4,28c) 

Ok = exp(i!1T[ - (k + if1' J sgnab + (k - if1 J sgnbd ]). 
(4,28d) 

Whereas in the discrete series we are able to express the 
2D function as a meromorphic function in b, - ialb, and 

o D "k ,(a b) = (OW"k C"k (a b) OW"~) 
m,m e d m' e d m 

- id Ib [c f. Eq, (3,19)] the corresponding continuous series 
functions do not have this property, and must be written in 
termsofpowersoflal, Ib I, and Id I, with phase factors (4,28c) 
and (4.28d). This stems from the corresponding lack ofmero­
morphicity of the hyperbolic canonical transform kernel 
(2.15d) and (2.15e), where the two Hankel functions are to be 
evaluated in the upper and lower half-planes, vis-a-vis the 
radial canonical transform kernel (2.5b), which is meromor­
phic in the group parameters. It has been pointed out be­
fore 21 that the continuous series UIRs cannot be subject to 
analytic continuation to a unitarizable representation of a 
subsemigroup of SL(2, C), such as may be done for the dis­
crete series. '9 

Finally, it is easy to verify that our result is consistent 
with the expected behavior near the identity, namely 

2D "k (a 
K.,t:K'.," 0 a~ ,) = (sgna)2'lal 2il"[)K,K.tj(p, - f1'), 

(4.29) 

which acts as a reproducing kernel when we sum over K and 
integrate over f1 as in (4.3b). The Fourier transform case is 

2D<k ,,( 0 0
1
) K·I';K I" _ 1 

= g,(lii) + Kg,(k) 2 - 2il" r(k - if1) [) ,[)(p, + ') 
p, sin(1T[k + Iii]) r(k + if1) K.p,K f1 , 

(4.30) 

Remarks similar to those made on Eq. (4.28) apply here. 
iii. SO (2) C SL (2, R ). This matrix element should be obtained 
in the same way as the discrete series case given in Eq. 
(3.25a), with the basis functions which are now 0'll~k(r) as 
given in (4.5a) [instead of the simpler ones 0<P: (r) in (3.5a)], 
and the inner product which is now the .Y;, (R +) given in 
(2.14) [in place of the y2(R +) inner product (2.4)]. The ap­
plication of the hyperbolic canonical transform C:· k to 
0'll~k(r) is the exact analog of (3.6)-(3.7), namely, these func­
tions are self-reciprocating65 under C~,k. We can thus write 

= [(a - ib )/(a + ib )]m'(a2 + b 2)-1/4j~~' L" dr °1Jl~~(r)* 

X exp(ir[ae + bd l/2[a2 + b 2]) °1Jl~~J(r/[a2 + b 2]1/2) 

= 22m'(m'!)-' [r(k + m)r(l - k + m)lr(k + m')r(l - k + m')]1/2 

X [(a + d) + i(b - e)] - m - m'[(a - d) + i(b + e)]m -- m' 

X 2F,(k-m', 1-k-m'; 1 +m-m'; -Ha2+b 2+e2+d 2-2]), m>m' 

= ( - l)m' - m22m(m!)-' [r(k + m')r(l - k + m')lr(k + m)r(l - k + m)]'/2 

X [(a + d) + i(b - e)] - m - m' [(a - d) - i(b + e)] m' - m 

X2F,(k-m,1-k-m;1+m'-m; _![a2+b 2+e2+d 2 _2]), m<.m' 

(4.31) 

The right-hand term has been taken from Bargmann's work,7' rewriting his phases and normalization constants, and using 
(A3) for the parameters. We have not been able to solve the integral in (4.31) directly: When we replace 0'll~k(r) from (4.5a), we 
are confronted with a solution ofa sum of two integrals whose integrands are each a product of two Whittaker functions, one 
of them with a rescaled argument, times an oscillating Gaussian function. This type of integral does not appear in the standard 
tables nor, apparently, does it yield easily to reduction to simpler forms. Bargmann's method of evaluation3K of (4.31) does not 
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make use of any explicit form of the basis functions 'V;k. Instead, the function ° D ;~m' (g) is shown to factorize into two 
exponentials of the first and third Euler angles, and the Bargmann-d function of the second Euler angle. The latter is subject to 
the differential relation stemming from (2.9) with J a expressed as operators on the group manifold. The condition ° D ;~m' (1) 
= 8 m.m' provides the normalization and boundary conditions. This line of reasoning applies to any operator realization of the 

group belonging to that representation and subgroup reduction. The result provided by Bargmann 71 thus evaluates (4.31) and 
gives the solution for the integral. We can set b = 0, a > 0, and r = x in thus writing72 

I Ir(~ + is - jm)r(~ + is - jn)1 fOO dx x- l exp(icxl2a)U)m.iS(X)U)n.is(xla2) 
j= ± I Jo 

( 
1T )222n Ir(~+is+m)l( + _I .)-m-n( -I+')m-n = -- - a a - lC a - a lC 

ge(k) n! r(!+is+n) 

X2FI(~+is-n,!-is-n;l+m-n; -Ha2+a-2+c2-2]), m>n 
(4.32) = 

( 
1T )22

2m I r (~ + is + n) I ( + -I ') - m - n( -I + . ) - m + n = -- - a a - lC a - a lC 
ge(k) m! r(!+is+m) 

X 2F I(!+is-m,!-is-m;l-m+n; -Ha2 +a-2+c2 -2]), m<n 

where E = Om for m, n integer (odd-half-integer), ge(k (s)) is 
given by (2.150 and (2.15g) and the range of s is, as above, 
s>O and s = - i(T, O<(T<! for E = O. 

D. The limits of continuous to discrete representations 

i. C !/2 _ D jJ2 -+- D tl2' At the end of Sec. 2C we noted that 
q~! 

the continuous series integral kernel [C!I2·k 1l (r, r'), for 
k =! + is, s-o+, uncoupled in the sense of having its off­
diagonal (ji=/) terms vanish. The hyperbolic canonical 
transform kernel becomes the direct sum of the D jJ2 radial 
canonical transform for the} = 1 component, and the D i/2 
one for the} = - 1 component. In terms ofthe E(I) repre­
sentation integral kernels, 

- D 1/2, 112 + is(g) _ 8 - D Il2lsgn p)(g) (4.33) 
p.p' s~. 'gnp,'gnp' I pI,I p'I ' 

as can be verified using (4.21) for the C !/2 representation, 
(2.5b) for the D jJ2' and (3.23) for the D 1/2 representations. 
The SO(2) C SL(2, R ) VIR matrices found by Bargmann fol­
low (4.33) (replacingp,p' by m, m', and - by 0). Indeed, 
after (4.7) we remarked that the E( 1) C SL(2, R )::> SO(2) over­
lap coefficient in the continuous series is 0'i' ;~Sgnp (I pi). From 
its functional form (4.5a) we can see that 

0'i' J~~ 112 + is(r) _ r - 11204> :';2(r), 
s~+ 

(4. 34a) 

01/1112.112 + is(r) _ 0 m = 1 + n n = 0, 1,2, .... (4. 34b) 
}m. - J 5--0+' 2:' 

The continuous series VIR in the SO(2) basis thus also 
separates in block-diagonal form into the D iJ2 and D i/2 
representations: 

0D 112. 112 + is(g) 8 ,oD 112Isg~m)(g) 
m,m' s~, sgnm,sgnm Iml.lm I . (4.35) 

The SOt 1,1) subgroup-reduced integral kernels do sepa­
rate, although not in block-diagonal form as in the former 
cases. The E( 1) C SL(2, R )::> SOt 1,1) overlap coefficient in the 
continuous series (4.20) for g = 1 are, in terms of those of the 
discrete series (3.14), 
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(-'I1p ' 2'11 K, /l) = 2'i'k. /l,sgnp (J pI) 

{
2- 1/2

(-4>IPI,24>/l)' p>O 
= (4.36) 

K2-
112

(-4>IpI' 24>/l)' p<O, 

and hence we obtain a sum of the D jJ2 and D 1/2 

representations: 

2D 112,. 1/2 ~ is(g) _ ~ I (KK')II - T)12 2D 1121;)(g), (4.37) 
K,/l,K,/l s~+ 2 T= ± 1 /l,/l 

From this and the remark following (4.18) on the bilateral 
Mellin transform, it may appear more convenient to use J 2 

eigenfunctions whose dichotomic index label functions with 
upper or lower components only, instead of those used in 
(4.3a). This may be a useful alternative in some contexts, 
such as matching the two components of the bilateral Mellin 
transform kernel. 47 In some other cases, as in the study of an 
(uncoupled) hyperbolic Fourier transform class,73 still an­
other linear combination of the two -'I1p rows proves to be 
useful, as it diagonalizes the 2 X 2 kernel matrix. 

Ii. C~ - D 1+ -+- D 1-' We also remarked at the end of Sec. 
q~ 

2D that the exceptional continuous series integral kernel 
[C::k]j/ (r, r') for k = ! + (T, (T_(!) - also uncoupled into the 
DI+ and D 1- radial canonical transform kernels: 

-DO. I12 +U() 8 -Dllsgnp)( ) 
p.P' g - _ sgnp,sgnp' IpI,Ip'I g. 

u~11I2) 
(4.38) 

The significance of this limit is the same as for (4.33), and 
equations parallel to (4.34)-(4.37) follow for all other overlap 
coefficients and subgroup reductions. In particular, 
~.I12 + U(r) vanishes as (T-m-. 

5. SL (2, R) TRANSFORMS AND SERIES 

In Sec. 2 we introduced the SL(2, R ) group of unitary k­
canonical integral transforms for all VIR series of this 
group. The ensuing developments in Secs. 3 and 4 have de­
tailed three families of bases for these spaces, associated with 
the E(I), SO(1, 1), and SO(2) families of subgroup reductions, 
and have given their overlap coefficients. These define as 
many families of integral transforms and series expansions. 
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A. The discrete series 

i.E (I)CSL (2,R ) -:JE (1). For the discrete series, wecan write 
in terms of the 'y2(R +) inner product and E(I) basis func­
tions (3.2) 

(-l/J,J) =f(r), rER +. (5.1a) 

The k-radial canonical transform may be thus implemented 
as a change of coordinates 

g 

fIr) --+fg(r) = [e~f](r) = (-l/J" e~f) 

= (e; ,-l/J,J) = L" dr'-D ~.,·(g)f(r'), (5.1b) 

from the Dirac-orthonormal E( 1) eigenbasis I -l/J, ll'ER + to a 
similar family of bases I e~ , -l/J, ll'ER + of generalized eigen­
functions of e~ ,J _ e~, for every fixed geSL(2, R ). The VIR 
matrix elements are the radial canonical transform kernels, 
as has been noted before. The transform inverse to (5.1b) has 
a kernel - D ~.r' (g-I) = [D ~.,(g) ]*. The unitarity of the 
transform implies the Parseval identity (f, h ) 
= (/g, hg ). In particular, it contains the Hankel transform 
ofg = F [Eq. (2. llb)]. 
ii. E (1) CSL (2, R ) -:JSO (1, 1). In the point of view we are de­
veloping in this section, the coordinates of! in the SOt 1,1 b 
eigenbasis 12l/J I' II'ER are 

jlp) = (2l/JI'J) 

= L" drel/JI' , -l/J,)(-l/J"f) 

= fo'" dr 1T- I /2r - 112 - 2il' fIr) 

= 21/2j~ (2Ji), (5.2a) 

wheref~ is the positive Mellin transform47 off The family 
ofSL(2, R )-similar Dirac bases I e~-, 2l/J I' II'ER defines a cor­
responding SL(2, R )-parametrized family of integral trans­
forms between 'y2(R +) and 'y2(R), 

(M)g ~ 

fIr) -- f gklp) = el/J 1" e; f) 

=(e~-, 2l/JI'J) = fo'" dr2·-D~.,(g)f(r), 
(5.2b) 

whose kernel (3.11) contains in general a confluent hyper­
geometric function, with Ji in one index and r in the argu­
ment. In particular, it contains the positive Mellin transform 
(5.2a) for g = 1. The transform inverse to (5.2b) has a kernel 
-.2D ~I' (g-I) = [2.-D ~.,(g)]* and the integration is per­
formed over JieR. An obvious Parseval identity holds be­
tween (f, h ) andjgk( Ji)*'; ~(Ji) integrated over Ji. 
iii. E(l)CSL (2, R PSO(2). The coordinates offin the 
SO(2) C SL(2, R )-similar eigenbases I e;-, 0l/J ~ I: = k define 
a mapping between 'y2(R +) and [2 + (lower-bound square­
sum mabie sequences): 

(L)g 

f(r)--+ f~.m = (ol/J ~, e~ f) 

= !C~, 0l/J~J) = Sa'" dro·-D~.,(g)f(r), 

(5.3) 
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which contains, essentially, the normalized Laguerre series 
analysis [in L ~k_-kl)(r)] off(r) for g = 1. The series synthesis 
is provided by the functions -.oD ~m (g-I) = [0.-D ~.,(g)]* 
and a corresponding Parseval identity holds. 
iv.SO(l, l)CSL (2,R PSO(2). We may also use the overlap 
coefficients between the SOIl, 1) and SO(2) bases to define 
the expansion of an y2(R ) functionj( Ji) in a series of hyper­
geometric functions of argument!, as given by (3.1Oa), or its 
generalization for any fixed argument as given by (3.9), 
through the analysis 

(Hig Jro 
j( Ji) --+ j;.m = _ 00 dJi 0.2D ~.I' (g)]( Ji) (5.4) 

and the corresponding synthesis with [0.2 D ~'I' (g) ] *, with an 
appropriate Parseval identity. 

v.SO(l, 1)CSL(2,R )-:JSO(l, 1). TheSO(I, 1) subgroup de­
composition of the discrete VIR series provides an SL(2, R )­
parametrized family of unitary integral transforms between 
<y2(R ) and itself, 

~ (F). g ~ Joo ~ 
fIJi) --+ f;(Ji) = _ 00 dJi' 2D~.I'·(gif(Ji'), (5.5) 

with a kernel involving hypergeometric functions of fixed 
argument, as given by (3.17). This is basically the Mellin 
transform of the k-radial canonical transform family (5.1). 
vi. SO (2) CSL (2, R ) -:JSO (2). The SO(2) subgroup decom­
position, finally, provides an SL(2, R )-parametrized family 
of mappings of discrete unitary transforms between [2+ and 
[2+ which repesents the well-known action of the group-­
for a fixed element g and k--on the space of sequences 

I fm I: =k' 

The SL(2, R ) D k+ VIR matrix elements of the discrete 
series thus provide six different SL(2, R )-parametrized fam­
ilies of integral or discrete transforms, or series expansions 
between y2(R +), y2(R ), and [2+ ,of which the k-canonical 
radial transforms given in Sec. 2 are but one family. 

B. The continuous series 

The same pattern of six families of transforms hold for 
the continuous series of SL(2, R ) VIRs, between spaces 
,YidR +) [extendable to y2(R) throughf(p) =i.gnp(1 pi)], 
Yil (R ) and [2. These families include the k-hyperbolic ca­
nonical transforms given in Sec. 2, bilateral Mellin trans­
forms, Whittaker and hypergeometric series and transforms. 

c. Further extensions 

Since these six families of transforms have a group­
theoretical origin and parametrization, pairs of transforms 
belonging to one or two families (with the same k ) may be 
applied in succession, respecting the mixed-basis transitivity 
properties, to give another transform of the same or of a 
different family. These are transforms which are all associat­
ed with the SL(2, R ) group and its representations, so we 
would like to close our account of these with some comments 
on further extensions to this set, which have been published 
in the literature, and to other sets as yet not fully explored. 

The first extension pertains consideration of the coverg-

ing group SL(2, R ) . Indeed, the oscillator (metaplectic) re-
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presentation is the two-fold covering of SL(2, R ) [four-fold 
covering of SO(2, 1)] provided by D jJ4 -+- D 3J4' The case 
D ;: , for real k > 0, has been described in Refs. 19,20, and 34, 
but as yet it has not been as thoroughly analyzed as would be 

desirable. The continuous series of SL(2, R) have not been 
treated, although partial results exist. The subject of com­
plex extensions ofSL(2, R ) to a semigroup of integral trans­
forms, 17.19,28 possible for the discrete series-which includes 
the bilateral Laplace, Gauss-Weierstrass (heat diffusion), 
Bargmann74 and Barut-Girardell075 transforms-and the 
extension of SL(2, R ) to W 1\ SL(2, R ) (W being the Heisen­
berg-Weyl group), has not been touched upon in this work, 
as it falls outside the scope of the title. Parts of it have ap­
peared in various articles by one of the authors,76 but the 
description of this last extension in various subgroup-and 
mixed bases is still wanting. Finally, the subject of nonsub­
group decompositions 77 in this context is still open. 
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APPENDIX: THE UNITARY IRREDUCIBLE 
REPRESENTATIONS OF SL(2, R) 

Bargmann l classified all UIRs ofSU(I, 1) 
1:2 

:::::SL(2,R ):::::Sp(2,R ):::::SO(2, 1). We give here a summary of 

the results, nomenclature, and notation followed in this 
article. 

We denote by SL(2, R ) the special linear group in two 
dimensions over the real field, i.e., the group of 2 X 2 
matrices 

g = e !). a, b, c, dER., detg = ad - be = 1. (AI) 

Due to the unimodularity condition, (AI) also satisfy g<1pgT 
= <1p ' gTbeing the transpose of g, with the symplectic met­
ric matrix 

<1 = (0 1) 
p -1 O' 

The elements of the real symplectic group Sp(2, R ) are thus 
also given by g as in (AI). The "I + I" unimodular pseu­
dounitary group SU(1, 1), on the other hand, is the set of 
unimodular 2 X 2 complex matrices u satisfying U<13U t = <13, 

U t being the adjoint (transpose, complex conjugate) ofu, with 
the metric matrix 

It is easy to show that the most general form of u is 

u = (;. :.), a,pEC, detu = lal2 -I PI 2 = 1. (A2) 

The link between SL(2, R) and SU(I, 1) matrices which 
relates the results of this article with those of Bargmann is 
given by the similarity transformation 
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e !) =w(;. P)W- 1 

a· 

(
Rea + Ref3 

= Ima + ImfJ 
- Ima + ImfJ) 
Rea - Ref3 ' 

W = 2- 1/2 (J) (J) ,(J) = ei1l"/4. 
( 

-! -I) 
- (J) (J) 

(A3a) 

(A3b) 

Other isomorphisms found in the literature are determined 
by W's such as 

and 

2- 1/2( 1 . 
-I 

2-
1/2G ~). 

- i) 2- 1/2( 1 
1 ' . -I 

- ~), 
-I 

The latter yields the complex conjugate of (A3a). The 2: 1 
homomorphism between SU(1, 1) and the Lorentz group 
SO(2, 1) is often exploited through parametrizing the former 
in terms of Euler angles, 

(;. :.) 
0) (COSh; 

eil-' sinh; 
Sinh;) (e -iv 

cosh; 0 
0). (A4) 

e'Y 

Our favored set of parameters are those in (AI), and in terms 
of those we express the UIR matrix elements. Of particular 
interest to many authors are the representations of the hy­
perbolic rotation (boost) subgroup in the middle factor of 
(A4). This is given by M 2( - 2; ) in (2. lOb). 

Out of the matrix realization (Al)-(A2) Bargmann! 
finds the sl(2, R ) Lie algebra. Without having to realize the 
algebra elements through differential operators, but only un­
der the assumption of the existence of a Hilbert space en­
dowed with a sesquilinear positive-definite inner product, 
one can find the self-adjoint irreducible representations of 
the algebra classified through the eigenvalues q of the Casi­
mir operator (2.9), and through the usual raising- and lower­
ing-operator techniques, the SO(2) representations m con­
tained in anyone SL(2, R ) UIR are found. 

The following are all nonequivalent single-valued re­
presentations of SL(2, R ). 

Discrete series q = k (1 - k) for k = l' 1,~, 2, ... containing: 

D k+ positive discrete UIRs, m = k, k + 1, k + 2, ... 

D k- negative discrete UIRs, m = - k, - k - 1, - k - 2, .... 

Continuous series 

C~ the vector nonexceptional continuous UIRs 

q = k (1 - k I>!; k =! + is, s>O, 
C~ the (vector) exceptional continuous UIRs 

o < q = k (I - k ) <!; k = ! + (T, 0 < (T < !, 
C !12 the spinor (nonexceptional) continuous UIRs 

q = k (1 - k ) > 1; k = ~ + is, s> O. 
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Values of k other than these give rise to nonunitary 
and/or multivalued representations ofSL(2, R}. 
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I. INTRODUCTION 
Ever since the advent of relativistic symmetries in parti­

cle physics, the utility of noncompact groups has been in­
creasingly felt. The spin (2, I) group was the attack of physi­
cists and mathematicians as well since it provided a 
prototype building block of a hierchy of symmetries. 1 The 
remarkable success of Auslander-Kostant work2

-4 on sim­
ply connected solvable Lie groups, and equally astounding 
success of the work of Harish-Chandra and Schmid and oth­
ers on semisimple Lie groups,5-7 sufficiently warrants an in 
depth study of the links between the two. In recent times, the 
representation theory of some of the semisimple Lie groups 
have been studied in the light of the Auslander-Kostant pro­
gram with encouraging success. In the present paper we 
make a systematic study of two physically relevant noncom­
pact groups: spin(2, 1) and spin(2,2). It is interesting to note 
that both these groups possess discrete series representations 
and provide a basis for generalization to the case of arbitrary 
semisimple Lie groups. We hope to report on the latter in a 
forthcoming paper. 

Our paper is arranged as follows: In Sec. II, we give a 
brief resume of (a) the Auslander-Kostant induction 
scheme, (b) the theory of non discrete UIR's as semisimple 
Lie groups, and (c) Harish-Chandra and Schmid's work on 
discrete series representaions. 

In Sec. III we compute the orbits and polarizations for 
the afore said groups. 

The identification of polarizations associated with non­
compact orbits with parabolic subalgebras in displayed in 
Sec. IV. Further, we show that the representations obtained 
for these polarizations coincide with the principal and de­
generate series representations. 

In Sec. V, we construct the representations associated 
with compact orbits and show their equivalence with dis­
crete series representations of Harish-Chandra and Schmid. 

We shall use the following notations throughout the 
paper. Lie groups will be denoted by capital Roman letters, 
the corresponding Lie algebra being denoted by lower case 
Roman letters. For a group G, G, will denote the set of equiv­
alence classes ofUIR's. Finally, all direct sums are to be 
taken as vector space direct sums and not necessarily Lie 
algebra direct sums. 
II. RESUME OF THE AUSLANDER-KOSTANT THEORY 
AND THE CONVENTIONAL THEORY OF SEMISIMPLE 
LIE GROUPS 
A. The Auslander-Kostant theory 

Let G be a semisimple Lie group with g as its Lie algebra 
and let g* be the real dual of g. We use the Cartan-Killing 

isomorphism to identify g* with g. Let Ox represent the orbit 
of a point XEg under the adjoint transformation 

Ad,X = sXs- 1
, sEG. (11.1) 

Let Gx be the isotropy group at X such that 

Gx = {SEG: sXS- 1 = X} (11.2) 

and let gx be the corresponding Lie algebra. An elementXEg 
defines a mapping 

21TiX: gx-IR, Y~21TiB(X,Y)'o'YEgx' (11.3) 

where B is the canonical Cartan-Killing form. We call X, or 
equivalently Ox, quantizable if the mapping 21TiX is the dif­
ferential of some character, 

yGx-S I. (11.4) 

A polarization at X is defined to be a Lie subalgebra s of ~ = 

g + ig which satisfies 
(i) (B,[s,s]) = 0, whereB is extended to~ X~ by com­

plex linearity, and s is maximal with respect to (w.r.t.) this 
condition, 

(ii) dimeS = !(dimR g + dimgx), 
(iii) s + s is a Lie subalgebra of ~, where the bar indi­

cates complex conjugation, 
(iv)gx Cs and s is adGx -stable: 

ads sC s '0' sEGx ' s is said to be positive ifiB (x,[i,z]);;.O 'o'ZES. 
Let a x be a quantizable orbit with X being the corresponding 
character and let s be a positive polarization at X. Let us 
define 

b = s n g, e = (s + s) n g, 

D=DoGx , E=EoGx , 

(1I.5a) 

(1I.5b) 

where Do and Eo are the analytic subgroups corresponding 
to b, e respectively. We extend X form Gx to D. The Aus­
lander-Kostant induction scheme can be written as 

(J' = ind~(ind~x), (11.6) 

where ind! denotes induction from A to B where ind~ is 
holomorphic induction. For semisimple groups, our prob­
lems can be stated as follows: 

(i) Is (J' a UIR ofG? 
(ii) Does every UIR of G arise in the above manner? 

B. Nondiscrete UIR's of semisimple Lie groups 

Let g = k + p be the Cartan decomposition of g; let a be 
a maximal abelian subalgebra of p. Let n be the set of root 
vecotrs of a. 

n = [XEg: [A,x] =..i (A )X 'o'AEa and for some..i:a-C, 
ked, #a). (11.7) 
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Let n +, n - be the set of positive and negative root vectors 
relative to some ordering. Let m be normalizer of a in k: 

m = IMEk:[M,a]~aj. (11.8) 

then, Po = m + a + n + is known as a minimal parabolic sub­
algebra of g. A parabolic subalgebra of g is then defined to be 
any sub algebra of g containing Po' The set of all parabolic 
subalgebras of g can be explicitly constructed as follows8

: Let 
~ be a set of roots for n and let 1/1 be the set of positive simple 
roots in~. Let 0 be a subset of 1/1. Let (0 ) denote the set of 
roots in ~ which arises as linear combinations of roots in O. 
We define 

(0) + = ~+n(O), (0) _ = ~_n(O), (11.9) 

where ~ +, ~ _ denote positive and negative roots in ~. Let 
D+(O), D_(O), De denote the subspaces ofD corresponding to 
(0 ) +, (0 ) _ and I ~ + - (0) + j. 

Define 

ae = IAEa: A (A) = 0 VAEO l (11.10) 

and let a(O) be the orthogonal complement of ae in a w.r.t. 
the Cartan-Killing form. Then Pe = me + ae + De is a 
parabolic subalgebra of g where 

(11.11) 

A Cartan subalgebra h of g is said to be invariant w.r.t the 
cartan decomposition if 

h = (hnk) + (hnp). (11.12) 

A parabolic subalgebra Pe is said to be cuspidal if there exists 
an invariant Cartan subalgebra h such that 

ae = hnp. (11.13) 

Let Me, A e , Ne be the Lie groups corresponding to Pe = me 
+ ae + De· Pe is called a parabolic subgroup. These sub­

groups define the following series of representations. 
• • G A A 

(l)p = mdpf/(O'Xr), O'EMe, rEAe, Pe = MeAeNe, a 
cuspidal parabolic subgroup, defines the principal Pe series 
of representation. If Pe is minimal parabolic and 0' is the 
trivial representation then p is irreducible. 

(ii)p = indK(O'Xr), m=Me, r:Ae-+C*( = C - 10j), a 
non unitary character; Pe = MeAeNe cuspidal parabolic de­
fines the complementary Pe series of representations. 

(iii)p = ind~,,(O'Xr), O'EMe, rEAe, Pe = MeAeNe, a 
noncuspidal parabolic, defines the degenerate Pe series of 
representations. 

C. Discrete UIR's of semisimple Lie groups 

A VIR of G is said to belong to the discrete series if it is 
square integrable. Let H be a maximal compact abelian sub­
group ofG. 

Theorem: G has discrete series representation iff it is 
also a Cartan subgroup, or equivalently, if rank G = rankK, 
G = K·P being the Cartan decomposition. Let G satisfy the 
condition of the above theorem am.!.1et Hbe a compact Car­
tan subalgebra. As usual, every XER determines a linear map 
A :h-+IR through 

(x,exph) = exp[A (h)]. (11.14) 

We emphasize this relation by writing X as et. The set of all A 
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which arise in this manner defines a lattice L. Let 

g = h + (Ell aE..:! + gal + (Ell aE..:! -gal (11.15) 

be the triangular decomposition ofgw.r.t. h, where.:::! + is the 
set of positive roots relative to some ordering. We define a 
map i:L-+hc' AI--->-H). by 

B (H). ,H) =,1 (H) VHEhc' 

This induces a scalar product in L by 

(A I.A2) = B (H)." H).J 

Let w(A ) = II (A ,a ) and L / = I AEL: w(A ) #0 j. 
aE..:! + 

(11.16) 

(11.17) 

LetD = G IH. D has a complex structure inherited from Gc 

I B, where B is a Borel (i.e., maximally solvable) subgroup of 
Gc • Then 

(11.18) 

defines a principal bundle. EverYAEL / defines an associated 
line bundle L). -+Dthrough thecharacterx = et. LetA ~(L).) 
be the space of C "', L). valued forms of degree i with com­
pact support. Explicitly, these forms can be written as 

(11.19) 

where the Z ;'s are suitable local complex coordinates for D 
and thef's are sections of the line bundle L). -+D. We know 
that 

A g(L).)-lfEc"'(P-IUlf(gh) = e).(h -Ilf(g) 

XVgEp-IU, hER, U open in D j, (11.20) 

where p:G-+D is the canonical projection. Define J: 
A ~(L).)-+A ~+ I(L).) by 

where 

J/f= '" af dz. La- I 
Zi 

Define a scalar product on D- Te(G IH), 

(x,y) = - B (x,y) (x,y compact) 

= B (x,y) (x,y noncom pact) 

= 0 (otherwise). 

(11.21) 

(11.22) 

This induces a scalar product on T (G I H )(by lefttranslation) 
and hence, by duality on A ~ (L).). Let a* be the adjoint of a 
w.r.t. this scalar product, denote the closure of A ~(L).) by 
CLIA ~(L).) l, and define 

H i(L). ) = I WEdl A ~ (L). ) j, W is square integrable, 

aw = 0, a*w = 0 l (11.23) 

Hi(L).) is known as theithL 2-cohomology groupofL).. 
Define 

k (A) = cardiaE.:::! +nkl(A,a) <Ol 

+ cardiaE.:::! +npl(A,a»Ol. (11.24) 

Then one has 
Theorem: 3b: ifAEL / and I(A,a)1 >b VaED, then 
(i) Hi(L).) = 0 Vi#k(A), 
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(ii)H ilL A) bears a VIR of G if i = k (A ). 
Corollary: If k (A ) = 0, H O(L A) bears a VIR which is 

equivalent to ind~e", the induction being in spaces of totally 
holomorphic functions on G IH, i.e., Jj IJzi = ° Vi. 

III. ISOTROPY ALGEBRAS AND POLARIZATIONS FOR 
SPIN(2, 1) AND SPIN (2,2) 

A. Spin (2,1) 

and 

We describe the spin (2,1) Lie algebra by 

[Jij' Jkl ] = gik~1 + gjlJik - gi/~k - gikJi/, 

Jij = - Jji' iJ,k,l = 1,2,3,4. 

gij =diag( + 1, + 1, -IJ. 
The Cartan-Killing form is defined as 

- B (J12,Jd = B (J13,J13 ) = B (J23 ,J23 ) = 1. 

There exists one Casimir invariant 

C=Ii2 -Ii3 -n3' 

There exist four classes of orbits: 

(III. 1) 

(111.2) 

Class I: generated by AJI2 each A generating a distinct 
orbit. 

Class II: generated by flJ13' eachfl > ° generating a dis­
tinct orbit. 

Class III: two orbits generated by J13 ± J 12 • 

Class IV: the origin (0 J . 
Let X = AJI2 . Then, [P,x] = D=>y = yx, i.e., gx = (J12 J. To 
compute sx' we write the isotropicity condition: IfYI = a­
IJI2 + a2J 13 + a)J23 , Y2 = blJ I2 + bzll3 + b)J23 , then 
B(X,[YI,Y2]) = D=>a2b3 - a3b2 = 0, i.e., a21a3 = b21b3 = a 
(say). The condition [Yx,Sxl~sx then implies that 
a = ± i; finally the positivity condition yields 
a = - isgoA.. Thus, 

y x = !J12,J13 - i(sgoA. ).123 J. (III.3) 

This yields l) = gx, e = g. One can also see that X is quanti­
zable itf21TAEl, the corresponding character being given by 

x(expaJnl = exp(21TiAa). (111.4) 

Similarly, one gets the following results: 
Class II: gx = [J13J, SX = [J13,J12 ± J 23 J,l) = e = sx' 

All orbits are quantizable. 

Class III: 
gx = [J 13 ±J12 J,Sx = [J23,J13±JI21 =l)=e.Since21Tix: 
gx-~ilR is the trivial map, X is quantizable. 

B. Spin (2,2) 

We describe the spin (2,2) Lie algebra by 

[Jij,Jkl ] = glkJjl + gjlJik - gi/Jjl - gjkJi/, 

J ij = - Jji , iJ,k,1 = 1,2,3,4, 

where 
gij = diag[ 1,1, - 1, - 1 J. 

We define the Cartan-Killing form by 

B (Jij,JkIl = gi/gjk - gikgjl' 
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(111.5) 

(111.6) 

The two Casimir invariants are 

C, =Ii2 +Ji4 -Ii3 -n3 -J~4 -n4' 

C" = J 12· J34 - J 13· J24 + J 14· J 23 . (111.7) 

The orbits can be written down as: 
Class I: generated by AJ12 + flJ34' each pair (A,fl) gener­

ating a distinct orbit. 
Class II: generated byAJ13 + fi-l24; the pairs (A,fl) and 

( - A, - fl) generate the same orbit. 
Class III: generated by AJ12 + fi-l34 + vJ13, 

0= A 2 + 1l2 . V, - v generates the same orbit while (A,fl,v) 
and ( - A, - fl, - v) generate distinct orbits. 

Let 

Class IV: two orbits generated by J I3 ± J 12 . 
Class V: the origin (0 J . 

Let X = AJ12 + flJ34' and let h = [J12,J34 J . 

g±a, = [J13 ±iJ23 ±iJI4 -J24 J ' 

g ± a, = [J13 ± il23 + iJI4 + J24 1 . 

(III.8) 

(111.9) 

The two-dimensional space spanned by A,fl can be conve­
niently divided into six subspaces: 

(i)..i + fl > 0, A - Il > 0: gx = h, 
Sx = gx + g-a, + g-a,' 

(ii)..i + Il < 0, A - Il < 0: gx = h, 
Sx = gx + ga, + ga,' 

(iii)..i + Il < 0, A - Il > 0: gx = h, 
Sx = gx + g-a, + ga,' 

(iv)..i + Il > 0, A - fl < 0, 

gx = h,sx = gx + g-a, + g-a,' (111.10) 

For the above four subspaces, l) = gx, e = g. The characters 
are given by 

and 

X [exp(aJJ2 + /3J34)] = expi(Aa + fl/3), 21TAEl, 21TIlEl. 

(v) A = fl, and 
(vi) ..1,= - Il:gx = [J13 +J24, J I4 ± J231 + h. (III. 1 1) 
SX = h + g-a, + ga, + g-a, (A =fl) 

Sx = h + ga, + g-a, + g-a, (A = - fl)· 

For both cases l) = gx, e = g. The characters are 

X [exp[a IJ I2 + azl34 + a 3(J13 +J24 ) + a 4(J14 ± J23 )] I 
= expiA (a l ± a2)' 21TAEl. (III. 12) 

Similarly, for the other classes, we have the following 
results: 

Class II: Let a = [J 13,J24 I ; 
g ± a, = J I2 + J 34 ± (J14 - J23 )· 
g ± a, = J I2 - J34 ± (J14 - J23 )· 

We divide Class II into two subclasses: 

(111.13) 

(iliA 1=1= Ifll, gx = a. There are four polarizations: 

Sl =a+ga, +ga" 

S2 = a + ga, + g - a,' 

S3=a+g_a, +ga" 

S4 = a + g __ a, + g - a, . 

(111.14) 

All the four polarizations are positive and l) = e = s, where s 
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can be any of the four polarizations given above. 
(ii) A = ± fl: gx = a + ! J 12 + J34,J14 ;±: J23 1 respec­

tively. There exist two polarizations for each sign: 

SI = a + ga, + ga, + g~a, } 

Sz = a + g ~ u, + ga, + g ~ a, ' 
..1= fl, (III.15a) 

SI = a + ga, + g"- a, + ga, } 

sz=a+ga, +g-"a, +g~a, ' 
A = - fl. (111.15b) 

Once again l) = e = s, where S is either of the two polariza­
tions given for each case. The Kostant integrality condition 
imposes no conditions on A. 

Class III: Define 

A I = A (A Z + fl2)I!Z/(A Z - fl2), 

fl' = fl(A Z + flZ)1 /z 1(..1 Z - flZ). (111.16) 

Then, 

and 

gx = i J IZ + fl'J IJ - A 'J24, J34 - A 'J I3 + fl'JZ4 j, 
(111.17) 

Sx = (J12 - (A ' + fl')J24' J I3 + J24, J I4 + J23 , J34 

+ (A ' + fl')JZ41; (111.18) 

l) = e = Sx' The Kostant integrality condition imposes no 
conditions on A,fl' 

Class IV: We have, 

gx = (JIZ -J13,J24 -J34 j, (111.19) 
Sx = (JI4,JZ3,JI2 -J13,J34 -JZ4 J, 

l) = Sx = e. The Kostant integrality condition is vacuous. 

IV. PARABOLIC SUBALGEBRAS AND POLARIZATIONS 

In this section, we show the connection between para­
bolic subalgebras and some of the polarizations given above. 

A. Spin (2,1) 

We choose the Cartan decomposition as 

(IV.l) 

Choose a = i JI3 j. Trivially, m = O. n can be easily calculat­
ed and shown to be 

(IV.2) 

One concludes that the polarization given in Class II is a 
minimal parabolic subalgebra. The Kostant induction 
scheme reduces to ind~, (x) where PI is the corresponding 
minimal parabolic subgroup of spin(2, I). Note that XEA and 
hence the Kostant induction corresponds to the convention­
al induction scheme with u-IM • The representations, by 
Kostant's theorem, are UIR's. In identical fashion, we see 
that the polarizations for Class III are also minimally para­
bolic with Langland's decomposition 

a = iJlz ± J Z3 J, m = (OJ, n+ = (Jl3j. (IV.3) 

Once again X - I M X T, TEA and hence, the representations 
are UIR's. These sets of polarizations give rise to the princi­
pal series of UIR's of spin(2, I). 
B. Spin (2,2) 

The Cartan decomposition is 

k = (J12,J34 j, P = (J13,JI4,J23,JZ4 J . (IV.4) 
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Choose a = ! J 13,JZ4 J; we have m = ! 0 I and 

n=ga, +ga, +g~a, +g-a" (IV.5) 

using the notation of Sec. III B. Then, all the polarizations 
given in Class]1 (i) are minimal parabolic with 
X - I M X T, TEA . These polarizations yield the principal se­
ries of UIR's of spin (2,2). For Class III, we choose 

a = (J IZ + fl'J I3 - A 'JZ4 ,J34 - A 'JI3 + flJ 24), 
m = (01, (IV.6) 

D = ! JI3 + JZ4 + (A ' + fl')J34 

- (A ' + fl')Jlz ± ptlJZ3 + J I4 ), 

J I3 + JZ4 + (A ' + fl')J34 

- (A I +fl l)J12 ±Pz(JZ3 +JI4 )1 

where PI = 1[..1' +fl')Z - Ir/ZI, 

Pz= -1[(A'-fl')2-1] 1I2 1· 

Sx can then be shown to be equal to m + a + D + , hence 
it is minimal parabolic. 

Once again, we get the principal series of UIR's. For 
class IV, the Langland decomposition of the polarization is 

a= (JIZ-J13,JZ4-J34),m = (OJ, 
(IV.7) 

This class of orbits yield the principal series ofUIR's. Final­
ly, in class II (ii), it is possible to show that the polarizations 
are parabolic, with Langland's decomposition 

and 

mo = iJ12 + Jw J I4 - JZ3 ' J I3 + J24 1, 
ao = (JI3 -JZ4 )' 

Do = iJI2 - J34 + J I4 + J z3 1 (A = fl), 

mo = (J12 - Jw J I4 + JZ3 , JI3 - JZ4 j, 

ao = (J13 + J Z4 j, 

Do = iJlz - J34 + J I4 - Jz3 1 (A = - fl), 

(IV. Sa) 

(IV.8b) 

corresponding to the choices e = (a II, i az j, respectively. 
These subalgebras are noncuspidal, and hence, generate the 
degenerate series of representations. 

V. DISCRETE SERIES 
A. Spin (2,1) 

We have a compact Cartan subalgebra 

h=k=(J12 j 
The corresponding root is a(Jd = i, with 

g±a = (JI3±iJZ31~p, Ha = -iJ!2' (V.I) 

The characters of H, as noted in Sec. III, are given by 

X (expaJu) = exp(ina), nEZ. (V.2) 

Hence, 

L = (A:h---+C, ..1= na,nE'lj, (V.3) 
with 

H;. = - inJlz' 

Since (A,a)=B (H;. ,Ha) = n, L ' = (AEL: A = na, n #0 I. 
We note that there exist an isomorphism between the 
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set of Kostant integrable elements of h, denoted hK' and L. 
LetXEh and letAx be the element ofh· associated withXby 
the Cartan-Killing map. Then 

Ax E L¢::=:::;>X /21T E hK • (V.4) 

We choose a canonical complex structure on G / H by 

Te(G/H)c =ga'.J +c = I -aI, (V.S) 

and choose a corresponding complex coordinatez. Note that 
(A,a)=n. 

(i) n > 0: It follows from Eq. (11.24) that k (A ) = ° with 
respect to.J / . Hence, the Schmidt theory yields us VIR's in 
terms of functions of G which are holomorphic in Z. The 
Kostant induction scheme can be written as ind~e,(. 

Choose a complex structure and a positive subspace of n in 
the following way: 

n' = Iga:g~ a ~sx), (V.6) 

where Sx is the corresponding positive polarization and de­
fine, 

(V.7) 

It is obvious that in this case, the complex structure defined 
by Te(G /H)c and Te(G /H)K are identical, and hence, so are 
the corresponding representations. 

(ii) n < 0: Once again, it is easy to see that k (A ) = I and 
hence the Schmid theory yield VIR's in spaces of I-forms. 
Note, however, that the prescription yields Te(G /H)K 
= g _ a'.J : = ! a I with respect to which k (A ) = 0. Hence, 

the Kostant induction yields representations in spaces of 
functions which are holomorphic w.r.t. Te(G /H)K or equiv­
alently, antiholomorphic w.r.t. Te(G /H)c' 

B. Spin (2,2) 

The calculations for spin (2,2) are entirely analogous 
and yield the following: 

h = k = 1112,134 )' 

(V.8) 

L'= IAEL: Inll#ln211, 
where a l,a2 are the roots associated with ga, '~2 introduced 
in Sec. II. We once again have an isomorphism between L 
and the set of Kostant-integral elements of h. Define 

(V.9) 

and denote the corresponding complex coordinates by Z I ,Z2 
respectively. Let, as aboveTe (G / H)K be the complex struc­
ture defined by th_ corresponding polarization. Then, one 
has for Class I, 

(i) n I + n2 > 0, n I - n2 > 0, 

Te(G/H)K =ga, +ga" .J +K = I -al,-a2 1· 
(V.IO) 

Kostant-induced representation is in the space functions ho­
lorrorphic in both ZI and Z2' 

(ii) n I + n2 < 0, n I - n2 > 0, 

Te(G/H)K =ga, +g-a,; .J: = I -a l,a2 J· (V.11) 
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Representation is in the space of functions holomorphic in 
ZI and antiholomorphic in Z2' 

(iii) nl + n2 <0 nl - n2 <0, 

Te(G/H)K =La, +g~a,; .J: = la l ,a2 J. (V.12) 

A space of functions antiholomorphic in both Z 1 and Z2 is to 
be used. 

(iv) n 1 + n2 > O,n I - nz < 0, 

Te(G/H)K =ga, +g-a,; .J: = I -al,azl. (V.13) 

Representation space is the space of functions antiholomor­
phic in ZI and holomorphic in Z2' In all the above cases 
K (A ) = Ow. r. t. the corresponding . .J ;; and hence, the Kos­
tant representation and the Schmid representation coincide. 
Note, however, that case (v) and (vi) of Class I are outside the 
purview of Schmid theory (they belong to KerUJ). 

VI. CONCLUSION 

Our results can be summarized as follows: 
(I) The Auslander-Kostant theory yields representa­

tion which coincide with those given by the conventional 
theory of principal and degenerate series. 

(2) Further, the Auslander-Kostant theory, through 
the concept of a complex polarization provides a natural 
complex structure w.r.t. which K (A) = 0, and hence, yields 
VIR's in the space offunctions which are hoi om orphic W.r.t. 
this complex structure. 

(3) However, the present investigation does not throw 
any light on the complementary series of representation. 
This could possibly be done by considering orbits in g~ rath­
er than gO, and inducing from nonunitary characters. 
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The involutive system offunctionals associated by Gel'fand and Dikii to a nth-order scalar 
differential operator is obtained from a set of solutions of a generalized Riccati equation. These 
solutions allow us to explain the involutive character of the system offunctionals in terms of the 
Riccati equation properties only. 

PACS numbers: 02.30. + g 

INTRODUCTION 

In this paper we discuss some well-known facts con­
cerning the Hamiltonian systems constructed by Gel'fand 
and Dikii. In a series of papers 1-3 devoted to the construction 
of infinite-dimensional examples of completely integrable 
Hamiltonian systems, these authors stressed the important 
role played by the resolvent of differential operators to ob­
tain an infinite set of functionals in involution. 

In the last years much work has been done in the pre­
sent subject of Lax equations, constants of motion, and invo­
luteness. One can cite as representatives the papers of 
Manin\ Wilson,S and Adler.s 

In Ref. 3 the Riccati equation is presented in connection 
with the theory of the resolvent of a scalar differential opera­
tor of order n. We shall prove here that the set of first inte­
grals mentioned above are the coefficients of the power series 
solutions of this Riccati equation. Such a Riccati equation is 
associated directly to the differential operator of order n. 

Section I is concerned with preliminary aspects. In Sec. 
n we introduce the Riccati equation for the scalar nth-order 
operator (2.1). Some formulas involving determinants are 
used to get the necessary collection of functionals for the 
construction of the integrable systems. The variational de­
rivatives of the solutions of the Riccati equation character­
ized in Sec. II are calculated in Sec. III. Finally, in Sec. IV it 
is proved that the Lax-type equations admit as constants of 
motion the functionals related to the Riccati equation men­
tioned above. That is all that one needs to prove that the 
system of functionals so constructed is in involution. 

I. THE RING OF DIFFERENTIAL POLYNOMIALS 

We shall summarize here some aspects of the algebra of 
differential polynomials which will be used later on. For 
more information see Refs. 1-3. 

LetA (u) denote the ring of polynomials in the letters u I' 

ul , .... UN' u;, u;, ... , u.~, u;'. u~, ... , where the u, are func­
tions on the real variable x and u~) = aju,. By a we denote 
the total derivative with respect to x; a f = 2,U~ + Iia f I au~1, 
fEA (u) and also_we shall putfl'I = a' f 

The space A (u) offunctionals is defined as the set of the 
equivalenceclassesj= i f,Jl ... ·,EA: f - JjEaA (ull. where 
a A (u) is the set of elements of A (u) which can be written as 
total derivatives. Then A (u) = A (u)laA (u) and the notation 
j= sdxfwill be used for the c1assjwhich contains! 

"Partially supported by the J. E. N .• Instituto de Estudios Nucleares. 
Madrid. 

j = Sdxfwill be used for the c1assjwhich contains! 
The variational derivative operator 818u k.k = 1, .... N 

acts on A (u) by the formula 

8f i af - = 2) - a) -. k = 1,2 .... ,N. (1.1) 
8uk I au~) 

With the variational derivative one characterizes aA (u) in 
the following manner: 

8f 
fEaA (u)q - = O. k = 1,2, ... ,N 

8u, 
(1.2) 

and this result tells us that 8 f I 8u k = 8J 18u k and allows us 
to obtain, by means of integration by parts, the formula 

when the Uk are left to depend on some parameter t, u, 
= du,ldt. 

Differential I-forms are introduced as finite sums 

(1.3) 

(U = 2,(Ukj 8uik , where (UkjEA (u) and the 8u1k are new indepen­
dent variables. 

We define 8 fby 8 f = 2,8u~)a f lau~). By using the rela­
tion3 a8u~) = 8u~ + 11.8 fmay be written as 8 f = 2,kd, jOuk , 
where dk f = 2,ja f lau~laj is the Gateaux differential6 off 
with respect to Uk. 

(1.4) 

Here a is some arbitrary function. 
One can prove that 8 f can be written uniquely in the 

form 

( 1.5) 

withgkEA (u), (U is an appropriate I-form, andgk = 8 f 18uk. 

Let now z be a complex variable. We construct A (u, z~ I) 
as the set offormal power series 5 = 2,ar frlz r. The first 
coefficient.!,." is constant and the a r are complex numbers, 
the other termsfrEA (u). We shall use the notation 5 = 501zr" 
+ O(z - r,,- I). The set A (u. Z-I) inherits the operations a, 

8 louk, and 8 introduced for A (u). In the same way as we did 
for A (u) one gets A (u, Z-I) from A (u). To 5 = 5r./Zr" 
+ O(z - r" - I) we make correspond 
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to remove the constant term 5,,, in 5. 

II. THE RICCATI EQUATION 

Let us consider a differential operator 

L = i u"a" 
k~O 

for which Un = I, Un ,= O. We assume that Uk' 

(2.1) 

k = 0, l...,n - 2 are free generators of the ring A (u). In order 
to obtain the system of functionals mentioned above, we ex­
amine the differential equation (L - zn)rp = 0 for the solu­
tions rp which can be represented in the form rp(x,z) 
= exprx(x,z)dx. We shall denote the primitive of X (x,z) by 

x(x,z) = rX(x,z)dx. 
It is easy to see that 

(L - z")e Y = O. (2.2) 

is equivalent to the Riccati equation 

i ukPdx) = z" , (2.3) 
k~O 

where 

Pk (x) = e- ¥(J'e t ) (2.4) 

is a differential polynomial in X. Thus Po = I, PI = X, 
P2 = X' + X",···· One can prove by induction that Pk admits 
also the expression Pk (xl = (a + xlk I and that PIc (x ) 
= i k 

- II + ... + X",k = 2,3, .... The following proposition 
holds for Eq. (2.3). 

Proposition 2.1: Equation (2.3) has n solutions 
iilEA (U,Z-I), i = O,I, ... n - I with Xiii = tiZ + 0 (Z-I). 

The ti' i = O, ... ,n - 1 are the nth roots of unity. 
Proof We define (7lil = Xiii - tiZ = Lr IX~il/z'. For 

(7ld we have the differential equation 

';~~(tiZ)'kt,C)UkPk _ ,((7lil) = 0 

since from (2.4) 

P,,(xlil) = ,toC}t,Z)'P" _ ,((7lil). 

The equation for (7lil can be written in the form 

. 1 n--2 t;+1 "(k) 
(7ld = - - I I uP ,((7lil) 

n ,~o z" -- I 'k __ , I k k 

in which we introduce the power series 

P ((7[ij) = "" ~ (P [il) 
k £. r k r' 

,;.1 Z 
k = 1,2, ... 

(2.5) 

By virtue of the polynomial character of Pd(7Ii1),(P tl), is a 
differential polynomial on the first r coefficients XIii ,x~i] , ... , 
X~i). Then, (2.5) is a recurrence formula which allows us to 
calculate the coefficients X~il as differential polynomials on 

(uo,···,u n - 2)' 
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Corollary 2.1: Ifwe take tk = e2rrikl",k = O,l, ... ,n - I 
we have the relations ik + II(x,z) = Xl k I(x,t IZ), for 
k = O,I, ... ,n - 2. X In - II(x,tlz) = X[OI(x,z). 

Proof If X (x,z) is a solution of (2.3) so is X(x,t"z), 
k = O,l, ... ,n - 1. ButXlk I(x,tlz) = t" + IZ + O(Z-I) isjust 
Xl" + II(x,z). At this point we observe that all the solutions 
i" I are equivalent with respect to their dependence in (u(), 

U 1''''U n _ 2); in fact one has 

X I" , II = ~Xlk I 
, r ' 

tl 

Corollary 2.2: 
I n I X[OI 
-likl=I~· 
n k = 0 ,;. I (z")' 

As a matter of fact from Eq. (2.5) we have for the first 
coefficients 

X
IOI -I -

X
IOI -3 -

- ~ (u" _ 4 + 3 ~ n u~ _ 2)-
Now we look at the solutions of the equation 

(L * - z")¢ = 0, 

(2.6) 

L * = L Z = 0 ( - a)ku k is the adjoint operator of the operator 
L [(2.1)]. We form the Wronskian determinant for the solu­
tions rpo, rpl'''''rp" _ I of (L - z")rp = 0 obtained from the Xli) 
of Proposition 2.1, that is 

rp~ -II rp \" - II rp I" - II 
"-I 

rp ~ - 21 rp \" - 2) rp I" - 21 
"-I 

w= 

rpo rpl rp"-I 

By (2.4) we can write the derivatives of rpi as 

Ikl_p (,)il) Y" rpi - kU e , 

(2.7) 

which after the substitution in (2.7) allows us to write Win 
the form 

n-IA 

W = nexp I Xiii, 
i=O 

where n is the determinant 

POI I (xIOI) Pn - I (xIII) 

POI _ 2 (xIOI) POI _ 2 (xIII) 

n= 
xiii 

I 

(2.8) 

P
n 

I (xl" - II) 

p
n

-
2
(x1" II) 

(2.9) 

We note that nEA (u,z-I),n being an element of the form 

n = Itlz"(n - 1)/2 + 0 (z("(" - 11/2)- I), 

where It I is the Vandermonde determinant 
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e-;;-I E:- I E~= : 
~-2 E~ -2 E~=t 

lEI = = n(Ek - El ). 

k<1 

EO EI En _ 1 

which guarantees that W,.W since Ek =/=El for k =/= 1. We in­
troduce further the cofactors Wk of the elements in the first 
row of W. Concerning the Wk we have the following. 

Proposition 2.2: 

(L * - zn)Wk = O. k = O.I ..... n - 1. 

Proof We consider WO' From (2.7) 

cP (I" - 21 cP~' - 21 

cP I;' - 31 cP~' - 31 

Wo= 

cP; cP; 

CPI CP2 
may be written in the form 

cP ~;' ~ 121 

cP ~'_~- 1
31 

CPn-1 

Wo = det(<P In - 21.<p In - 31 ..... <P /.<p) 

(2.11) 

to denote the determinant which has as row vectors <P In - 2) • 

.... <P /. <p. where <P (k) = (cp \k). cP kk ) ..... cP ~ ~ 1 ). According to 
the equation (L - Zn)cpI = 0 one has 

<p (n) = (zn _ uo)<P - U I <P / - ... - Un _ 2 <P In - 21, 

By using this expression for <p (n l• the rule for the derivation 
of determinants, and the fact that a determinant vanishes 
when two rows are repeated. we get the formula 

k 
"( _ l)i(U w: )(1. - i) L fl--f 0 
i~O 

= det(<P 1/1· II,<P (n 21 .... ,<P (/I - 1 -- I. ), ... ,<P',<P), 

O<k<n - I, 

where cP (I. Idenotes the absence of the row <P (I. I. To see that 
this formula is correct take the derivative on both sides ofit. 
to obtain 

k I (- l)/(u
n

_
i 

WO)(k + I-il 
i~O 

= det(<P (nl,<p (n - 21 ..... cP (n - I - k I ..... <P /.<p ) 

+ det(<P ('I - I) <P (n - 21 <po (n - I. - 2) <P / <P) 
, "." ".'" 

= det( - u <P (n - I - k I <p In - 21 <po (n - I - k) <p / <p ) 
n - t - k t "." " •• , , 

+ det(<P (n - I) <p(n - 2) <po (n - k - 2) <p / <P) 
, '0'" ".'" 

= ( - l)kUn _ I _ I. Wo 

+ det(<P (n - II <p (n - 21 <po (n - k - 21 <P' <P) 
, '''0' ""'" 

Thus, we have 
n-I I ( - I)'(un _ i wo)(n - I - il = det(<P (n - Il,<p (n - 21 .... ,<P /) 
i=O 

and the derivative of this equation yields 
n-I L ( - IY(un _ i wot - II = det(<P (nl.<p (n - 21 .... ,<P /) 
;=0 

= det((zn - uo)<P,<P In - 21 ..... <P /) = ( - l)"(zn - uo)Wo, 
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that is (2.11) up to a factor ( - I)n. Theprooffor Wl>'''' Wn _ I 
is the same. 

The solutions Wk' of Eq. (2. I 1) also admit the 
factorization 

WI. = !hexp LX'iJ, k = O,I ..... n - 1. (2.12) 
i#k 

Here ilk is the cofactor of Pn _ I (xII. I) in (2.9). Since Un _ I 

= ° the formula of Liouville 7 for the function W (x) 

W(x2) = w(xdexp( - {'Un _ I (X')dX') 

implies here that W = constant and hence we will have 

(L * - z"){ WJWj = O. 

For the solutions WI. I W of E~ (2.1 I) one finds the 
expression (WJW) = S II. lexp( - XII. I) with SCI. J defined 
by 

SlkJ=ilklil, k=O,I .... ,n-1. (2.13) 

The constant coefficient of S II. lEA (U,z-I) is found to be 
EJnZn - I considering (2.10) and a similar formula for ilk' 

w here IE k I is the cofactor of EZ - 1 in the Vandermonde deter­
minant lEI. 

To see that lEI. IIIEI isjust equal to ckln one uses the 
relation lEI. I = E~ IEol, EI = exp(21Tiln), in the expansion of 
Ici in terms of the ICk I: 

,,-1 It - 1 

IEI= IEZ-1IEkl= LjEkI/E~=nIEol 
k~O k~O 

(we choose Ek = E~). This immediately implies that 
lEI. IIIEI = ck Icol/l€l = Ekln 

S II. I = Ek Inzn - I + 0 (z - "). (2.14) 

Now, we go on to the interpretation of the equation 

(2.15) 

which is another version of (2. I I) in terms of S II. J. Keeping 
in mind Eq. (1.4) and the definition (2.4) of Pk (x) it is easy to 
see that 

Lemma 2.1: The Gateaux differential of Pk (x) is the 
(k - 1 )-order differential operator given by 

dPk (x) = ± (k)Pk _ ,(x)J' I. 

'~I I 
(2_16) 

Lenyma 2.2: If~Z =OUkPk(x) = zn the differential oper­
ator e - Yo(L - z")oeY can be expressed in terms of the opera­
tors dPk according to the formula 

then 

~ _ n 

e - Yo(L - zn)oeY = I ukdPk (x)J. 
k-I 

Proof By definition 

dPka = ~I Pk(x + cal. 
dE < ~ 0 
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dPkG = ~I (e - LV + dla'elY + «il) 
dE ,= a 

- PI. (t)a + e- yak (aeY) 

- Pk(t)a + ItoG)Pk l(t)a
l
- 'a 

according to (1.4) and the Leibnitz rule for the derivative of a 
product. This proves Lemma 2.1. For (2.17) 

I. 

I PI. I (t)al 
= dPka + PI. 

1-.0 

by (2.16). Mulitply both sides on the left by u" 

e ro i uka"oer = i ukdPka + i ukPI. 
"c. () " ~ I I. -. () 

and use the fact that L~ = 0 U k P, (t) = z" to get (2.17). 
Of course, it is also true that 

- ~ II 

eto(L * - z")Oe - r = - ao I d *Pk (t)OU" , 
" .... I 

where 

d *Pk = i (- 1(- I(k)a l
- lop, I 

I~ , I 

(2.18) 

is the adjoint operator of the operator (2.16). With that, we 
are in a position to prove that 

Proposition 2.3: For each i = 0,1 , ... ,n - 1, S Iii, as given 
by (2.13), satisfies the differential equation 

i d *Pk (tlil)(UkS Iii) = 1. 
k~1 

(2.19) 

Proof Take (2.18) with the solution Xiii of(2.3). Since by 
Eq. (2.15) (L * - z")(S lilexp( - Xiii)) = 0, then aL% __ 1 d *P" 
(tlil)(ukS Iii) = 0. Therefore L~ ~ Id *Pk(tlil)(ukS Iii) = con­
stant. that this constant should be equal to one can be seen as 
follows. In the expression 

i d*Pk(t[il)(UkS[i l) 
k~l 

= ktl Itl( - 1)1- 'G)al- I(Pk _1(tlil)ukS Iii) 

the only term from which a constant term can be obtained is 
nP" __ ,(t[ii)S iii since the (uu, .. ,u" _ 2) are assumed to be free 
generators of the ring A there does not exist differential rela­
tions between them. But p" __ I (t[iI) = E7 - 'z" - , + O(z" - 2) 
andS iii from(2.14)isS[iJ =E,!nz"-' +O(z -")sothecon­
stant term of nP" . 1 (X[il)S iii is just equal to one and (2.19) 
holds. 

Equation (2.19) was considered in the Gel'fand-Dikii 
paper. J It was motivated by different reasons as these ex­
posed here, namely, the representation as products of the 
inexact components of the resolvent of L. Similarly to what 
they did there one can prove that for each X[il, S Ii] is in fact 
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the only element of A (u,z- I) which satisfies (2.19). Hence, we 
have constructed in terms of the X[il all the solutions of(2.19) 
(formula 2.13) belonging to A (u, z- I) 

III. VARIATIONAL DERIVATIVES 

In the foregoing section we have obtained two systems 
of elements of the set A (u, z- I), namely the solutions 
(tIO[, i I [, ... ,i" - II) ofEq. (2.3) characterized by Proposi­
tion 2.1 and those ofEq. (2.19) (S[O[, S[I I, ... ,SI" II) con­
structed in terms of the iii by meanS of the formula (2.13). 
We now search for the expressions of their variational de­
rivatives as they were defined in Sec. I. 

Theorem 3.1: For each iii, i = O, ... ,n - I, one has 

D 1'1 
~ = -Slilp,,(tI'I). (3.1) 
DUI. 

Proof Putting iii in Eq. (2.3) one has identically 
L; oU"Pk (tlil) = z" we carry out the variation of such 
relation 

11 2 11 

I P"Du" + I ukdPJjii l = ° 
k () k - I 

and multiply both sides on the left by S Iii, we obtain after 
integration by parts in the second summand 

II 2 11 

IS lil p,,8uk + Diil I d *P" (tlil)(u"S Iii) = aUJ 
" - () " ._. I 

where UJ is an appropriate I-form. But by (2.19) 
L~~ 1 d *PdXlil)(UkS iii) = 1 and in view of the unicity of the 
solution S i'l and the formula (1.5) our statement is true. 

Theorem 3.2: The variational derivatives of the solu­
tions S til of Eq. (2.19) are given by 

Ii] 
~ = - _d_(S ii]P

k 
(tlil)). (3.2) 

DU k d (z") 

Proof We calculate the derivative of L~ =OUkPk(t[il) 
= zn with respect to zn, 

n diiJ I ukdPk --= 1, 
k = I d (zn) 

multiply both sides on the left by S [il and integrate by parts 
the left-hand side to obtain, by taking into account Eq. (2.19) 
forSliI, 

d Ii] 
---X- = S [il + aUJ. 
d(zn) 

Since (6 louk )a is always equal to zero, Eq. (3.2) follows after 
application of 0 louk to both sides and the introduction of 
(3.1). 

We remark here that the formula (3.2) was obtained by 
Gel'fand and Dikii 1.3 in the context of the resolvent methods 
for the operator L. Here it appears as a simple consequence 
of Theorem 3.1 in the present context of the Riccati equa­
tion. Formula (3.2) will guarantee that the Gel'fand-Dikii 
Hamiltonian systems coincide with those which will be ob­
tained in the next section. 
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It is interesting to note that all the terms X~iJ ,X~~ , ... are 
total derivatives. To see that, consider 

" - I c5X[i[ " - I I - = - IS [iJPk (('[i[), k = O,l, ... ,n - 2 
i=O c5Uk i=O 

as follows from (3.1). Remember that S [il = n;ln, Eq. 
(2.13), and that the n i are the cofactors of the elements on 
the first row of n. Then 

~ "flx[i] = - ~ "flpk({'[il)ni = 0, 
c5u k i=O n i=O 
k = O,I, ... ,n - 2 

since l:7~0IPk({'[il)ni is just the determinant n (2.9) when we 
substitute its first row by (Pk ({,[OI),Pk ({,[II), ... ,Pk({,[" - II)) 
which is contained in n for k = O,I, ... ,n - 2 and hence is 
equal to zero. From the corollaries 2.1 and 2.2 8X~~ / c5u k 

= 0, r = 1,2, ... , and this is equivalent (see Sec. I) to our initial 
assertion. 

4. THE INVOLUTIVE SYSTEMS RELATED TO THE 
RICCATI EQUATION 

We start by considering evolution equations for which 
the functional 

HUI[u,z] = f dx (CiZ - X UI ) (4.1) 

is a constant of motion. 
Now let the elements of the ring A (u) depend on a new 

parameter t. We shall prove that the Lax equations preserve 
(4.1) 

Theorem 4.1: For every linear operator K, for which the 
equation 

L = [L,K] (4.2) 

becomes equivalent to an evolution system for the Uo, 
u I""'U" _ 2 the functionals H [ileA' (u,z-I) are constants of 
motion for this evolution system. 

Proof Apply (4.2) to ~i] and multiply on the left by S [il 
e - ~il. From the left-hand side one obtains, after integration, 
that 

f dxS [ile - ~'IL~il = f dx :t:s UIPk({'[il)Uk 

=!!....H[i] 
dt 

is the derivative with respect to t of H [il [see Eq. (1.3)]. 
Going over the commutator on the right-hand side, we 

have 

f dx e - K[i]S [il [L,K ]eK[il 

= f dx(L *(S [il~il) Ke,¥lil - f dx e - ,¥IiJS [ilK (Le,¥ld) = ° 
by (2.2) and (2.15). Therefore, we have proved that the opera­
tors K which one needs in Theorem 4. I have been construct­
ed for the first time by Gel'fand and Dikii. They gave3 a form 
of such operators which is particularly useful here. The 
operator 

&'1[i l =(J-X lil )-IOS[i], i=O,I, ... ,n-l (4.3) 
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can be expanded in powers of Z with coefficients which are 
differential operators of increasing order. For each of these 
coefficients Theorem 4.1 is satisfied. 

To prove that, we shall use the operator (4.3) in a slight­
ly different fashion which will be more convenient here. One 
can put 

&'1 [il = (~iloJoe - ,¥Iil)-IOS [il = e,¥l'loa-Ioe - ,¥IiJoS [il 

to calculate the commutator [L, &'1 [i]]. We observe that by 
(2.2) and (2.15) &'1 [il is an operator of the form 
cpoJ-lol/!, where (L - Z ")cp = ° and (L * - Z ")I/! = 0, which 
is all that one needs to have [L,.9 [il] as a differential 
operator. 

Proposition 4.1: Let &'1 [il be the operator (4.3) and set 
CPi = expx[i], I/!i = S [i]exp( - ;ti]) then one has the identities 

(L _ z")o&'1lil = "fl n -±-I n - kfl- I (k + r) 
k=o 1=0 r=O r 

XUk+ l+r+ dl/!icp~I))[rJa\ (4.4a) 

n-In-k-In-k-I-I ('+r) 
&'1 [i]O(L -z") = I'I I (- l)r 

k=O 1=0 r=O r 

X (Uk+ I +r+ II/!iip ~lJtJJk. (4.4b) 

With the help of (4.4a) and (4.4b) and the definition (4.1) of 
H [i], by substituting CPi and I/!i in terms of expx[i] and 
S [ilexp( - X[il), it is easy to see that 

n-2 
[L,&'1[iI] = [L - zn,&'1[il] = I X~IJ\ (4.5) 

k=O 
where 

n-2-k ~H[il 
[·1 "" CT U X k' = L." Y kl --

1=0 c5uI 

(4.6) 

and.Y = (Ykl ) is the symplectic operator of Gel'fand­
Dikii,I.3.8 

n-k-I-I[(k+r) 
Y kl = I Uk + 1+ r + I ar 

r=O r 

_ (': r} _ a),oU k + l + r + I]' (4.7) 

We return now to &'1 Iii and write them in the form 

&'1 Ii] = e - tJliloeE,zXOa-loe - f,zXO(ea1iIS [il) 

= - e - alilo(CiZ - J) -IO(ea]'ls [il), 
where a[il is the part ofX[il which contains only negative 
powers of z, a[il = x[il - ciZ, We also note that the expan­
sion of (CiZ - J) -I in power of a, 

(cz - a)-I = "" 1 Jr 
I L." ( )' + I ' r>O CiZ 

immediately implies that of &'1 Ii] as 

where Pr_s(a[i]) is the differential polynomial (2.4) with aliI 
as argument. Now we note that (4.8) enables us to write 

(4.9) 
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in view of the fact that alii and S [il = E;lnzll ~ 1 + O(z ~ II) 

contains only negative powers of z. The operator :3" ~'I is a 
differential operator whose commutator with L is an opera­
tor of (n - 2) order with coefficients X t~ + II as follows from 
(4.5) and (4.6) when H [II is expressed as a power series in z. 

We summarize this in the following theorem. 

Theorem 4.2: For each opeator ;"7 ~II, 
i = O, ... ,n - 1,r;;.0, the Lax equation 

i = [L,:5' ~il] 

becomes equivalent to the Hamiltonian system 

1I~,~2 8HIII 
Ii I. = '" C/ II + r , LC/ki 

I~O 8u, 

Define now on A (u) the Poisson bracket 

{F1,FJ = fdx L 8F1 (:T kI 8F2), 

,./ 8u, 8u I 

(4.10) 

(4.11 ) 

(4.12) 

which extends in a natural way to A (u,z~ I). Under (4.11) we 
can write 

d lil ~ = {HlilHlil } 
dt ' ff + r , 

(4.13) 

but since for (4.11) Theorem 4.1 holds dH lil/dt = 0 and 
hence 

{ lil Iii }_ Hs ,H II + r - O. 
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In view of (4.5),-(4.6), and (4.9) 

n ~ k ~ 2 8H Iii L L<7kl __ s_ = 0 
I~O 8uI 

for s<n. Thus (8H~'1/8utl7~-rJ belongs to the kerneJ') of.T 
(remember that H ~il is always zero because X~il is a total 
derivative). This assures that all the coefficients of H Iii are in 
involution with respect to (4.12). 

{Hyl,H ~il} = 0, r,s;;. I. 

And this was the property claimed for the Riccati equation 
(2.3) 
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Generalized Miura transformations induced by factorization of an nth-order scalar operator are 
used to characterize a set of Hamiltonian systems by requiring the conservation of the Gel'fand­
Dikii first integrals sequence. The second symplectic structure for the Gel'fand-Dikii equations 
is obtained in connection with the previous Hamiltonian systems. Backlund transformations are 
also analyzed. 

PACS numbers: 02.30. + g 

1. INTRODUCTION 

Since the discovery by Gel'fand and DikiP ofthe com­
pletely integrable Hamiltonian systems related to the resol­
vent of differential operators, a number of interesting prop­
erties exhibited by such systems has been studied. One can 
cite the elegant form given by Adler, Lebedev, and Manin to 
the Gel'fand-Dikii theory in terms of the Kirillov symplec­
tic structure. 2 

There was mentioned a series of problems concerning 
the existence of a second symplectic structure and the Len­
ard relations. Such relations were constructed by Adler and 
Symes by means of the fractional powers of the symbols of 
differential operators.2

•
3 

On the other hand, the celebrated Miura transforma­
tion4 between the Korteweg de Vries (KdV) and the modified 
KdV equations was found to be connected with the problem 
of the second symplectic structure for the KdV equation; it 
may be regarded as a canonical transformation between the 
symplectic structure of the modified KdV equation and the 
second one for the KdV equation. S This guarantees that the 
second operator is in fact symplectic by constuction. As was 
noted by Adler and Moser,6 the Miura transformation is 
induced by factorization of the Schrooinger operator into 
two first-order differential operators. The same factorization 
procedure was put forward by Jaulent and Miodek7 in the 
context of energy-dependent Schrooinger operators. Also in 
this energy-dependent case, one can see that there exists a 
canonical map between two symplectic structures.8 

The generalization of these facts to an arbitrary nth­
order differential scalar operator is presented in the paper of 
Sokolov and Shabat,9 where the construction of the Lax 
equations for the modified systems is given. Such modified 
equations are developed even for nth-order differential ma­
trix operators by Kupershmidt and Wilson. 10 The proof of 
the symplectic character of the second operator in the Gel­
'fand-Dikii equations is also given by Kuperschmidt and 
Wilson. Another proof is made Ref. II. More applications of 
the factorization method can be found in Ref. 12. 

In this paper we arrive at these results for scalar opera­
tors in the following way. 

The system of first integrals of Gel'fand-Dikii equa­
tions as they were found in the Riccati equation contexe3 are 

"Partially supported by the J. E. N. (Madrid). 

used to characterize the modified equations (the analog of 
the modified KdV equation). These modified equations are 
constructed as the Lax equations which preserve the system 
of first integrals mentioned above. The relevant operator to 
be considered in the Lax representation is determined by the 
form of the variational derivatives of the first integrals with 
respect to the new variables. From the Lax equations we 
obtain completely integrable Hamiltonian systems with a 
symplectic operator which is a first-order differential opera­
tor. The Lax representation of the new Hamiltonian systems 
is found to be particularly useful to prove that in fact such 
systems are connected by the transformation with those of 
Gel'fand-Dikii. If one transforms directly the Hamiltonian 
form of modified equations, then the Gel'fand-Dikii equa­
tions written in terms of the second symplectic operator are 
obtained. Finally canonical invariance maps for the modi­
fied equations as well as the Backlund transformations in­
duced in the Gel'fand-Dikii ones, are analyzed. The Back­
lund transformations were found by Kupershmidt in the 
paper of Ref. 14. 

Throughout this paper we shall use the results and no­
tations of the previous work of Ref. 13 . For completeness we 
include two Appendices with some results which are used in 
Sec. 6. 

We would like to thank Boris Kupershmidt for infor­
mation about his own results in this field when this work was 
in preparation during the Workshop on Dynamical Systems 
held in Crete (July 1980). 

2. VARIATIONAL DERIVATIVES 

We shall introduce a new parametrization of the ring A 
of differential polynomialsl3 with free generators Vo, 

VI""'VII _ 2 which will be related to the standard collection 
uo, uI""uII _ 2 by the factorization procedure described in 
Sec. 1. To do that, we define 

11-2 

Va = L bakVk , a = O,I, ... ,n - 1 
k=O 

where the n X (n - 1) matrix b = (bak ), 

(2.1) 

a = O,I, .. ,n - l,k = O,I, .. ,n - 2 should satisfy the follow­
ing two conditions. 

II-I II-I L b ak = 0, k = O,I, ... ,n - ~ L Va = 0, (2.2a) 
a=O a=O 

rankh = n - 1. (2.2b) 
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Let us now define the differential nth-order operator 

A = (a + Volta + vl)· .. (a + vn _ d, (2.3) 

which can be written in the formA = l:k=oQkak. The coef­
ficients Qk are differential polynomials in VO'···Vn _ 2,Qn = 1 
and Qn _ I = l:~ :: b Va = 0 according to (2.2a). By setting 
Uk = Q,,(v) one has the relation 

i Uk ak = (a + Vo)(a + VI)···(a + Vn -I) (2.4) 
k=O 

or L (u,a) = A (v,a). 
The power series X Ii] and S Ii] introduced in the context 

of the operator L = l:Ukak (see Ref. 13) as solutions of 

ktoUkPdX) = zn, Pdx) = e - xakeX, X = fXdX, 

(2.5a) 
n 

I d*PdukS) = 1 (2.5b) 
k=1 

are found in terms of VO"",Vn _ 2 by substituting Uk = Qdv). 

We retain the same notation X, S, ... for X (u,z), S(u,z), ... 
as for X(Q (v),z)S (Q (v),z), ... In order to calculate the variation­
al derivatives of the solutions XIii with respect to the 
VO""'Vn _ 2 we introduce the following conventions. 

(2.6) 
Aa,n-I =(a+ Va)(a+ Va+d· .. (a+ Vn_ I ), An,n_l=l, 
a = O,l, ... ,n - 1. 

By A we understand Ao,n _ I and A * ,A ~a , ... will denote the 
adjoint operators. 

Theorem 2.1: The variational derivatives of the solution 
X1iJ,i = O,I, ... ,n - 1 of(2.5a) are given by the expressions 

OXli] = n - I (* Ii] _ xl") _ Xiii - I bak A o,a_I S e (Aa+ I,n-Ie ). 
OVk a =0 

(2.7) 

Note the polynomial character of oiiJ/OVk since the expon­
entials cancel. 

Proof Rewrite (2.5a) to keep explicitly the operator A 
[(2.3)], 

e-xIiICAexld) =zn. 

We perform the variation of this identity to get 

e-xIiICoAeXIiI) + eX'I'IA Cexldoxlil) _znOXlil = O. 

Ifwe take into account the relation l3 

- .rl"A Xiii _ n ~ dP (vli])a e e -Z+-,,-Uk kVl: 
k=\ 

we arrive at 

e-XI"(oAeXI'I) + i ukdPkOXli] = O. 
k=1 

Multiply both sides on the left by S Ii!, apply (2.5b) after inte­
gration by parts to deduce, with an appropriated I-form w 
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n-2n-1 ~ ~ 
OV IiI + ~ ~ b (A. S[ile-XIlI)(A eX111)OV 

A -"- -"- ak O,a - I a + I,n - I k 
k=O a=O 

=aw 

as it follows from the formula 

easily provable by induction over n. This concludes the proof 
of(2.7). 

From Now on we shall drop the index onxli],S Ii], ... and 

write simply X,S, .... 
We set 

~ 

Sa = ~ Aa + I,n _ I eX, (2.8a) 

Sa =z-aA~a_I(Se-X) (2.8b) 

and define the column vectors S = (Sa ),S = (Sa) which en­
able us to write (2.7) in the form 

oX n-\ 
- = - I bakSaSa· 
oVk a = 0 

(2.9) 

Let us now define the matrix 

0 0 0 

0 0 1 0 

a= 
0 0 0 I 

0 0 0 

The columns of a are the vectors of the standard basis of 
Rn(en _ \ ,ea,el, ... ,en _ 2)' Denote by a the transposed of a , then 

aa=aa=l, deta=(-lt- l
, an=1 (2.11) 

and a is a unitary matrix. Let Vbe the column vector 
V = (Va) with components Va given by (2.1); we set 
D (V) = diag (VO"",vn _ I) and similarly for D (S ),D (S ), .... 

Proposition 2.1: The vectors Sand S as defined by (2.8) 
satisfy the linear differential equations 

(T-z)S=O, 

(aT+a - z)S = O. 

Here T is the first-order differential operator 

T= ala + D(V)) 

and T + = ( - a + D (V))a. 

(2.12a) 

(2.12b) 

(2.13) 

Proof From the defi!lition (2.6) for Aa.a one sees that 
(a + Va )Sa = ~ Aa,n _ I eX = ZSa _ I according to (2;..8a), ~ 
a = 1, ... ,n - 1. Moreover one has (a + Vo)Sa = AeX = znex 

or (a + Vo)Sa = ZSn _ I' We have proved therefore that 
(a + D (V))S = zas, which immediately implies (2.12a). In 
the same way one obtains (2. 12b). 

We shall cite here some properties about the linear ap­
plication D of Rn in the set of n X n diagonal matrices. For 
every vector 8ERn it is easily seen that 

D(a8) = aD(8)a, 
(2.14) 

D(a8) = aD (8)a 

and for diagonal matrices D (8)D (,0) = D (D (8 )Pl· 
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III. LAX PAIRS 

Suppose that there exists some linear operator J for 
which the Lax equation 

d 
dt T= [T,J] (3.1) 

makes sense as a system of differential equations for the 
functions VO'''''V n _ 2 which are left to depend on a new pa­
rameter t. The precise set of conditions on the J-operators 
will be stipulated later. Now, we claim that concerning the 
functionals JY'(v,z) = SdX(EZ - X) [in short for 
JY'lil(v,z) = SdX(EiZ - XiiI)] one has 

Theorem 3.1: The functional JY' is a constant of motion 
for the evolution equations which issue from the Lax equa­
tion (3.1), with an admissible operator J. 

Proof In like manner as we did in the Theorem 4.1 of 
the previous work 13, we multiply on the left of (3.1) by (at) 
and apply this operator to the vector S, where sand; are the 
solutions (2.8) of Eqs. (2.12). After integration we have 

fdX;D(V)s= fdX(Q;)[T,J]S, V= ~. 
From the left one obtains 

fdxfD(V)s= fdX nf\jk nfibakSa;a = dJY' 
k=O a=O dt 

by (2.9). Now we examine the right-hand side, 

f dx(Cif;)[T,J]s = f dx«(T+a;)-Js - (at)JTS), 

which becomes identically equal to zero by virtue of (2.12a) 
and (2.12b). Therefore we have proved that (dJY'ldt) = 0 as 
it was claimed. 

Theorem 3.1 tells us that the appropriate Lax equation 
which one does select in order to have evolution equations 
with an infinite sequence of first integrals, should be at­
tached to a certain differential operator Twhich in this case 
does not coincide with the starting operator A. 

The precise set of conditions on J to make Eq. (3.1) 
meaningful are 

(i) T,J] should be a matrix multiplicative operator, 
(ii) a[T,J] remains to be a diagonal matrix with null 

trace. 
These conditions are obtained by examining the form of 

. n-l 

dT I dt = aD ( V) and the assumption "" V = 0 for the V. ~ a 0' 
a=O 

V(t ... ,Vn _I' 

. In order to find operators J with the required proper-
ties, we translate Eqs. (2. 12a) and (2. 12b) to equations for the 
diagonal matrices DIS) and D (a; ). 

Proposition 3.1: Let the vectors Sand; satisfy (2. 12a) 
and (2. 12b), then 

TD (S ) = zD (S la, (3.2a) 

T+D(a;) =zD(a;)a (3.2b) 

for the diagonal matrices D (S ) and D (a; ). 
Proof By (2.12a)D (TS) = zD IS ). But (2.14) implies that 

D(TS) =D(a(a +D(v))S) = ala +D(v))D(s)a 

just equal to TD (s )a. From (2.11) (3.2a) follows. In the same 
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way the Eq. (3.2b) is proved. 
Let us now construct the operator 

JI = z(D (S )a-ID (a; ) (3.3) 

to be understood as a power series of differential operators 
when we write them in the form 

JI =zD(e-Xs)(a - x)-ID(aeX;) 

in which the exponentials' factor do not appear and 
(a - x )-1 expanded in powers ofz (see Ref. 13) to write 

(3.4) 

the JI r being differential operators of increasing order. 
Proposition 3.2: 

[T,JI] =z[a,D(s)D(a;)]. (3.5) 
Proof One has the identity 

[T,JI] = z{(TD (S ))a-ID (a;) - D (S )a-I(T + D (a;))­

+ [a,D(s)D(a;)]} 

in which we take into account Eqs. (3.2) to see that they 
reduce to (3.5). 

We also note that 

a[T,JI] =zD(s)D(a;) -zD(aS)D(;) 

is manifestly a diagonal matrix with null trace. 

4. THE MODIFIED HAMILTONIAN SYSTEMS 

Our next goal will be to express the commutator (3.5) in 
terms of the variational derivatives of the functional 

JY'(v,z) = fdX(EZ - X) = L JY'r ~ v] , 
r>I Z 

(4.1) 

t~at by Theorem 3.1 is a constant of motion for the Lax equa­
tIOns defined by the operators JI r in the power series of JI. 
By doing so, we shall obtain the Hamiltonian systems, the 
symplectic operator, and an involutive system offunctionals 
~ith respect to the Poisson bracket given by the new symple­
tic operator. 

We shall need the following two identities, 

z[a,D(s)D(a;)] = -a(D(a;)aD(s), (4.2) 

aD (a; laD (s) = D (;)D (S). (4.3) 

The relation (4.3) is an obvious consequence of (2.14), since 
aD (a; )a = D (aa; ) = D (; ). Formula (4.2) is found by multi­
plication of (3.2a) on the left by D (a; ) and the transpose of 
(3.2b) on the right by D (S) [take care of the commutativity of 
the diagonal matrices DIS) and D (a; )], then 

z(aD (S)D (a;) - D (S)D (a; )a) 

=D(a;)T+D(S) -D(a;)TD(s) 

yields (4.2). 

Proposition 4.1: Let JI be the operator defined by (3.3), 
then 

a[T,JI] = -aD(S)D(;). (4.4) 
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This relation comes directly from (3.5), (4.2), and (4.3). 
It proves to be convenient to introduce the vector 

1T = (1Ta ) defined bytheproductD (s)D (s) which we write as 
the diagonal matrixD(1T) with 1Ta = Sus",a = O,I, ... ,n - l. 

Moreover, let us define the vector K = (Ka) with 
components 

oX 
K = - -, k = O,I, ... ,n - 2 

oVk 

Kn ~ 1 = 0. 
n-I 

Keeping in mind Eq. (2.9) one finds K k = L b ak 1T a or 
a=O 

n-l 

aKk = L bak a1Ta , k = O, ... ,n - 2. In (4.4), the traceless 
k=O 

n-I 

character of a[T,vR] implies that a L 1T a = ° [as one can 
a=O 

check directly in Eqs. (2.12)]. We summarize the above rela-
tions in the formula 

aK = Ca1T, 

where the matrix c is 

the transpose of b (2.1), bordered by the row (1, 1, ... ,1). 

(4.5) 

(4.6) 

By conditions (2.2) concerning b one sees that c is inver­
tible [rank b = n - 1 implies that at least one of the cofactors 
of one ofthe elements, say the Cn ~_ I'; in the last row of c, is 
non-null. To calculate the determinant of c we add up to the 
column i the restant ones and expand det c by the elements of 
that column i. By (2.2a) ~~:bbak = O,k = O, ... ,n - 2, thus 
det c is proportional to the non-null cofactor of Cn - I';]· 

From (4.5) a1T = C-1aK, and this enables us to express 
Eq. (4.4) in terms of oX/t)vk,k = O,I, ... ,n - 2. 

To go over the motion equations, we pick out a term 
vR r in the series (3.4) to examine Eq. (3.1) with J = vR" 
which may be written as 

(4.7) 

From Proposition 4.1 and Eq. (4.5) it easily follows that 

D(V) =D( - C-1aKr ) 

turns out to be equivalent to (4.7), or 
. -I V= - c aKr , 

to be expressed in terms of the independent variables 
VO'''''Vn _ 2 as follows. Keeping in mind Eq. (2.1) 
V = bv,v = (Vk)Z:~, since b is a constant matrix 

bv = - C-1aKr • 

Multiply on the left by c to obtain cbv = - aKy • Take care of 
the fact that by (4.6) and the property (2.2) 

Cb-(~) 
00···0 

is the matrix bb boardered by the row (0, ... ,0). Remember 
that by definition Kn _ 1 = ° to see that one has simply 

bbv = - aVffi"" 
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where we have introduced the vector 

V ffi"y = ( - 0Xr/OVk)Z: ~ according to the expression (4.1) 
of the functional ffi", related to the H introduced in Ref. 13 
by 

ffi"=HoQ. (4.8) 

Here Q is the transformation defined by (2.4). 
We must prove again that a determinant does not van­

ish; here is now det bb. 
This comes in this case by considering the product ce, 

which by (4.6) and (2.2) equals 

together the above proved property det c#O. 
These considerations allow us to write finally the mo­

tion equations (4.7) in terms of VO"",V n -.2 in the form 

v=.YaVffi"" .Y= -(bb)-I (4.9) 

in which we want them. 
The matrix Y which appears in (4.9) is manifestly a 

constant, nonsingular, symmetrical matrix. We define the 
operator 

(4.10) 

that turns out to be a symplectic operator. (Here the Jacobi 
identity follows directly from the self-adjoint character of 
the Gateaux differential for a gradient. 14 So we have 

Theorem 4.1: The Hamiltonian systems (4.9) 

v=IeVffi"" r=I,2,... (4.11) 

admit a Lax representation 

T= [T,vR,] 

in terms of the first-order differential operator T [(2.13)] and 
the pairing operators vR r [(3.4)]. This result is contained in 
Ref. 10. 

Let us now introduce the Poisson bracket 

(4.12) 

associated with the symplectic operator Ie. The Hamiltonian 
systems (4.11) may be also written as 

(4.13) 

and morever one has 
Corollary: The functionals ffi",[v] in the series (4.1) are 

in involution with respect to the Poisson bracket (4.12). In 
consequence the Hamiltonian systems (4.11) are completely 
integrable. 

Proof By Theorems 3.1 and 4.1 ,W~, is a constant of 
motion for Eq. (4.11), but d7f"jdt = (,W'",W,) and this im­
plies that 

pY'"./y',) = 0, r,S = 1,2,... . (4.14) 

We shall call Eqs. (4.11) the modified Hamiltonian systems. 
Note the simple form of the symplectic operator 1c[(4.1O)) 
and that (4.11) depends on some free parameters through the 
matrix b [(2.2)]. 
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5. MODIFIED EQUATIONS AND GEL'FAND-DIKII 
SYSTEMS 

Firstly we take into consideration the Lax representa­
tion of(4.11). We further introduce the following two matrix 
differential operators: 

D + = diag(I,A oo,A ol ,···,A,,,n _ 2)' (S.la) 

D_ = diag(A 1.'1 _ 1'..1 2.'1 _ 1'''''..1'1 _ 1.'1 _I ,1), (S.lb) 

where the ..1 0." and Aa.n _ I are defined in (2.6). 
Multiply the Lax equation T = [T,j( r] on the left by 

D +ii and on the right by D _ to form the expression 

D+iiTD_ = D+ii[T"lIr ]D_. 

Both sides in this equation are diagonal matrices. The trace 
of the matrix in the left turns out to be 

SpD +iiTD _ = SpD +D (V)D_ 
,,-I. d 

= I ..1 0." .. I V"A" + I." _I = -A, 
a ~o dt 

where according to (2.6) ..1 0. I = An, n I = 1 and A is the 
operator [(2.3)]. 

To calculate the right-hand side, we examine the expression 

D +ii[ T,. II JD_ 

with the complete operator jl [(3.3)] which we write in the 
form 

. II = diag(.I(o, ./11 I,···,jl n· I)' 
The definition (2.13) of T gives us the formula 

SpD+ii[T,.IIJD_ 

= (,,!2A o.a .l(aA a.t 1.,,-.1 +A,jln_l) 
a=-O 

-::-(n!2A o.","k'"A,,+I.n'l +,jln 1..1) 
(l -0 0 

=A./ln 1-·1/"_1..1· 

By (3.3) and (2.8). II" .. I is found to be 

where .'1' is the operator introduced in connection with L to 
pair with it in the Lax equations problem. Ll Thus we have 

SI,D +ii[ T,. II JD = zn [A ,.:1' J. 
In this way we arrive at the following result.'! 

Theorem 5.1. The Lax equation 

T= [T,.ll r ], r= 1,2, ... 

implies that A evolves according to the equation 

A = [A,::1' r]. 

6. THE SECOND HAMILTONIAN STRUCTURE 

In this section we examine the operator .'7 defined by 
(AS) (see Appendix A). The property of ,(9 to be symplectic 
was conjectured by Adlerc and finally proved in the works of 
Refs. 10, 11, and 14. We shall prove that by the same method 
followed by Kupershmidt and Wilson. 

To deal with the functions Uk = Qdv) [(2.4)] in the con­
text of the Hamiltonian systems associated to the Lax equa­
tions of L = ~k Uk ak the property to be free generators of the 
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ring A (u) should be proved. This result follows from some 
preliminary considerations. 

Lemma 6.1: Let U" = N,,(VI, Vc, ... ,Vn) 
a = 1, 2, .. ,n,n>2, where the polynomials N" define the set 
of variables UI, ... ,Un in terms of the differentially indepen­
dent (a-indep.) ones VI' V2, ... , Vn. Ifthe set U is not a-indep. 
there exists a non-null polynomial F such that Fo N vanishes 
identically and 'i1 FoN is a non-null vector. 

Proof Let FEA lvi' Y2,· .. ,Yn) with YI' Y2'''''Y'' ,n>2 a-in­
dep., thus 'i1 F = (8F /8y,,)~ _ I' From the definition of differ­
ential dependence, 10 a non-null polynomial F exists such 
that FoN -0. We consider here polynomials Fwhich are not 
total derivatives, equivalently 'i1 F #0. If F = aG we take G 
instead of F. Then 'i1 FoN #0 or 'i1 FoN = O. In the first case 
the lemma is proved. If'i1 FoN = 0 we take as initial polyno­
mial F one of the polynomials 8F /8y" ; if F was of degree M 
as polynomial inYI, ... ,Yn ,8F /8y" is ofdegreeM - 1. By con­
tinuing this descending process we arrive in the limit case to 
a polynomial F which has degree 1 for which 
'i1 F = 'i1 FoN = const. #0. 

Example: Consider 

UI = VI + Vc' 

Uc = V; + V;, 

and F( Up Uc) = !(U2 - U; )2. Then FoN and 'i1 FoN vanish 
identically, 

(U~ - U") 'i1F= - I. 

Uc - U; 

If we consider the first component 
U; - U;' = a (Uc - U; ) we retain U2 - U; , for which 
the lemma works. 

Lemma 6.2: Let Uf( = N" (VI'"'' V,,) define the variables 
UI, .. ·,U" by means of the polynomials N" in terms of the 
differentially independent ones VI , ... , V". Then, if the kernel 
of d J; N on A (VI , ... ,v,,) (the ring of differential polynomials 
in VI'"'' V,,) contains no other vector than zero the variables 
UI,· .. ,U" are a-indep. (d ~ N denotes the adjoint of the Ga­
teaux differential d vN I'l 

Proof If the U I , ... , U" were differentially dependent var­
iables, by Lemma 6.1 we will have a polynomial F such that 
F 0 N = 0 and 'i1 F 0 N #0. From the identity 
(Fo N)(VI' Vc, ... ,v,,) = 0 we deduce 

'i1v(Fo N) = d: N('i1Fo N) = 0, 

a contradiction. 
We apply this result to the transformation induced by 

an + Ulan . I + Ula" - 2 + ... + U" = (a + Vn)(a + v" _ I) 

.. ·(a+ VI)' (6.1) 
Proposition 6.1: Let 

U" = N" (VI"'" V" ),a = 1, 2, ... ,n,n>2 be the transformation 
defined by (6.1), where the VI'''' Vn are assumed to be a­
indep. variables. Then the set U 1"",Un is also a-indep. 

Proof By induction on n. 
For n = 2, from a 2 + ula + Uc = (a + V2 )(a + VI) we 

deduce 
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From 

d : Na = (a I + ( - J + V2)a 2) = 0, 
a l + Vlaz 

a = (:JEA (VI> V2 ) 

we get a2 + (VI - VZ)a2 = 0, which implies a2 = 0 and 
a I = 0 (if a2 contains derivatives of maximal order m I and m 2 

in VI and V2, respectively, the coefficients of vl(m, + Il and 
v 2(m, + II which are Ja2/JVll

m.J and JazlaVz1m,I in the equa­
tion for a2 should be equal to zero, a contradiction). 

Now, we write (6.1) in the form 

an + ula" - I + .. ' + Un = (a + Vn )(an - I + wla" - 2 + ... 

+ W,,_I) 

to examine the transformation of the a-indep. set 
(WI, ... ,W" _ I ,W")W"==V,, into the variables UI, ... ,Un • 

Then 

1 -a+ w" 0···0 0 

0 -a+ Wn··O 0 

ditN= 

0 0 0···1 -a+ Wn 

WI WZ",Wn - 2 Wn _ 1 

and from d itNa = 0 we deduce a = (aal W = 0 by the same 
argument used in the case n = 2 which we apply here to the 
equation 

[(a- W,,),,··I + W.{a- W,,)", 1 + ... + W,,_I ]a n =0; 

then 

aa = (a - Wn t - aan = O. 

Another proof ofthis result can be found in Ref. 10. The 
differential independence of the set (uo' ul, .. ·,u" _ 2) defined 
in terms of (vo, VI'''''Vn _ 2) by (2.4) follows from 

Proposition 6.2: The variables (uo, Ut, ... ,U" _ z ),n>3 de­
fined by (2.4) are a -independent. 

Proof Write the formula (2.4) in the form 

an + Un_2a,,-2 + ... u1a + Uo 

= (a + Vo)(a" - I + W" _ zan - z + ... + wla + Wo) 
(6.2) 

to see that 
n-Z 

(a)Vo = - ~ Wi' to have un _ I =0, 
;=0 

(b) The set (Wo, WI"'" Wn _ 2) is a -indep. The a -inde-
pendence of this set follows from Proposition 6.1 applied to 
the transformation induced by 

an-I + wn_ zan- 2 + ... + wla + Wo 

= (a + vl)(a + Vz)···(a + Vn _ I ). 

We observe that (VI' Vz,· .. , Vn _ I) are a -indep. since they are 
obtained from the a -indep. set (VO, VI'"'' Vn _ 2) through the 
transformation 

n-2 
V; = I b;kVk, i = 1, 2, ... ,n - 1 

k=O 

and the matrix b ik obtained from the b ak [(2.1)] is nonsingu-
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lar [to see that, use the matrix c [(4.6)] which was nonsingu­
lar, and property (2.2a) of b to get the formula 
O#detc = ( - 1)" - Indetbid. That the a -independence is 
preserved by the composition of transformations is easily 
seen from Lemma 6.2. 

Thus we can apply Lemma 6.2 to (6.2) written in the 
form 

an + un_zan- Z + ... + ula + Uo 

= (a- n~Zw)an-1 + Wn_zan- Z + ... + wla+ Wo) 

to confirm the a -indep.of (uo, U 1"",Un _ 2)' 
Now, we are in a position to prove that f1 is 

symplectic. 10,1 1.14 

Theorem 6.1:Let f1 be the operator induced on 
A (uo, U 1"",Un _ 2) by (AU). f1 is symplectic. 

Proof Theorem 5.1 tells us that Eq. (4.11), 

zJ = . JV'V"./f r' 

goes into the equation (see Theorem 4.2 in Ref. 13) 

(6.3) 

Q (v) = Y(V uH,+ n oQ) (6.4) 

ifu = Q(v)[(2.4)].Ontheotherhand,from(4.8)K, =H,oQ, 

V vdt", = d ,,+ Q (V u H , oQ ), 

and 

Q(V) = duQiJ = duQ.Jfd v+Q(VuH,oQ) (6.5) 

according to (6.3). By subtracting (6.4) from (6.5) we obtain 

dvQ%d u+ Q(VuH,oQ)- Y(Vu H ,+ n oQ) = 0, r = 1,2, .... 

But we have from (A5) 

fjVuH, -YVuH'+n =0 

and from these last two equations 

(,~ - du Q% d ,,+ Q)(V uH, oQ) = O. 

To see that fj coincides with dv Q% d / Q we use the fol­
lowing lemma due to Kuperschmidt and Wilson, 10 we shall 
prove it below: 

Lemma 6.3: LetE = ~;-r=oEg(v)J8beanoperatorwhich 
cancels all the vectors V uH, oQ,r = 1,2, .... Then E is the 
null operator. In this way the operation {F t , Fz}", defined 
by 

{ } f " 8F, 
U! 8F2 F

"
F2 ;. = dx L--.J kl-

k.e 8u k 8u I 

is a Poisson bracket, due to the relation 16,17 

{F
" 

F1 }." oQ = (FloQ,F2oQ), 

and fj is symplectic. We observe that the functionals H, are 
in involution also with respect to this Poisson bracket, 

{Hr , Hs }oQ = (H, oQ,Hs oQ) = (dt"" dt"s) = 0 

[see Eqs. (4.8) and (4.14)]. 
Proofof Lemma 6.3: In view of the homogeneity prop­

erties I of the functionals H, ,r = 1, 2, ... , the highest-order de­
rivatives contained in H, appear in the linear part of H,. By 
using (Bl) 

8H n-2 
, + n _ '" a u (, + k + I + I - nl + --- - L kl I ''', 

8uk 1=0 
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with akl nonsingularfor rprime to n. We need the linear part 
of (oHr+ nloudoQ, for which we obtain from (2.4) 

Qk = n:f nf 2( a )ba,V/n - k - I) + "', 
a~n-I-k I~O n-l-k 

where we have calculated (d IdA) IA ~ 0 Q (Av). Then 
Uk = !.7:: rJPklV/1n - k - II + (lower terms), and 

oHr+ n n - 2 Ir+ kl 
__ oQ= IYklVI + .... 

8u k I~O 

The matrix Y is nonsingular if the same is true for 

Pkl = ~(n _ ~ _ k)ba, 
and this is seen from the relation 

P 
a 

o 0 n 
The first matrix on the left-hand side is 

Pia = C -~ -J 
bordered by the row (1, 1, ... ,1); this matrix is triangular with 
non-null entries on the diagonal and hence nonsingular. The 
second matrix is c [(4.6)] nons in gular, therefore pis 
nonsingular. 

We take r prime to n such that the coefficients Eq(v) 
contain derivatives of strictly lower orders than r + M. We 
make the change w = yv: if E (V u Hr + II oQ ) = 0 each coeffi­
cient of W k Ir 4 M ~ k 1 should vanish separately, then 
(EM )'k = O,i,k = O.I,oo.,n - 2 for arbitrary M and this im­
plies E = O. 

VII. CANONICAL MAPS AND BACKLUND 
TRANSFORMATIONS 

The results of this section were considered in the Ku­
perschmidt work of Ref. 14. 

Let us examine the Lax representation (4.7) of the modi­
fied equations (4.11): 

T= [T,1rl (7.1) 

Note the following property due to the definition (2.13) of 
T(V,a) = ala + D(V)): 

aT (V,a)ii = T (a V,a), (7.2) 

as follows from (2.14) and the unitary character of a. The 
invariance of the operator T under the transformation de­
fined by the unitary matrix a suggests to us to investigate the 
behavior of Eq. (7.1) in this transformation. It is easily seen 
that (7.1) is left invariant if the operator 1 r is itself an invar­
iant operator. We shall prove later that it also happens for 
the transformation defined by a. 

Let us denote by V = a V the action of a on V. The re­
sulting vector Vis obtained from Vby a cyclic permutation 
of the V-components Va = VI' VI = V2, .. ·, 

Vn _ 2 = Vn _ l' Vn _ 1 = Vo and this guarantees that 
!.~ ::: ~ Va = !.~ ::: ~ Va = 0 according to (2.1). 
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But the V-components are not independent compo­
nents. We shall define a transformation in terms of the v­
variables for which the motion equations are formulated. 

Proposition 7.1: Let I be the (n - 1) X (n - 1) matrix 

1= - Ybab (7.3) 

with Y defined by (4.9), bin (2.1), and a by (2.10). Then 

U= Iv (7.4) 

implies that the vector V, defined in terms ofuby V = bu, is 
related to Vby 

V=av. (7.5) 
Proof From (7.3) and (7.4) one has - y-1u = babv. If 

we take into account that - y- 1 = bb, then b (bu - abv) 
= b(V - aV) = O. Thus V - aV = K, with a certain Ksuch 

that bK = 0 and !.~ ::: ~Ka = O. These two conditions about 
K may be summarized in a single condition cK = 0 with with 
the matrix c defined by (4.6). As it was proved that detc¥-O,K 
must be equal to zero, and this finishes the proof. 

Concerning the matrix 1 we have 
Proposition 7.2: The matrix I has an inverse given by 

1- I = - Y'biib. (7.6) 

Proof We take advantage of the identity 

bab 
(7.7) 

o 
that comes from the definition (4.6) of c. Since det c¥-O, this 
shows us that det I = - (detY')det(bab )¥-O. Now, from 
(7.5) bv = abv or babv = bbv. The introduction of 
./' = - (bb )- 1 completes the proof. 

Corollary: The transformation (7.4) is a canonical in­
variance map for the symplectic operator ,W [(4.10)]. 

Proof From (7.3) we get the expression 

1= - bab'y 

from the transpose of I (remember that .Y = ,Y). Formula 
(7.6) yields I-I = .fTf- 1 or 

.Y =l.fT (7.8) 

Multiply on both sides by a to obtain )V' = L'}?I 

The invariance of .5V' under the transformation (7.4) 
suggests to us another way to prove the invariance of the 
modified equations. We shall give two different, but equiv­
alent proofs of this fact: one for the Hamiltonian form (4.11), 
another for the Lax representation (7.1). 

Proposition 7.3: Let X (v,z),X(U,z) be the solutions of(2.5) 
corresponding to (vn' vp ... ,vlI _ 2) and (Un, V1""'VII __ 2)' re­
spectively. Let vand v be connected by [(7.4)] v = lv, then 
X (v,z) is related to X (U,z) by 

X(v,z) = X(v,z) + aln [x(U,z) + v" 1]' (7.9) 

Proof Denote by A (V) = (a + Vo)· .. (a + VII _ 1 ), 

A (V) = (a + i';») ... (a + v" _ 1 ). From Eq. (7.5) one finds the 
relation 

(7.10) 

Take the solution U X (V) of (2.5a), X (V) = EZ + 0 (Z-l); then 
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(see Ref. 13) (A (V) - zn)exp,0V) = 0 implies that 
a = (a + V, 1 )expx(V) = (x(V) + V, 1 )expX(V) satisfies 
the equation (A (V) - zll)a = 0 as follows from (7.10). But a 
is a solution of the form 

a = aoexp r(x(V) + aln[x(V) + V, . 1 ])dx, 

where a() does not depend on x, as follows from the first­
order differential equation 

a' = (x(V) + aln [x(V) + V,. 1 ])a. 

But X (V) + a In [xlV) + V,I] is a power series of z which 
does satisfy (2.5a),being 
X (V) + a In [x(V) + V,I] = €Z + 0 (Z-I). Thus, (by propo­
sition 2.1 of Ref. 13) formula (7.9) holds. 

Corollary. The functional JY [(4.8)] is invariant, that is 

JY(v,z) = JY(V,z). (7.11) 
Theorem 7.1: The modified Hamiltonian systems (4.11) 

are invariant under (7.4). That is 

v= ,)YVvJYr 

if zj = ,)f"V vcW'r and iJ = Iv. 
Proof: For the proof take the derivative of (7.4) with 

respect to t having in mind (4.11), (7.8), and (7.11). 
On the other hand, one can obtain another proof of 

Theorem 7.1 by considering the in variance of the operator 
JI r in the Lax representation (7.1) as was announced. 

From Proposition (7.3) one has the relation 

ex1v) = ..!..(a + Vn _ 1 )eX1VI 

€Z 
(7.12) 

in which the constant factor l/€z comes out by examining 
the power series expansion of exp [xlv) - x(V)] and that of 
x (V) + Vn _ 1 

We shall also need to use the corresponding formula to 
(7.9) for the solutions S of (2.5b) (see Ref. 13). 

S(V)=s(v)-a( S(V) ), 
xlV) + Vn_ 1 

which is proved in same manner as (7.9) was. This relation 
enables us to write 

S(V)e- X1Vl = ..!.. (a + Vo)"S(v)e- X1V) 
€Z 

the analog of (7.12) for the "adjoint problem". 
Now, we are in a position to formulate 

(7.13) 

Theorem 7.2: The operator JI (3.3) is left invariant by 
(7.4). Moreover, the Lax equation (7.1) is invariant. 

Proof From (7.5), (7.12), and (7.13), keeping in mind 
definition (2.8a) and (2.8b) of 5 and;, it is easy to see that 

1 5 (V) = -as(v), ;(V)=€a;(v). 
€ 

Thus, one finds 

aJl(v)o = aD (5 )oa-IaD (a;)o = JI(V), 

where (2.14) has been used. This formula, together with Eq. 
(7.2), guarantees the invariance of (7.1). 

As we can repeat the transformation (7.4) with iJ as 
starting solution, (I) = [1, /, 12

, ••• ,/" - I) arecanonicalinvari-
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ance maps for the modified Hamiltonian systems (4.11). 
That In = I follows from (7.5) and the property an = 1 
[(2.11 I], 

The same argument used in the Miura transformation 
for the KdV equation allows us to bring Backlund transfor­
mations for the Gel'fand-Dikii equations (4.2). 

By Theorem 5.1 U = Q (v) satisfied Eq. (6.4), and the 
same is true for U = Q (Iv). We take advantage of relation 
(7.10) in the form 

L (u)(a + Vn _ I) = (a + Vn _ I)L (u) (7.14) 

according to the transformation law L (u) = A (V). 
In terms of the variables aak = Uk + Uk' 

a/3k = Uk - Uk' Eq. (7.14) reads 

an = "..!..(/)/3 II-k)(a' -/3') 
k L.. k n-2 I 1 

I"k+ I n 
(7.15) 

k=0,1, ... ,n-2, 

where ,.1,0 = constant and Vn _ I has been expressed as 
Vn _ I = (1/n)/3" _ 2 + Au as follows from (7.14). We can re­
write (7.15) in the form a" = gk(J3) but only in the cases 
n = 2, 3 are the gk differential polynomials in /3. 
In fact one has 

a~ _ 2 = (n - 2)/3 ~ _ 2 - ..!.. /3 ~ - 2 
n 

- UJ3n _ 2 - 2/3n _ 3 + AI' AI = const, 

a~_3 = (n-2)(n-3) (fJ~_2)2 (7.16a) 
n 

- l:....(J3n _ 2/3 ~ _ 3 + (n - 2)/3 ~ _ 2/3n _ 3) (7.16b) 
n 

+ (n-l)(n-2)/3'" _ n-2/32 /3' 
3n n - 2 (n2) n - 2 n - 2 

- 2(n-2)AJ3n_2/3~_2 
n 

+ n - 2 A 1/3 ~ _ 2 - /3 ~ _ 3 - U(fJ ~ _ 3 - 2/3 ~ _ 4 • 

n 

Note l4 that the first two terms on the right-hand side of 
(7.16b) are total derivatives only for n = 3. 

VIII. EXAMPLES 

We shall give here some explicit constructions for the 
symplectic operator and Backlund transformations pre­
viously considered. 

n=2. 

b = (! y)' y= const, .Y = - (bb)-I = - l!2r. 

The symplectic operator h [(4.10)] is h = (1/2 ria and 
Miura transformation Uo = Qo(vo) = - (rub + rV6 ). The 
operator ~ is found to be 

1 
~ = duo Qhd v~ Q = 2r (ya + 2rvo)a(ya - 2rvo) 

=!J3 + 2uua + ub· 
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To formulate the Backlund transformation, Eq. (7.16a) 
is here 

a~ = - ¥3~ - Ufio +,1, 

or Yao = (M 8f30)F, with 
F= Sdx( -lj3~ - Ufi~ + U,f3o)beingY = 2<3, theoper­
ator of Gel'fand-Dikii. 

n=3. 
We select for simplicity the matrix 

b =_1_( ~ -0

1 

1), 
112 -2 

which gives us 

y= - +G ~). 
The transformation is induced here by 

(a + ;2 (vo + v,))(a + ;2 (vo - vtl}a - 112vo) 

= a3 + Uta + Uo' 

with 

f§ 00 = - H2as + 4u,a3 + 6u;a2 

+ (6u;' - 6u~ + 2u,2)a] 

+ 2u;" - 3u~ + 2u,u; ], 

f§ 0' = - f§fo = cr + u,a2 + 3uoa + u~, 
f§11 =2a 3 +2u,a+u;, 

which are found after some calculations. The operator of 
Gel'fand-Dikii is here 

3a) ° . (8.1) 

For the Backlund transformations, formulas (7.16a) 
and (7.16b) yield 

a; =f3; -j{3~ -Ufi,-2f3o+A" 

a~ = - ¥Jil, + tj3;' - -NJ~ - tAfi~ 
+ V",f3, - f3 ~ - Ufio + ,12 

that may be written in the form 

.eTa = V {3F (8.2) 

with the Gel'fand-Dikii operator (8.1) and the functional 

F (fJ) = J dX( 3f3fi; - f3fi ~ - 6Afifi, - 3f3 ~ + 3,1 ,f30 

-!(fJ;)2-fc/Ji - ~0f3~ +Atf3~ +3A~J 

When a Hamiltonian system admits a symplectic operator 
which does not contain the variables (the Uk in this case), the 
Backlund transformations which may be written in the form 
(8.2) prove to be canonical in variance maps for such system.5 

Here, that is the case only for n = 2, 3. 
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APPENDIX A 

We shall construct here an equation2
•
3

•
10 for the power 

series VuR [u,z] [Eq. (4.1) of Ref. 13]. 
Consider the formal series 

00 Sdx,z) k 

p(x,s,z) = ~oo y+1' Sk = (x - a) s, 

X and Sbeing the solutions of(2.5a) and (2.5b). For negative 
k, (x - a)k is defined as a formal series in a. From Eqs. (2.2) 
and (2.15) of Ref. 13 we get the relations 

(AI) 

(A2) 

which are obtained in the Ge1'fand-Dikii papers cited in Ref. 
1. By introducing the multiplication law (see for example the 
work of Adler in Ref. 2) 

a,(x,s )oa2(x,s) = I ~(a~a, )(a:a2 ) 
r>O r! 

(here ax ==a) one sees that (A 1) and (A2) are equivalent to 

Lop =z"p, 

poL =z"p, 

with L (x,s) = l:~UkS k = e- sXL (a)esx. Thenp commutes 
with L and the decomposition 

gives us 

Lop+ -p+oL =p_oL -Lop_. 

Since the left-hand side is positive in S so is the right-hand 
side and hence it contains the coefficients 
So, S" ... ,S" _ 2 only. 

The equations for p yield 

L0lp+ + p_) = z"p, Ip+ + p_)oL = z"p 

and 

Lop+ + (Lop_)+ =znp +, p+oL + lp_oL)+ =z"p+ 

to get finally 

L0lp_ oL)+ - (Lop_)+ oL = z"(Lop+ - p+ oL). (A3) 

On the other hand p _ may be written in the form 

Sk 1 
p- = I e-k+' = I (s+J )k+' R k· 

k>O!> k>O x 

Here 1/(s + ax)k + , should be understood as a power series 
in ax' It is easily seen that 

Rk = ato(~)a;Sk-a =SPk(x), k=O,I,2... (A4) 

by using the identity 

k (k) Sk = (x - ass = a~o( - It a ac:(SPk ~a), 

which is proved by induction. 
The left-hand side of(A3) depends on (Ro,R" ... ,R" _,). To 
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obtain an equation for V uH [u,z] = (Rk)~:: ~ [see Eq. (3.1) of 
Ref. 13], Rn _ I should be expressed in terms of V u H [u,z]. 
To do that we use Eqs. (2.5a) and (2.5b). From the Riccati 
equation we get 

i ukR k =znRo 
k=O 

(we have multiplied it by S). The equation for S gives us 

Rn - noxRn_ 1 

(see the Proposition 2.3 in Ref. 13). Ifwe eliminate Rn be­
tween these two equations we deduce for Rn _ I the 
expression 

in terms of(Ro,R1, ... ,Rn _ 2)' Therefore (A3) induces the 
equation 

(A5) 

where Y is the symplectic operator of Gel'fand and Dikii. 
More detailed versions of these facts are available in the 

literature cited. 

APPENDIX B 

In the work ofVeselov (cited in Ref. 13) it is proved that 
for r prime to n, the matrix akl"k,l = 0, I, ... ,n - 2 in the 
linear part of 8Hr+ nl8uk 

8H n-2 r+n '" (r+k+I+I-n)+ --- = L ak1u/ ... 
8u k 1=0 

(BI) 

is nonsingular (the Hamiltonians H"H2, ... ,Hn are not of in­
terest here). The following proofis due to Kuperschmidt and 
Wilson. 10 

We consider the series P introduced in the Appendix I 
for which the equation 

Lop -poL = 0 

holds. Let Pr + n denote the coefficient of lIzr + n obtained 
from the expansion of Sk (x,z) in powers of z and 
Pr+ n = (d IdA )1" =OPr+ n(AU) the linear part of it. From 
LOPr+n -Pr+noL =Owededuce 

S"oPr+n -fJ,+n°s"+L,oPr+n(O)-Pr+n(O)oLI =0, 
n-2 

where L, = L = I uks k andpYl-"(O) = Pr+ ,,(u)lu = o· But 
k=O 
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and 

1 
asfollowsfromx=z+O(z-'), S= -_+O(z-n), 

nzn - 1 

and the homogeneity properties of X and S (we consider 
Ei= 1 only; the proof for Xiii,S Iii arbitrary is the same). If 
we take into account the relations 
Ie IIOp - (Ie + 0)- - ole II - Ie 11- t 
!> r+1I -!> I(Jr+II'Pr+lI!> -!> Pr+1I wege 

sll[(i +1)"-I]fJ,tn+ ~srL,(s)-(s+Oxl'L,(s) 
=0 

or 

1"- 2 (1 +ols)'-I U1 
Pr+II=-I ' 

n 1=0 (1 +ols)"-1 s"-rl 

from which 
_ n-2 

(S) = '" (J U (r + k + 1 + , - n) 
k r -+ n L kl I , 

1=0 

where (Jkl is the coefficient of {; r + k + 1 + 1 - II in the series 

~(1+{;)'-1 

n (I+{;)"-I 

and for r prime to n this Hankel matrix is nondegenerate. 1O 

The 1-1 relation between (Ro,···,R II _ 2) and (SO,,,,,Sn __ 2)' 

_ k (k) Sk= I(-1)" OUR k _n , 

n-O a 
the inverse of (B4), finishes the proof. 

'See references given in the previous paper of Ref. 13. 
2M. Adler, Invent. Math. 50, 219 (1979); D. R. Labedev and Yu. 1. Manin, 
Funct. Anal. Appl. 13,40 (1979). 

JW. Symes, J. Math. Phys. 20, 721 (1979). 
4R. M. Miura, J. Math. Phys. 9, 1202 (1968). 
'F. Guil Guerrero and 1. Martinez Alonso, "Hamiltonian Techniques and 
Backlund Transformations", J. E. N. Report (Madrid, 1979) (Spanish) 
(unpublished). 

OM. Adler and J. Moser, Commun. Math. Phys. 61, 1(1978). 
7M. Jaulent and 1. Miodek, Lett. Nuovo Cimento 20, 655 (1977). 
KF. Guil Guerrero and 1. Martinez Alonso, Lett. Nuovo Cimento 27, 85 
(1980). 

Qy. y. Sokolov and A. B. Shabat, Funct. Anal. Appl. 14, 79 (1980). 
lOB. A. Kupershmidt and G. Wilson, Invent. Math. 62, 403 (1981). 
"1. M. Gel'fand and 1. Ya. Dorfman, Funct. Anal. Appl. 14, 71 (1980) 

(Russian). 
'2A. P. Fordy and J. Gibbons, J. Math. Phys. 21, 2508 (1980); Commun. 

Math. Phys. 77, 21 (1980). 
uF. Guil Guerrero, "The Riccati equation and Hamiltonian Systems, " 

J. Math. Phys. 23, 211 (1982). 
'4B. A. Kupershmldt, "Deformations of Integrable Systems" (to be 

published). 
"M. M. Yainberg, Variational Methods/or the studyo/Nonlinear Operators 

(Holden-Day, San Francisco, 1964). 
'OR. Jost, Rev. Mod. Phys. 36,572 (1964). 
"Y. I. Arnold, Mathematical Methods a/Classical Mechanics (Springer, 

New York, 1979). 

F. Guil Guerrero 226 



                                                                                                                                    

A global isometry approach to accelerating observers in flat space-time 
John R. Urani 
Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri 64110 

Marilyn H. Kemp 
Department of Mathematics, University of Missouri-Kansas City, Kansas City, Missouri 64110 

(Received 23 June 1981; accepted for publication 28 August 1981) 

A global two-point diffeomorphic extension of Lorentz transformations is constructed which 
preserves the global Lorentzian metric structure of flat R 4. This global mapping induces, as a 
tangent-space mapping, instantaneous Lorentz transformations parametrized by interframe 
velocity functions. The elimination of pseudo terms from particle and electromagnetic field 
equations leads to an exact analytic expression for the affine connection needed for covariant 
differentiation. Examination of invariant particle equations gives an obvious proof of the 
equivalence principle in terms of the symmetric part of the acceleration-group connection. 
Transformation properties of the connection coefficients are shown to be in accord with general 
covariance requirements. The specific case of the rotating observer is treated exactly where it is 
seen that the affine connection merely supplies the exact Thomas precession term. Recent work 
by DeFacio et al. is found to be especially convenient for comparison with the present work. The 
results of the two approaches agree precisely. A summary of results indicates that the global 
isometry approach gives results consistent with those obtained via presymmetry arguments. 

PACS numbers: 02.40. + m 

I. INTRODUCTION 

A number of recent papers 1-4 have dealt with accelerat­
ing observers in flat Lorentzian R 4 using modern differential 
geometry and the concept of presymmetry. Local differen­
tiability and covariance arguments are shown to lead to ex­
tensions of previous results in such areas as Fermi-Walker 
transport.s 

Recent work has also appearedb--8 treating the accelera­
ting/rotating observer in arbitrary space-times via general 
geometrical methods. Another approach, taken in this pa­
per, is to construct extensions of global invariance groups 
[such as 0 (3) for EuclideanR 3 or the full Lorentz groupLp, 
for Lorentzian R 4] on flat metric spaces and then to investi­
gate the local (tangent-space) mapping induced by the exten­
sion of the global group. 

In this work we extend proper Lorentz transformations 
on Lorentzian R 4 to nonlinear transformations of relative 
coordinates parametrized by arbitrary C I time-like inter­
fame velocity functions. By requiring that the global metric 
'fJ = (+ + + -) be invariant and that Galilean and Lo­
rentz transformations result in low-speed and zero-accelera­
tion cases, respectively, a relative-coordinate map is found 
which induces a tangent-space isometry consisting of ins tan­
taneous Lorentz transformations. 

Particle four-momenta, defined in terms of tangents to 
nonspacelike curves, then instantaneously boost to the accel­
erating reference frame, and the elimination of pseudoterms 
from particle equations relative to noninertial frames gives 
an analytic expression for affine connection coefficients ap­
plicable in all cases of C 2 time-like observer world lines. 

Particle equations lead immediately to a local equiv­
alence principle for the symmetric part ofthe affine connec­
tion. 

Applications of the local theory are presented including 
the simple rotating observer (where the affine connection 

supplies the Thomas precesion term) and a comparison with 
the results ofDeFacioet aU (which are identical with those 
obtained via the methods shown herein). 

Pseudoterms appearing in Maxwell's equations are also 
eliminated via the same connection and covariant Maxwell 
equations are written down. The pseudoterms (pseudocur­
rents) are briefly discussed because of their implications con­
cerning charge conservation. 

Finally, a summary indicates that the results of this pa­
per are consistent with those obtained from general presym­
metry arguments.9 

Concerning notation, since some manipulations en­
countered in this work may be rather novel, many results can 
most easily be obtained in coordinate form. However, covar­
iant coordinate-free results will be indicated where appropri­
ate. 

II. GLOBAL COORDINATE MAP 

Covering Lorentzian R 4 with a single orthonormal Car­
tesian coordinate patch, (x, y,z,ct) = (Xl, X2, X3, X4), the view 
is taken that the causal structure of the C 00 manifold is abso­
lute in that all time-like observers must obtain the same caus­
al relationships between any pair of events. More exactly, 
any mapping of coordinates 4>:R 4-+R 4, parametrized by a 
future-directed time-like C 2 curve, must preserve the Lor­
entzian metric structure globally. The mapping is then natu­
rally cast as a relative coordinate map due to its intrinsic 
nonlinearity (even in the Galilean limit) and due to the neces­
sity of keeping ",(X2 - XI' X 2 - XI) invariant, whereX2, X, E 

R 4. By hindsight, the relative-coordinate map is convenient, 
too, in that it is translation invariant and easily defines a 
tangent-space mapping. 

Almost all results may be obtained by considering a 
two-dimensional (2-D) example. Let (XI,ct l ) and (xz,ctz) be 
two events relative to an origin O. Let an origin 0 I move with 
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velocity v(t ) relative to O. The relative coordinate transfor­
mation is, in the Galilean limit, 

I
t, 

(X2 - Xtl' = X 2 - XI - v(t) dt, 
t, 

(2.1) 

and (t2 - ttl'==(t2 - ttl· 
Similarly, relative coordinates may be taken as the basis 

for special relativity (SR), to no great advantage since the 
theory is linear. 

We then take as the general form for the mapping, in the 
2-D case, 

and 

e(t2 - t l ), = A [e(t2 - ttl- 8(x2 - XI)]' 

For an isometry, one immediately requires 
A 2 = (1 - 8 2) - I, and to obtain the Galilean limit one re­
quires 8~ for I v(t ) I <e. Then, Eq. (2.1) is obtained, for low 
speeds, if 

8 = (f'V(t) dt )/c(t2 - tl)' (2.2) 

Interestingly, the 8 factor generalizes the rapidity /3 of 
SR to the average velocity of 0 I relative to 0 during the 
t2 - tl interval. Clearly, if v(t) = Vo (a constant), 
8 = /30 = vole. 

Even in this 2-D example it is obvious that the global 
map reduces to identity for pairs of events such that 8 = 0. 
This does not, however, eliminate accumulative tangent­
space effects such as proper time intervals and spin preces­
sion. 

To generalize to arbitrary velocities, v(t ), of 0 I relative 
to 0, the p parameter of SR is replaced by 

I
t2 

l) = t, v(t) dt /c(t2 - ttl, (2.3) 

again the average 0 I velocity is relative to O. Defining 
A = (1 - Il) 12) - 1/2, the A and l) factors are then inserted in an 
arbitrary rotation-free Lorentz transformation matrix, 10 

A f'v and the desired isometric map is 

(2.4) 

where the summation convention applies but indices are not 
tensor indices. Due simply to the structure of A f'v we obtain 
that (X2 - Xtl2 = Ir2 - r l 12 

- e2(t2 - ttl2 is invariant. 
The l) parameter is well behaved, even as t 2-+t l , since 

v(t) is C I and the mapping Eq. (2.4) is differentiable as well 
since I v(t ) I < cis also assumed. Consequently, the mapping of 
relative coordinates defined by Eq. (2.4) is the diffeomorphic 
isometry, cP:R 4-+R 4, which was sought. 

Clearly, for time intervals during which v(t) is constant, 
ordinary Lorentz transformations results and if Iv(t ) I <e dur­
ing an interval, Galilean transformations result. 

While being fundamental in guaranteeing an invariant 
causal structure on the Lorentzian space-time manifold, the 
global map is not particularly important for calculations. 
The induced tangent-space map of Sec. 3 is of prime impor­
tance for applications. 
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III. TANGENT SPACE MAP 

For events in R 4 whose t labels are equal, the l) and A 
factors of Sec. 2 become time-dependent p and r factors. In 
other words, equal-time events define relative coordinates 
which instantaneously Lorentz transform. This will be im­
portant in Sec. 4. 

Similarly, infinitesimally separated events, for which 
(X2 - XI r = dxf', will also suffer instantaneous boosts to the 
accelerating observer's frame via II 

(3.1) 

Hence, the global map induces a tangent-space iso­
metry at each point in R 4 according to the time-dependent 
P(t) of the accelerating observer. 

The natural parametrization of time-like curves via an 
invariant proper time is again possible since, if dxf' repre­
sents an infinitesimal displacement along such a curve, 
dr = - 1] f'vdxf'dxV is invariant (e = 1). Hence the covar­
iant velocity or normalized tangent vector has components 
if = dxf' / dr and a massive particle's four-momentum is co­
variantly defined as pP = mif. With a quantum hypothesis 
appended to interpret massless-particle four-momenta in 
terms of null-curve tangents, the tangent-space map implies 
an instantaneous Doppler shift, as expected. 

Then, (1,0) tensor fields on Lorentzian R 4 simply boost 
to the accelerating frame as 

T'f'(x') = A f'v (x)T V(x), 

with tensor products of vector fields and I-forms transform­
ing via A f'v andA - If'v on contravariant and covariant indi­
ces, respectively. In particular, the components of the elec­
tromagnetic 2-form Ff'v transform as 

F I = A - la A - 1/3 F 
/-lV I-l v a{3' 

Using Eq. (3.1), transformations of coordinate velocity, 
v = dr/dt, and coordinate acceleration, a = dv/dt, may be 
easily obtained. 12 

The coordinate 4-acceleration, af' = dif / dr, will illus­
trate the need for a set of connection coefficients for covar­
iant differentiation. Relative to an accelerating observer, 

dif dvv dA I' a If' = _ =Af' _ + __ vvv. 
dr v dr dr 

(3.2) 

Clearly Eq. (3.2) contains a pseudoterm and that term is 
Galilean for small I PIt ) I in the matrix A. The pseudo term is 
absent for inertial observers (dA /dr = 0). 

If the transformation is to the self-frame of the acceler­
ating observer, v' = (O,e) and a' = (0,0) from Eq. (3.2). Hence, 
self-4-acceleration has been eliminated all along the acceler­
ating observer's world line but the 4-acceleration is not a 
covariant quantity. In Section 4, connection coefficients are 
obtained to eliminate the pseudoterm in a' = dv'/dr. 

IV. THE AFFINE CONNECTION 

Let 0 be an inertial frame and let Obe noninertial rela­
tive to O. Rewriting Eq. (3.2) as 

du" dA f'v v f' dv v 

---v =A v-, 
dr dr dr 

(4.1) 
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the left-hand side ofEq. (4.1) may be written entirely in terms 
of bar quantities, via vY = A - IVaiJa and 

~(A I'-aA - la v) = 0, to become 
dT 

diJl'- + A I-' (~A - I" )V" = A I-' dvl'-
dT a dT v v dT' 

or 

diJI-' A I'- (~A - la )-(3-V = A I-' dv
v 

+ a vVV v' 
dT axP . dT 

We define the affine connection for (5 as 

1'1'- =AI'- (~A -Ia ). 
(3v a axtJ v 

(4.2) 

Recall that theA matrices appearing in Eq. (4.2) involve 
the variable if corresponding to (5 motion relative to 0 
(which is an inertial frame with constant fi factor). 

Hence for inertial frames the r coefficients will be zero. 
However, formally adding a (zero-valued) connection ron 
the right in Eq. (4.1) we obtain the con variant equation of 
motion, 

KI'- = (ViJ)1'- =AI-'v(~)V =Al'-vKv, 
m dT aT m 

(4.3) 

where 

V d 
- = - + r (v, ) and K is the convariant 4-force. 
aT dT 

[Note: r(v, ) means r p1' vf3 not rp1'V1' since ris notsym­
metric.] 

If the acceleration al'- = 0 relative to 0 (inertial), Eq. 
(4.3) is identically the geodesic equation 

diJ -
- +r(iJ,iJ) =0 
dT 

relative to 0, as required. It is to be noted also that the covar­
iant particle equation [Eq. (4.3)] picks out only the symmet­
ric part of the connection. Hence we have a statement of the 
equivalence principle that the gravitational connection is lo­
cally equivalent to an acceleration connection's symmetric 
part. The acceleration connection has zero Riemann-Chris­
toffel tensor so the equivalence is strictly local. 

The antisymmetric part of the connection, arising from 
anti symmetric rotation generators, is the source of Thomas 
precesssion, which is obtained in Sec. 6. 

V. TRANSFORMING r 
The transformation properties of the affine connection 

are easily shown to satisfy the general requirements imposed 
by covariance. 

For all inertial frames, r = 0, from Eq. (4.2). Let 0 be 
inertial, let 0 ' be noninertial with rapidity fi(t ) relative to 0, 
and let 0" be noninertial with rapidity W(t') relative to 0'. 
The motion of 0' induces the tangent-space map A a ,,[fi(t )], 
whereas the motion of 0" induces the the map A 'I-' a [WIt ')]. 
Under composition the combined tangent-space map is 
A 'I'-a (t')A a v(t) and the connection for 0" is given by 

rtf =A 'A~(A 'A)-I 
ax" , 
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where indices have been suppressed for simplicity. Using 
alax" = (A ')-Ialax'andsimplydifferentiating,oneobtains 
in full-component form, 

r"" =A 'cr ~/3(A ') ", 
(31' \' ax" l' 

+ A 'cr (A ') - ", (A ') -}a r ." 
l' /3 Y \'(7' (5.1) 

where 

r'l'- =AI-' ~vA -Ia 
vu a ax' (J 

is the connection for 0'. It is seen that Eq. (5.1) is equivalent 
to the general law for transforming connections. 13 

VI. APPLICATIONS 

In this section we treat two problems, the rotating 
frameS and the comparison of present methods with recent 
presymmetry formulations of accelerating observers.2 

The rotating observers, 0, relative to an inertial, 0, will 
be taken to have lfil = const and fi·d fildt = O. For simplic­
ity we confine the motion to the xy plane. Connection coeffi­
cients are calculated using Eq. (4.2) in the form 

1'p. =AI' (A -I, ~A -la) 
(3v a (3 act v , 

since A depends on fi(t) explicitly. 
Nonzero connection coefficients are 

where 13 = d fildT = r d fildt and 1',;1' i=1'~f3' 
These connection coefficients satisfy the general re­

quirements4
,5 of an acceleration connection. 

Consider a classical spin vector, S, satisfying Sl'vl'- = O. 
Let dSI'IdT be given in the inertial frame, O. Relative to 0, 
S = (8",0) and iJ = (O,c) if the spin is taken to be at 0. 

After lengthy summations and manipulations, one 
finds, using 

(6.1) 

that 

dS
i 

_ (roTXS)i =A i dS
v 

dT v dT ' 
(6.2) 

and dS41dT = 0, where roT is the expected Thomas preces-
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sion angular velocity, 

CJ) = - (r - 1) (rJX Il). 
r {32 

A second application is to compare results of the pre­
sent method with recent exact calculations of accelerating­
frame observations of free (inertial) particles. 2 Two cases are 
considered in Ref. 2, those of spatial and null simultaneity. It 
is to be noted that in both cases, the authors choose to define 
X - z(r) in terms ofa basis of tangent vectors atz(r), namely 
in terms of u = dzl dr and a space-like orthornormal basis 
for Sz(rl = u1

• While it is generally not possible to equate 
manifold and tangent-space coordinates or displacements, 
expressing X - z( r) as rEu1 for the spatial simultaneous case 
and as y = - ru + r in the null simultaneous case has the 
advantage of being realistic in that an observer makes obser­
vations via the local tangent space. We agree that spatial 
simultaneity has mathematical deficits as well as describing 
a physically, impossible measurement process. 

Accepting the expressions for X - z(r) in either case, 
the calculation ofr and r leads directly to the results given in 
Ref. 2. Also, we are in complete argreement regarding null 
simultaneity of two events as an invariant statement and 
hence as an equivalence relation for all observers. The invari­
ance of the null simultaneity statement is obvious whether 
manifold coordinates and the global map are used or the 
tangent-space expression and the induced local map are 
used. 

VII. ELECTRODYNAMICS 

The contravariant components of the electromagnetic 
2-form, F/1-V, transform as a (2,0) tensor via 

F'/1-V = A /1-aA vpFaP; 

however, the Lorentz covariant Maxwell equation 
a F/1-V = - (41Tlc)Jv will take on pseudoterms from the 
time-dependent boost to an accelerating frame. Specifically, 
we obtain 

a~F'/1-V = [a~(A /1-aA vp)]FaP - (417"/C)J"', (7.1) 

where J v = A vaJ a. Due to the symmetry of the A matrices 
and the antisymmetry of F one still obtains a continuity 
equation 

but Eq. (7.1) may be interpreted as containing pseudocurren t 

terms. It is easily demonstrated, using a '/1- = A - \ a I at, 
that the pseudoterms ofEq. (7.1) have vanishing fourth com­
ponent (no pseudocharge) which is physically reasonable. 
Also, the boosted Maxwell equation ofEq. (7.1) may be rear­
ranged, whereby the pseudoterms are expressed in terms of 
the connection coefficients of Sec. 4, to obtain a covariant 
Maxwell equation. 

a' F'aP+r'a F'YP+r'p F'a y = -(41Tlc)J'P 
a ay ay 

or 
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In noncovariant form, keeping pseudoterms as inhomo­
geneous pseudocurrent terms, a Green's function integral 
equation solution for F is easily constructed, 12 

VIII. SUMMARY 

The construction of a relative-coordinate-defined non­
linear extension of Lorentz transformations as a diffeomor­
phic isometry on Lorentzian R 4 leads to a number of pleas­
ing results. Galilean and special relativity can be reproduced 
as limiting cases of the global-manifold map, The tangent­
space mapping is entirely in agreement with presymmetry 
arguments in that it is parametrized by interframe velocity 
functions and acceleration covariance can be explicitly dem­
onstrated with a closed form for the affine connection, The 
equivalence principle follows immediately from invariant 
particle equations. Finally, covariant electrOdynamic equa­
tions were constructed based upon the connection for parti­
cle equations found in the present work. 

Subsequent work has shown that the induced tangent­
space isometry found for fiat R 4 may be mapped onto the 
usual D (1/2.0) Ell D (0.1/2) spinor representation of the full Lo­
rentz group thereby generalizing the Dirac equation to ac­
celerating frames for which the appropriate connection coef­
ficients have been found. 

Working, via similar isometry techniques, on arbitrary 
space-times it has, furthermore, been possible to find a glo­
bally isometric tangent-space map induced by arbitrary 
time-like observers. Acceleration covariance has then been 
shown for general space-times, Careful analysis of the map­
pings involved in defining a general spinor theory has result­
ed in a generally covariant Dirac formalism as well. 
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Local particle interpretation or, equivalently, an enlargement of a structure group to the 
Poincare group at each point of a Riemannian space-time manifold naturaIly results in a 
complexification of the Clifford algebra for the tangent Minkowski space. FoIlowing 
CrumeyroIle, twistor space is identified with an appropriate one-sided ideal of this algebra. 
Every antiautomorphism of the latter provides a unique projection from the complexified 
Clifford algebra onto the affine complex Minkowski space. This projection commutes with the 
action of the Poincare group. Using the above approach, three projections (the cases of 
symmetric, antisymmetric, and Hermitian tensors) are derived. The projection in terms of the 
antisymmetric, decomposable tensors is shown to give the Penrose projection. 

PACS numbers: 02.40.Ky 

J. INTRODUCTION 
The technique of Clifford algebra calculus has been 

proven useful in the theory of spinors, 1-5 especially in the 
curved twistor theory.6.7 In the present paper it is shown how 
this technique used 10caIly over a complex space-time mani­
fold can be used to derive two new projections from a tensor 
product of twistor spaces. The very weIl-known projection 
given by Penrose 7-9 has been rederived for a purpose of com­
pleteness. In Sec. II we give a short historical survey on the 
problem of accomodation of translations in a spinorial fiber 
bundle and the logistic of our calculations. Section III starts 
with a brief review on an abstract Clifford algebra and its 
representation in a spinor space. The conformal group 
'6"(1,3) is introduced and its elements are expressed in terms 
of the Clifford numbers. Section IV deals with certain repre­
sentations of '6"(1,3) on a complex Dirac-Clifford algebra 
defined through the antiautomorphisms of the latter. Main 
results of this paper are derived in the coordinate-free lan­
guage. In Sec. V foIlowing the weIl-known approach of Refs. 
1 and 10 we introduce a twistor space :T as an ideal in the 
Dirac-Clifford algebra. Hermitian and symplectic forms in­
variant under U (2,2) and Sp (4,q are defined on :T. In Sec. 
VI we define explicitly the isomorphism between a complex 
Dirac-Clifford algebra and a tensor product of twistor 
spaces and restate our results from Sec. IV in terms of sym­
metric and Hermitian tensors. In Appendix A we list all 
formulas from a Clifford algebra calculus necessary to ob­
tain our results whereas Appendix B explains the notation 
used in this paper. 

II. MOTIVATION AND SHORT SURVEY 

Many geometric ideas can be expressed algebraically 
using the well-known algebra introduced by Clifford one 
hundred years ago. The advantages of geometry based calcu­
lus from the point of view of simplicity and potentially rich 

a)On leave from Wroclaw University. Wroclaw, Poland. 

physical applications have been stressed by many authors. In 
particular, in Refs. 11 and 12 such geometric formalism is 
fully developed. 

In the present paper we are interested in exploring the 
possibility of using exclusively Clifford algebra calculus for 
the old idea l3 (see also Refs. 14-16) to describe the physical 
phenomena in spinor space rather than in real affine Min­
kowski space M Q. 

A Clifford algebra gives very natural and clear geomet­
ric interpretation to constructions involving affine Min­
kowski space and twistor spaces. Perhaps the crucial point 
for all results presented here is the link between the Witt 
decomposition of tangent Minkowski space, basic in certain 
approach to spinors and twistors l7 (cf. Refs. 3,4,6, 10, and 
18) and the Poincare group as the structure group (cf. Refs. 
19-21) of the fiber bundle over a real Riemannian space-time 
M. 

We express all notions in abstract (coordinate-free) Clif­
ford algebraic language and show how all conclusions result 
from the Clifford associative multiplication and regarding 
each point of M as having attached to it a 16-dimensional 
real Dirac-Clifford algebra !P. Thus we have a bundle of 
Clifford algebras over M, which is natural from the view­
point of geometry and will provide a natural physical inter­
pretation for our results. When we restrict ourselves to the 
tangent bundle (instead of the Clifford bundle mentioned 
above) with the Minkowski bilinear form 'YJ p' [signature ( 1,3)] 
defined for each tangent space TpM, we have in mind the 
geometry of tangent Minkowski space. It is the Clifford alge­
bra!P at p E M in terms of which the latter can be expressed 
in full. Having defined a Clifford algebra it is essentially the 
same as having a symmetric nondegenerate form (cf. Refs 1, 
22,23). 

We believe that the above point of view would be also 
convenient while investigating a nonrelativistic Galilei­
Newton space-time N for which TpN has a singular metric (0 
1 1 1). It would be interesting to study the structure of Clif-
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ford algebra and its representations for this Galilei form. S 

However we are not going to consider this problem here. 
In the present paper a twistor space is defined as cetrain 

ideal in Dirac-Clifford algebra (cf. Ref. 24 and more recently 
Refs. 10 and 22). The isomorphism between the latter and 
the tensor product of the twistor space with itself makes it 
possible to express the coordinates of any algebra element in 
terms of its tensor coordinates (see Sec. VI). 

Three projections from tensor products of twistor 
spaces on complex affine Minkowski space are derived for 
symmetric, anti symmetric, and Hermitian tensors respec­
tively. It is proved that the conformal group, while acting 
linearly on the Dirac-Clifford algebra induces, via twistors 
and the above isomorphism, correct conformal transforma­
tions in the complex Minkowski space. It turns out then that 
the tensor product of two twistor spaces is the smallest com­
plex manifold25 from which one can project. 

In the case of decomposable tensors the above projec­
tions define the same complex vector (this was shown in Ref. 
26). Projection involving the antisymmetric forms was found 
by Penrose and discussed in some detail in Refs. 26-28. 

We will now make a few remarks about possible deeper 
motivation for the present considerations. One is the at­
tempe 3 (cf. also Ref. 16 and the references therein) to de­
scribe physical phenomena using fields over the twistor nu­
merical space. This space has more dimensions than 
Minkowski space which allows more conservation laws, for 
example, the conservation law of charge, to be given a geo­
metric interpretation. On the other hand, it makes it possible 
to describe the internal degrees of freedom of elementary 
particles with the help of the parameters of twistor spaces 
tensor product, a typical fiber over real Minkowski space 
being considered as a base. An interesting point is that a 
Minkowski vector needs to be constructed from at least two 
twistors (tensor fields of rank two), that may provide a geo­
metrical interpretation for quark confinement. 

One can also view twistor space as the classical relativis­
tic phase space (cf. Refs. 9, 28, and 29). The present paper 
could be one of the steps in the above program to treat the 
twistor coordinates as the base-space coordinates for the cor­
responding vector bundles over twistors. 

The connection between Ma and twistor spaces (which 
are the Cartesian products of Lorentz spinor spaces) has its 
own history. Several different solutions were suggested to 
the problem of accomodation of translations in a spinor 
space so that the space-time Poincare group (or its extension 
to the conformal group) could be retained. In 1936 Dirac 
noticed the possibility of representing translation generators 
byal' + A!(1 + iys)YI' (i.e., with an intrinsic part), contrary 
to the usual al' for ordinary Dirac bispinors. This point of 
view was further investigated in Ref. 30, where a close rela­
tionship was shown between the complex Dirac-Clifford al­
gebra and conformal group (in this respect cf. Refs. 18, 31, 
and 32). Thus Dirac33 (cf. also Ref. 30) had already distin­
guished the ordinary Dirac bispinors from fields (redisco­
vered later in Ref. 8 and there called twistors), belonging to 
the representation with intrinsic translations. Evidently 
Penrose first found one of the connections between twistors 
andMa (cf. Refs. 9,14, and 28 and the references therein) by 
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means of the complex Plucker coordinates of bit wist or [a 
skewsymmetric tensor of the conformal group SU(2,2)]. 

In the present paper, however, we would like to empha­
size the possible geometric interpretation of twistors 
through the real Clifford algebra for de Sitter space rather 
than the holomorphic aspect ofthe complex manifolds advo­
cated by Penrose (cf. Ref. 7, 14, and 28.) 

A quite different approach to the connection of twistors 
with space-time was suggested in Ref. 34 (see also Ref. 35) 
where real space-time coordinates were expressed as bilinear 
functions of twistors. In particular, we will show in the last 
section that such a representation is in contradiction to the 
desired form for linear transformations of the twistor space. 
We also show that the corrected representation of this type 
coincides with Penrose's formula in the case of simple Clif­
ford numbers (decomposable tensors). 

Different solutions were found in Refs. 36 and 37, 
where the author abandons the assumption of linear repre­
sentation of the conformal group in spinor space (this repre­
sentation is obviously linear when restricted to the Lorentz 
subgroup). In this case, the following representation of the 
space-time coordinates, xl' = iiY's can be retained. 

One may ask, of course, if the formulation in terms of 
Clifford algebra is only an elegant restatement of known 
ideas and how much insight and new substance can be ob­
tained using this approach. New light has recently been 
thrown on this question in Ref. 38, where a very elegant and 
transparent treatment of the Riemann curvature tensor and 
its properties was given. We also think that it would be a 
great deal more difficult to derive these projections without 
using the concepts of Clifford algebra. 

III. PRINCIPAL CONFORMAL BUNDLE 
No global properties of a space-time manifold Mare 

investigated in the present paper. g; always denotes a real 
Dirac-Clifford algebra of a tangent Minkowski space TpM 
for some fixed point p E M. 

Recall some of the most important notions concerning a 
general Clifford algebra C (Q ) of a linear, finite-dimensional, 
real vector space V, dim V = s, with a bilinear form B : 
V X V--+R, and its associated quadratic, nondegenerate form 
Q. For details see Refs. 1,2, 5, 10,22,23, and 39. The ele­
ments of C (Q ), denoted here by m, n, "', are called "Clifford 
numbers." Any Clifford algebra C (Q ) can be decomposed 
into a direct sum of k-vector spaces 

k s 

Ck = 1\ V, k = 0,1,2,,,,, s, C(Q) = I Ell Ck , where 1\ de-
k~O 

notes the exterior vector space product. Evidently, C1== V, 
Co-R (real numbers), and dimCk = (~). Thus any element 

mEC(Q)canbewrittenas m = i (m)k,(m)k E Ck,k = 0, 
k~O 

1,2, "', s, where (m) k is called a k-vector part of m. At this 
point we adopt notation from Ref. 12. 

The Clifford algebra C (Q ) is a Z2 graded alegebra. This 
important gradation is due to the linear automorphism a, 
called also a principal automorphism of C (Q ), which is just 
the reversal of space and time tangent velocities, i.e., PT 
transformation. Let m, n E C (Q ); then 

(1) a(mn) = a(m)a(n), 
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(2) a(m)k) = (- l)k (m)kE Ck, k = 0, 1,2, "', s. 

With respect to a, for distinguished Vas the subspace of 
C (Q ), there is the following eigenspace decomposition (for a 
matter of convenience, when Q is not specified we put 
C(Q)=C):C= C+ EIlC-whereC+ = eigenspace for + 1 
(al c + = id) and C - = eigenspace for - 1 (ajc- = - id). 
C + is also a subalgebra of C. 

Let{3 denote the unique linear antiautomorphism on C, 
an identity when restricted to V. {3 is commonly called a 
principal antiautomorphism of C (Q ). Explicitly we have 

(i) {3 (mn) = {3 (n}/3 (m) for any m, n, E C (Q), 
\ii){3(m)k) = (- l)k(k-1)I2(m)kfor (m)kE Ck, 

k = 0, 1, 2, "', s. 
The antiautomorphism {3 allows us to introduce the 

spinornormN(m): = {3(m)mforanarbitraryCliffordnum­
bermEC(Q). LetK = !mEC,mV= VmJ. Then the spinor 
norm of any element from K belongs to the center Z of C (Q ) 
(see also Sec. III). 

It is known that if dim V = S = P + q is even, i.e., Q has 
signature (p,q), then Z = R and for s odd, Z = R Ell Cs ' where 
Cs is a one-dimenstional space of pseudoscalars (cf. Refs. 1 
and 10). 

Let *(p,q) be a unit pseudoscalar and 

* (p,qf = (- 1)s(s-1)/2detQ, detQ = ( - 1)9. (3.1) 

Then any element of center Z for s odd can be represented in 
the form Z 3 a + b* for a, bE R. Let Z * be the set of all 
invertible elements of Z. Then the Clifford group G of Q is 
just the subset of K such that N (G ) E Z * and 
N(glg2) = N(gdN (g2) for gl' g2 E G. The homomorphism 
A :G--+O (p,q) onto an orthogonal group of quadratic form Q 
with signature (p,q) is then given by 

A (g)v = gvg- 1 for v E V, g E G where ker A'::::::::.R *. 

One also defines Pin (Q ) as the set of elements of G for which 
the spinor norm is ± 1 valued. The orientation-preserving 
(pseudoscalar *) special Clifford group is G +: = GnC + and 
A (G +) = SO(p,q) for which N(G +) = R *. The spin group 
Spin(Q) is defined as the even part of Pin(Q ), i.e., 
Spin(Q )=[Pin(Q )] + C G + . 

Any 2s-dimensional associative Clifford algebra is at 
the same time a Lie algebra with Lie mUltiplication 
[m,n] = mn - nm for any Clifford numbers m, n. The Lie 
structure is uniquely induced by the fundamental Clifford 
geometric multiplication. 

Using {3 it is easy to see that the space of 2-vectors C2 

forms a Lie algebra o(p,q) of dimension n(n - 1 )/2, the Lie 
subalgebra of C. Let us decompose 9 as follows: 

9+ =SEIlTffJP 
and 

9- = VffJA, 9 = 9+ ffJ9-, 

where from now we adopt new notation uniquely for !iJ k 

(k = 0, 1,2, 3,4), namely, 9 0 = S (scalars), 9 1 = V (vec­
tors), 9 2 = T (tensors), !iJ 3 = A (axial vectors), 9 4 = P 
(pseudoscalars), while the respective k-vector parts of mE 9 
we denote by s, v, t, a, andp. Then the Lie structure of 9 /Z 
is given by 

[P,A lCv, (T,9dc9k' [V,v]CT, 

[A,A 1 C T, [V,A 1 CP, [P, V 1 CA, (3.2) 
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k 

where 9 k = A V. Here V is identified with TpM. Equation 

(3.2) shows that the algebra!iJ can be also considered as a Lie 
algebra of the group of inner automorphisms of 9 . 

The following isomorphisms take place: 

Lie{!iJ /Z }=so(I,5}=su*(4). (3.3) 

The group SU*(4) will be introduced in the next section as 
the group of linear mappings of a twistor space Y commut­
ing with a particular semilinear map d:Y --+Y (cf. Ref. 40). 

We would like to enlarge the Lorentz algebra of tensors 
to that of Poincare group. If one looks for the translation 
generator as a linear combination of vector and axial vectors 
there is no solution for the hyperbolic form 11 unless one 
complexifies!iJ. Alternatively, one can think in terms of the 
mapping so(I,5)--+so(2,4) via complexification 
su*(4)--+su(2,2) (see next sections). However, formal algebra­
ic complexification without an underlying geometric basis is 
contrary to the philosophY of the geometrical calculus (com­
pare, for example, Ref. 12). Therefore one would like to have 
a geometrical interpretation of the imaginary scalar by 
means of the new "hidden" dimension. This is due to the role 
of i as the unit pseudoscalar of Clifford algebra l: for a real, 
five-dimensional de Sitter space (the center Z is then two­
dimensional). From (3.1) for s = 4 or 5 we have *(Q )2 = detQ 
and one demands that detQ = - 1, which means that the 
desired de Sitter-Clifford algebra l: is simple. Therefore, 
there are three possibilities: V4•1 ---de Sitter space with bilin­
ear form of signature (+ + + + -), V2,3 and Vo,~. How­
ever, one would like to consider the Dirac-Clifford algebra 
!iJ as an even subalgebra of l:. This is the case if Vs == V4•1 • 

Complex conjugation now in 9' has a clear, geometric in­
terpretation as the principal automorphism as in l:. That is 
why algebra !iJ, stable under complex conjugation, can be 
identified with the even subalgebra of l: 

l: +=!iJ = S ffJ Ts Ell As and l: - = V, ffJ t. ffJ Ps' 

where l:o = S (scalars), l:l = Vs (de Sitter vector space), 
l:2 = Ts (tensors), l:3 = Ts (dual tensors), l:4 = As (axial vec­
tors), and l:s = Ps = i ® R (pseudoscalars). Moreover, 

As =i® Vs =A +Por V+P, 

Ts = i ® t. = V + T or A + T, 

and i is the unit pseudoscalar for the simple algebra l:, hence 
i E Zs (center of l:). 

Let {elL} be an orthonormal basis for TpM, i.e., 
eIL·ey = l1IL y,/-L, v = 0,1,2,3 and {fa}, a, b = 1,2,3,4,5, 
fa 1b = gab = { - diag l1IL 1" + I} = (4,1) can be a corre­
sponding basis for Vs' Here {fa} = ! i*eIL , i*). 

For Lorentz signature (3,1) one gets a de Sitter space 
with signature (2,3). l: for gab = diag( + + + + -) and l: 
for gab = diag( + + - - -) are isomorphic as universal 
Clifford algebras (cf. Ref. 23). A possible basis for Vs withgab 
= diag( + + - - -) is {fs, elL}. Thus i=*(4,1). 

Now let f3s be a principal antiautomorphism in l: and 
Ys =as °f3s' Acting with Ys on l: one gets the following 
decomposition: 

l: = l:c ffJ l:QC, 

where 
ys(l:C) = _ l:c,ys(l:QC) = l:ac 
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and 

l:C = Vs $ Ts $ps' 

l:ac = As $ Ts' 
It can be shown that riPs is a I5-dimensional, real Lie 
algebra of the conformal group 0(2,4)~su(2,2). In other 
words, [ V $ T $ iA $ iP I and [ V _A I provide two such 
algebras; the latter occurs due to the duality in l:: 
Asi=iAs = Vs' V$ TandA $ Tare both de Sitter-Liealge­
bras. For the physical meaning of 15-dimensional, real 
Dirac-Lie algebra (3.2) see Ref. 18. 

Recall that, due to the isomorphism between l: and 
g', as acts on g r as complex conjugation while {3s = {3oa, 
{3 and a being principal automorphism and antiautomor­
phism in g'. 

A conformal group can be introduced by means of ex­
ponentiation of its Lie algebra. The connected component of 
identity of conformal group % = '6'(1,3) = 
{g = exp(k). kel:cIPJ. Also as (g) = exp(as(k)), {3s(g) 
= exp(f3s (k )). where g = exp k, kel:C IPs· Since rs (g) 
= exp( - Vs - ts)' vseV" and tseT" then rs(g)g = 1 for any 

element g of %. The generators of % are 

(1) de Sitter translation: S,.. = e,..t(a + bi*), 
a = 1 + 1/ R 2, b = 1 - 1/ R 2. If a = b = 1, (one can obtain 
this by means of the contraction R-+oo) then S,.. = ¥,.. 
(1 + i*)=P,.. and one gets a generator ofthe Poincare trans­
lation.1f - a = b = 1 thenSfL = ¥fL( - 1 + i*) =K,.., agen­
erator of the special conformal transformation. 

(2) Lorentz rotation: 

MfLV = ¥fL t\ev = HefL,eV]' 
(3) Dilatation: 

D = - i*. 

Lets = e'SfL' t = ~PfL' C = )!"KfL' d =p'D and A = A"'v 
M fLV , p, V = 0, 1,2,3 while e', ~,XfL,p', A fLY are real num­
bers. Then after integration one gets the corresponding 
group elements 

(1) de Sitter transformation: gs = exp s = cosh UJ 
+ s· sinh UJIUJ, UJ #0, where UJ2 = !(e'€fL) (a2 

- b 2). When 
R-oo (UJ-+O), gs-gp = 1 + sla ~ hi = 1 + t (Poincare 
translation), and for 

(2) special conformal transformation: gc 
= expcl_a~b~ I = I + c. 

(3) dilatation and Lorentz rotation: gd = exp d = coshS 
+ (sinh S )i*, S = - p'/2 and gl = exp A, A = A ",vMfLV 

respectively. 
Therefore the enlargement of the Lorentz algebra of 

tensors of TpM to the Poincare algebra naturally results in 
geometric complexification of the Dirac-Clifford algebra. 
gr for TpM is isomorphic to the real de Sitter-Clifford alge­
bra l: for Vs' 

IV. PROJECTIONS FROM gr ON COMPLEX AFFINE 
MINKOWSKI SPACE-TIME (MBJC 

We begin this section with some general remarks con­
cerning the subgroups of C *, the set of all invertible elements 
of a Clifford algebra C (Q )==C and their different linear repre­
sentations on C as a natural representation space. We want 
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to emphasize the fact that for a fixed group GC C * one can 
define its linear representation ron C by means of any (cy­
clic, length 2) antiautomorphism r of C, invariant under 
group action in the sense that the following diagram 
commutes: 

y A 

G XC3(g,m)-+rg(m) gmr(g)eC 

1 r A 1 r 
G XC3(g,r\m))-rg(r(m)) gr(m)r(g)eC. (4.1) 

In order to enumerate all antiautomorphisms of C, called 
here ri' i = 1,2,. .. , it is sufficient to consider the group of 
automorphisms, called aj,j =_1, 2, .. , of C, Aut C, an~ one 
fixed antiautomorphism, say {3 of C, for any ri = ai 0{3 for 
some ai e Aut C. 

In the forthcoming we restrict ourselves to the sub­
group Aut,C of Aut Cwhere Aut,C = {a i e Aut C I 
a; = I} Notice that Aut,g' = {1,a,a s .aoa s } where a is a 
principal automorphism of g' while as denotes complex 
conjugation in g'. Since r(mn) = r(n)r(m) for any m,n e C, 

it can be easily shown that r g, Org, = rg,g, and r:G-+ Aut r 
onto 

is a homomorphism where Aut r denotes a group of linear 
bijections rg: C-C preserving r· 

Diagram (4.1) gives rise, in general, to a so-called twist-
ed adjoint representation (cf. Ref. I and 10) ra(gl where a E 
Aut,C. For let,8(g) = g-I. Then for a given r we have a e 
Aut,C such that r(g) = a(g-I) and 

rg(m) =gma(g-I), 

Ya(gl(m) = a(g)mg-I. (4.2) 
There are three independent antiautomorphisms in 9)': 

{3. a o{3, a,o{3 and their composition aoas 0{3. They provide 
four different realizations (representations) of any group 
G C C * on C, each of which preserves one antiautomorphism 
[in the sense of the diagram (4.1)]. 

We want to point out here the important fact that the 
condition that a representation r of G commute with r does 
not lead to any restriction on G itself. However, if one re­
quires that ri °rj = ri °ri holds for every g E G and i = 1, 2, 
then the gro~p elements ~eed to satisfy the relation 
rl(g) = r2(g)· In the very same way, 
rl(g) = r2(g) = ... = rdg) for some k if the antiautomor­
phisms rl through rk are to be preserved by a group 
representation. 

Therefore, for a given group G C C *, we have two types 
of group homomorphisms, ¢> and r. where 

4> 
C*-:JG3g-+¢>gE In C: ¢>g(m) = gmg-t, 

Onto 

Y A A 

C*-:JG3g-+rgE Aut r: rg(m) = gm y(g) , 
and In C denotes1a set of inner automorphisms of C. These 
two homomorphisms are of great importance for all future 
applications. Here r is called the action of GC C * on C. 

For a given r one can define a corresponding norm Ny 
whichisamapNy: C 3 m-+Ny(m) = r(m)m EZ, whereZ 
is the center of C. We have the following diagram (for every 
mE Candge G): 

C3mZ.!j;..y(m)=m E C 
~ g Ny ~ g 

C3gmr( g)_gr(m)r(g)gmr(g) = gr(m)mr(g) (4.3) 
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If one requires the above diagram to commute then a sub­
group G y of G for some antiautomorphism r can be defined 
as 

Gy= {geG, rg(m) = ~g(m) for every meC}. (4.4) 

Notice that (4.4) is equivalent to Ny (g) = 1 and 
NyOrg = rgONy for every ge Gy. One concludes that any 
group G preserves both ri and rj' for some i andj, with y, A 

respect to the homomorphisms rj and~, respectively. Ac-
cording to the definitions ofPin(Q) and Spin(Q) (see Sec. III) 
one can recognize that for ~c: Pin(7J) = Gp and 
Spin(7J) = GpnGaop . Spin(7J) isa twofold cover of the Lorentz 
group SO(I,3) which acts on ~c via~. Therefore, one can 
also characterize the Lorentz group as 
GpnGp, nGa,op,GpnGp,nGa,op" or Gp, nGa,op.Linear represen-

A A............... ............ 
sentations/3,/3s, as 0/3 and as 0/3s of the conformal group % 
on ~c are the only ones which become the ~ action when 
restricted to the Lorentz subgroup. This is because 
g-I = /3 (g) = /3s (g) = ( /3oas )(g) = (as 0/3s )(g) for any element 
g of the Lorentz group. 

Given now any representation r of % on ~ c one may 
ask whether or not there exists a projectionpy from ~c on 
(Mat, defined by the following commutative by assumption 
diagram: 

%3g:~c 
r g 

) f!j)c 

1 Py 1 py 
%3g:(Mat g 

) (Mat (4.5) 

In what follows, our aim is to constructppandpa.op" 

be 
Let a, as, /3, and /3s be as before. Then m e ~c is said to 

(i) symmetric if/3(m) = - m, 

(ii) antisymmetric if/3(m) = m, 

(iii) Hermitian if (f3s°as) (m) = m, 

(iv) antiHermitian if (f3s°as) (m) = - m. (4.6) 

The definitions (i) and (ii) express the fact that /3 (f) = - /, 
which means that/, the generator of.'T, is a bivector in ~c. 
The role played by fin establishing the isomorphism be­
tween ~c and.'T ®.'T will become clear in Sec. V. 
A. 

Let us consider first the action % on ~ c preserving 
decomposition of any m e ~c into its symmetric and anti­
symmetric parts: 

%3g:~c3m--+gm/3(g) ==m'e ~c. (4.7) 

Ifm = ±/3(m) then m' = ±/3(m'). Moreover, ifm is sym­
metric then m = a + t, while m antisymmetric means that 
m = s + v + p, where s e S, ve V, t e T, a e A, and pEP. 

The following is divided into two steps: 
(1) We find the transformation properties of all k-vector 

parts of m E ~c under %, i.e., 

(4.8) 
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for k = 0,1,2,3,4 and g e %. 
(2)N ext we look for all combinations of (m) k /s which 

would transform like a vector under %. They will give us all 
projections from ~ C on (M ar. 

Let us proceed with step (1). We first list the elements of 
% in terms of the Clifford numbers: 

(i) Poincare translation gp: 

gp = exp[ lr(1 + i*)] = 1 + !r(1 + i*), r = r'e!-" 

(ii) Special conformal transformation gc: 

gc = exp[!K(1 - i*)] = 1 +!K(l - i*), (4.9) 

(iii) de Sitter transformation gs: 

gs=exps = coshlU+s(sinhlU)llU, lU#O, 

(iv) dilatation gd: 

gd = exp (P'D) = cosh; + (i*) sinh;, ; = p'/2, 

(v) Lorentz t:.0tation g I: 

gl = expli, Ii =Ii!-'''M!-,,,, 

Combining (4.8) and (4.9) we get the full list of transform a­
tions of (m) k (with the help offormulas given in Appendix 
A): 

(i) Poincare translation gp: 

T+3tl_tl e T+, 

T _ 3t2-t2 + (r·a)(1 - i*) + rtlTET_, 

S3s_s + r·v + !sr + tpri*e S, 

V3v_v + r(s + pi*) EV, 

P3 p-p - (r·v)i* - !rsi* - !rp E P, (4.10) 
where T= T+ al T_,T ± = ItE T, i*t = ± t J for 
t = tl + t2. 

The following are the Poincare invariants: 

c l( 00 )==s + ip*, tl =!t (1 + i*), c2=12/(s + pi*)2, 

where 

11={s - i~* _ ( V. )2}(S + ip*)2 
S + lp * S + lp * 

=S2_V2 _p2 

is an invariant of the conformal group. We define 
(v - ai*)-I=(v - ai*)I(v - ai*)2, provided (v - ai*)2#0, 
and more generally (m) k )-I=(m) kl( (m) k)2 provided 
(m)d#O, (m)ke~ck' 

(ii) Special conformal transformation gc: 
g, 

V3v- v + (pi* - s)K e V, 

S 3 s_s -I(·v +~(S-pi*)ES, 
P 3 p_p - (I(.v)i* + ~(si* - p) E P, 
T 3 t_t -(I(.a)(1 + i*) + !Ktl((1 + i*)ET, 
A 3 a-a + (i.t )i* - I( 1\ tEA, 

K=l(i*, (i) I =I(;~=i"i". (4.11) 
gc 

It follows that t2-t2, the antidual part of tensor t E Tis 
invariant under gc action. For convenience we put 

cosh lU==.x, a sinhlUllU y, b sinwllU==Z; 
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then 1 - X2 = ;!C(Z2 - y2). Hence 
(iii) de Sitter translation gs: 

g, 

S3s-s[ x 2 + !(€)2(y2 + r)] + y[x(€·v) + 1(€)2Zpi* ]eS, 

P3p_p[ x2 - !(€)2(y2 + Z2)] - z[ x(€.v) + 1(€)2yS] i*eP, 
V3v-v + €[x(ys + zpi*) + 1(€·V)(y2 - z2)le V, 
A 3a_x2a + xz(€.t Ii. + xy(€ 1\ t) + !(y2 - r)€a€ e A, 

T + 3t,_x l t, + x(€·a)1(y - z)(1 + i*) 
+ iEt€(y + zi*)(y - z)(1 + i*) e T +, 

T _ 3t2-x2t2 + x(€·a)~(y + z)(1 - i*) 
+ iEt€(y - zi.)(y + z)(1 - i*) e T_. 
There is the de Sitter invariant c,(R )==(s + pi*) 

(4.12) 

- (s - i p*)IR 2 which becomes the Poincare invariant 
c, ( 00 ) at the limit R 2_ 00 . One can notice that if 
x = y = z = l(w-+oor R-oo) then (4. 12) gives (4. 10). More­
over, if x = -y=z= 1 then one gets (4.11). 

(iv) dilatation gd: 
gd 

A 3a-aeA is invariant, 

where 

C2 = I/(s + pi*f = (s - pi*)/(s + pi*) - (Z,)2 

and 

(ZI)2==z,.Z, = (z,Y'(z,)p' 

When C2 = 0 (4.16) gives 

T3t_t(p..2 + v + 2J.tvi*) eT, 
S3S_(p..2 + V)S + 2J.tvpi*eS, 
V3 v-veV is invariant, 

P3p_(p..2 + vIP + 2J.tvsi*eP, 
cosh; = p, sinh; = v. 
(v) Lorentz rotation gl: 

g, 

S3s_seS, 

P3p-peP, 

(4.13) 

V3v-«(expA)(v + a)exp( - A), eV, (4.14) 
A3a_«(expA )(v + a)exp( -A )3 eA, 
T3t-«(exp A )t (exp( - ..1.)))2 eT. 
Let us define two Clifford numbers z, and Z2 by 
z,=v(s + ip.)-', (4.15a) 

z2=[(1 + i*)t -'].a. (4.15b) 
We now seek the transformation laws of z, and Z2 under the 
conformal group % making extensive use of (4.10)-(4.14). 
Let us see first how z, transforms under de Sitter translation 
gs4' 

(4.16) 

g, (z + y)r z, + [ x(ys + zpi*)I(s - pi*)(Zt\2 + 1(Z,.€)(y2 - Z2)] €j 
Zl- , (4.17) 

c, = 0 (z - y)(zl + 2x2[(yS + zpi*)/(s - pi*)](Zt\2 + X(y2 - Z2)(ZI'€) 

the transformation law of Minkowski vector. If 
x =y =Z = 1 in (4.17), thengs =gp and 

g, 

z,- =z,+1'. 
C 2 =0 

(4.18) 

From (4.16) one can find also how z, transforms under 

g, Zl - i[(ZI)2 + c2l 
Zl- 2 2 . 

1 - 2(i·z,) + (i) [(Zl) + c2l 
With respect to the dilatation gd 

gd 

Z, - exp( - 2;)z" 
while the Lorentz rotation gives 

g, 

z, -(expA)z,(exp(-A)). 

(4.19) 

(4.20a) 

(4.20b) 

Thus from (4.16)-(4.30) one concludes that the Clifford num­
ber z I transforms under the conformal group % like a vector 
from Minkowski complex space-time provided II = O. 

Now let us investigate how Z2' defined by (4. 15b), trans­
forms. First notice that t 2 = (t 2

)0 + (t 2
)4 for any te T. 

Since t - I for t # 0 can be defined as 

t- '==tlt 2=(t 2)0+ (t 2)4)-l t, (4.21) 

(1 + i*)(t 2)-1 =p(1 + i*),p-' = (t 2)0 + «t 2}i*)o, and 
Z2 = p[(1 + i*)t ]·a. We also notice that from t and a one can 
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'construct another conformal invariant 12==1(1 - at -'a) 
(1 - i*). If Z2 undergoes de Sitter translation gs' then one gets 
a formula similar to (4.16), provided 12 = O. Similarly, Z2 sat­
isfies (4.19) under the same condition. Thus if 12 = 0 and 
R-oo, Z2 translates by vector 1'. It is also easily seen that Z2 

satisfies (4.20). 
Thusz, andz2 given by (4.15) provide two possible pro­

jections from the antisymmetric and symmetric parts of the 
complex Dirac-Clifford algebra on a complex Minkowski 
space-time (Mat, provided both conformal invariants I, and 
12 vanish. 

B. 
Let us consider now the Hermitian and anti-Hermitian 

parts of the algebra fi)', preserved under the following ac­
tion42 of % on fi)': 

g 

%3g:fi)'3m_gmg-'=m' e fi)'. (4.22) 

Ifif'soasHm) = ± m then if'soas)(m') = ± m'. In what fol­
lows we deal only with Hermitian Clifford numbers m e 
fi)', m = if's oa.)(m). Again, first we find the transformation 
laws of all k-vector parts of m e fi)' under any g e %, now 
defined as 

g 

fi)~ 3 (m)k_(gmg-l)kefi)~. (4.23) 
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Next we look for a certain combination of (m) k which 
would transform like a vector under JY. It will give us an­
other projection from the Hermitian part of !i)c on (Mar. 

Equations (4.22) and (4.23) show clearly that the scalar 
part s of m is invariant under JY. Moreover, if g E JY then 
(g(v + t + a + p)g- I) 0 = O. 

The elements of JY were listed before [see (4.9)]. Thus 
we have: 

(i) de Sitter translation gs: 
g, 

V3V---+X2V + ~[2yzai* - (y2 + z2)vk + x(y€.t + Z€pi*)EV, 

A 3a---+x2a + ~[2yzvi* - (y2 + z2)ak + x(z(€.t )i* + YEp)EA, 

T3t---+X2t + XE 1\ (yv - zai*)+ !(Z2 - y2)€t€ET, 

P3p---+(2x2 - l)p + X€ 1\ (ya - zvi*) ET. 

Ifx = Y = z = 1 in (4.24) and €=7 

(ii) Poincare translation gp: 
gp 

V3 V---+V + !7(ai* - V)7 + 7·t + 7pi*E V, 

A 3a-a + !7(vi* - a)7 + (7'! )i* + 7p EA, 

T3 !---+t + 71\ (v - ai* )ET, 

P3p---+p + 71\ (a - vi*) EP. 

Therefore, there are two Poincare-invariant Clifford 
numbers: 

J3=t 1\ (v - ai*)-I and J2=v - ai*. If 
x = - Y = z = 1 in (4,24) and € = K then 

(iii) Special conformal transformation gc: 
g, 

V3v---+v - ¥'(v + ai*)K - K·t + Kpi*EV, 

A3a-a - ¥(a + Vi*)K + (R.t)i* -KP EA, 

T3t---+t - K 1\ (v + ai*)ET, 

(4.24) 

(4.25) 

P3p---+p - KI\(a + vi*)EP. (4.26) 

It follows that J I = v + ai* remains invariant under gc. 
(iv)Dilatation gd: 

gd 

V3V---+(p,2 + v)v - 2/-.lVai*EV, 

A 3a---+(p,2 + vIa - 2f..lvvi*EA, 

P3P-PEP, 

T3t---+tE T. 

(4.27) 

TABLE I. Clifford numbers invariant under conformal group % = C(I,3). 

Antisymmetric 
mE!.iJ' 
m=s+v+p 

v 

clloo)=s+pi. 
II 

C, = ---'--~ 
Is +pi.)' 

c,IR)= 
s + pi. - (I/R ')(s - pi.) 

I, =s' _ v' -p' 

Symmetric 
mE!.iJ' 
m=t+a 

a 
t, = !t(l - i.) 

tl = !tll + i.) 

I, = 
!it - at -la)(1 - i.) 
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(v) Lorentz rotation gl: 

g, 

V3v---+(gl(v +a)gl-I)I E V, 

A 3a---+(gl(v + a)gI-I)3 EA, 

T3t---+(gltg l -
1
)2 ET, 

P3p---+p + (gtPgI- I)4 EP. 

Let us now define the Clifford number 

z: = (t - pi*)(v - ai*)-I. (4.28) 

Notice, thatz = (z) I + (Z)3' i.e., zcontains only vector and 
axial parts, where 

(z) I = t.(v - ai*)-I - pi*(v - ai*)-I, 

(Z)3 = t 1\ (v - ai*)-I = J3 • 

(4.29a) 

(4.29b) 

Moreover, (v - ai*)-I = 1T(V - ai*) where 1T is a scalar and 
1T-

1 = v2 - a2 - 2(vl\a)i* (1T#0 assumed). It can be shown 
that the vector part of z transforms like a vector under the 
conformal group JY (Ref. 43). Let us examine only the Poin­
care translation gp acting on (z) I' From (4.25) we find that 

or, equivalently, 

gp gp 

(z) I---+(Z) 1+ 7 and J3---+J3, 

which simply says that the vector part of z is translated by 7 

while the axial part remains unchanged. 
Let us summarize briefly this section. The following 

Clifford numbers are obtained by three distinct projections, 
commuting with JY, on a complex Minkowski space-time 
(Majc from the antisymmetric, symmetric, and Hermitian 
parts of the complex Dirac-Clifford algebra !i)', provided 
the corresponding conformal invariants vanish: 

Zl = v(s + ip*j-I, 11 =0, 

Z2= [(1 +i*)t-I].a, 12=0, 

(z) I = t·(v - ai*)-I - pi*(v - ai*j-I, 

no condition. 

(4.30aj 

(4.30b) 

(4.30c) 

ZI,z2, and (z) I are all Clifford vectors and their vector 

Hermitian 
mE£i!' 
m =lao{:1)(m) 

t,p 
J I = V + ai. 

J,=tA(v-ai.)-1 

J2 = V - ai. 

s 

Invariants 
of 

dilatation 
special conformal 

transformation 
Poincare 

translation 

de Sitter 
translation 
conformal 
group 

%=C(I,3) 
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coordinates can be written as 

(ZI)Jl = VJl(s + pTI, (4.31a) 

(4.31b) 

(4.31c) 

where v = vIleJl' p' = pi., aV = aVevi., (= (JlVeJl 1\ eJl' (JlV 

= - (VJl,l = tl<1eJl 1\ ev)bf< (t denotes a dual tensor to (), 

11"¥- 0 assumed and given above. Invariants are listed in Table 
I. 

At the end of this section we comment on a possible, 
geometrical interpretation for II to vanish. Recall from Sec. 
II, that any vector W E V4•1 can be written as w = wala 
= wi. + wp, where w = wJleJl and wp = w5i •. Thus 

w2 = (wpf - (uW. Ifwe now substitute w5 = sand w = v 
then II = S2 - v2 - p2 = (si.f - v2 - (Pi.f 
= w2 - (pi.)2. II = 0 means that w2 = (pi.)2, i.e., w lies on a 

sphere in V4,1 with radius pi., 
One can also introduce the following basis for V2,4 (see 

Refs. 31 and 44), ra = ( - ifa ,i) = (eJl.,.,i), a, b = 1,2,,,,,6 
where eJl·ev = 'rIJlY = (1,3), The inner product in V2.4 is de­
fined then as gab = r a ·r b = - fa lb + i( - i), Therefore any 
vector S E V2,4 can be represented as S = ( - iw,(pi.)i) = 
(v.,s.,(pi.)il for some s,v, and p in ~', Moreover, 
S 2 = - S2 + v2 + p2 = - II, andII = o means thatSlieson 
a cone in V2 4' If Z = v(s + pi. I - I then zI' = S Jl(S 5 + s 6) - I, 

which is a standard projection from V2,40n VI ,3' provided 
S2 =0. 

V. WITT DECOMPOSITION OF (TpMf, TWISTOR 
SPACE AS AN IDEAL IN CLIFFORD ALGEBRA 

For (TpMt one has a Witt decomposition2"o,23 

(TpMt = FffiF', 

where F and F' are two-dimensional, maximal, completely 
isotropic subspaces, A Witt frame for (TpM IC is just the well­
known Sachs frame eAO = d'AOeJl' A,B.A,B = 1,2, Explicit­
Iy,eli =eO +e3,eli =e,-ie2EFande2i =eo -e3,e2i 
= e l + ie2EF', 'rI1F' = 'rIIF = 0, and (eAR' ecb) = d'AO(Jp.cb 

= 2€AC€OD where €AC = €Bb = (0 1). Therefore, in 
-1 0 

the Sachs frame, 'rI has the matrix form 

'YI = 2( 0 (Tl) 
./ (Tl 0' 

2 

Let/be any tensor of F(or F'), i,e,,JEI\F,J2 = 0, For 

example, in the Sachs frame one can take I = II or 12 where 
IA: = -~cd'AB(JvAce"l\ev.Thus 
J; = *(eo - e3 ) 1\ (ie l - e2).jgenerates a linear, four dimen­
sional twistor space Y(() over C as the left ideal in 
~', Y((): = ~'f Consider the linear mapping.: 
T3S-,.SE:Y. Since .2 + 1 = 0 (minimal polynomial of.) 
then with respect to • a twistor space is the direct sum of two­
dimensional complex eigenspaces of ., Y = S + ffi S -, 
where .S ± = ± is ± and S ± =!( 1 ± i.)S E S ± , More-

238 J, Math. Phys., Vol. 23, No.2, February 1982 

over, ~r+ S ± CS ± ,~r_ S ± CS =F, which means that 
Y(() is also a Zrgraded Clifford module and this important 
gradation, known as the Lorentz spinor decomposition, is 
solely determined by the orientation. of the tangent space­
time TpM. Change of. will result in S + .-S - , In the Lorentz 
spinor basis one can writeS + 3w = WA~' S - 311" = ~(,j, 

W A ,.,ri E C. In the Sachs frame a twistor basis {€a ==uJ} for 
Y(() can be chosen as: U I = 1, U 2 = !eli ,u3 = !ieli, u4 

= !ie l i eli' From now on we fix! = J;, We will write 
Y(()3S = Sa€a = uf 

The representation of algebra ~' in Y(() is then linear 
(Refs. 1 and 10), 

~c3m : Y(()3s---+msE:f(f), 

where mEa = €prfia(m) (C3rfia(m) == ~(m€a)' ~ E Y< 
dual twistor space) and determines the matrix representation 
of ~'. For instance, the Dirac matrices rJl can be defined as 
eJl €a = €pr/3a· One can say, therefore, that the matrix re­
presentation of algebra ~' is determined by the generator I 
of twistor space Y and orientation. of TpM up to the 
choice of basis in Lorentz space. 

Let us introduce now the Hermitian correlation ~ on 
Y-(()=Y, called also a general Dirac conjugation, and the 
conformal group U(2,2) as the correlated automorphism of 
Y. Another definition of ~ was given in Ref. 10, Correla­
tion ~ on Y is a semilinear map such that 

s~:Y3s=ul-'~(s)= -Ps(Uyf)EY'< (5.1) 

where rl = /r; r is a so-called pure spinor (see Refs. 10 and 
22). The essential point for the twistor theory in the Clifford 
algebra language is to see how the algebra structure alone 
determines the Hermitian (and symplectic, see below) form 
on Y. This beautiful relation shown by Crumeyrolle is based 
on the observation that if/and/, are the pseudoscalars of F 
and F' (Witt decomposition), respectively, then 

dim(~'fn/, ~') = 1. (5.2) 

Hence one can always find r E~' such that ~ is well de­
fined by (5,1) and, moreover, the Hermitian from ~ on a 
twistor space Y can be defined45 in terms of ~ as 

JYJ

: Yx,'73(S=uf,'rI==vl)-'~(uf, vl)f=~(u/)vf (5.3) 

~ defined here is invariant under the conformal group Y, 
To show this we rewrite (5.3) with a help of(5,1) as 

~(uf, vi) = rPs(ii/)vf, (5.4) 

where uf, vIEY, r = e2, (e2)2 = - 1 and ii/means complex 
conjugate of uf Then 

~(uf, vl)1 = Ps( vi )ulr and ~(uf,vl) = ~(vf, ul), 

Since the representation of ~' in Y defined earlier was 
linear, .JY acts on Y linearly and irreducibly (cf. Ref, 10). 
Thus the following diagram commutes: 

.JY 3 g: Y 3 ul • gu/E.r 

~~ ! .c¥" 

Y 3 g : ~(ul)-.~(gul) = ~(ul)g- I E .~-, (5,5) 

for .rl'( Ul)g-I = - p,(giirl) = - p,(iirl)([3, °a,(g) 

Ablamowicz, Oziewicz, and Rzewuski 238 



                                                                                                                                    

= Ji'/(uf)g-\ 

and f/3, oa,(g)g = 1 for every gE.A/· From (5.5) it follows that 
.7r(guf.gvflf = .c/ = (gut)gvf = .c/(uf)vf = ffr'(uf,vcfif 
Therefore. ,r defined by (5.4) is invariant with respect to.r 
and one can show that the signature of .r is (+ + - -). 

Notice. that (5.3\ provides another possible definition 
for the conformal group as a group U(2.2) of correlated auto­
morphisms of Y which preserves the Hermitian form ;iY'. 

U (2.2) = {gEiiJ '!Ji'/(gs)g1] 

= Ji'/(s).'lJS.!7EY}. (5.6) 

Therefore f/3, ca, )(g)g = 1 needs to be satisfied for all 
geU(2.2Y1iiJ' or, 1J3, cas )(X ) + X = 0 for all X Eu(2,2)niiJ·. 

Let us remark here that Y can also be endowed with a 
symplectic, nondegenerate from 1O.

460:Y X Y -C defined as 

o (uf, vflf= P(uf)vf (5.7) 

o is symplectic because - 0 (uJ,vflf = P (0 (uf,vflf) = 
- fTJ (v)uf = 0 (vf,uflf. InY one can nowconsiderasymplec­

tic basis (ea,epo), a,/3 = 1,2, where e\ = €4' e2 = €3' 

e\O = € .. e2o = €2' such that o (ea,ep) = O(e",o,epo ) = 0, and 
O(ea,epo) = oaP' ThusY = Y\alY2, where both Y\ and 
Y 2 are transverse, Lagrangian subspaces of:7, generated 
by (epo) and (ea ), respectively. 

It can also be shown that 0, given in Eq. (5.7), is invar­
iant under the left regular action of G p (see Sec. IV) on Y: 
Gp 3g::73uf-gufe.Y, for 
o (guf ,gvflf = P (uf)13 (g)gvf = 0 (uf,vfif Therefore 
Gp = Sp(4,q. We will come back to this point in Sec. VI. 

VI. TENSOR PRODUCTS OF TWISTOR SPACES 

As we recall from Sec. IV, a twistor space Y is defined 
as left ideal in iiJ', Y(f): = iiJ'J,/fixed, providing a repre­
sentation space for linear representation of iiJ'. More pre­
cisely, a spinorial representation of the Clifford group G gen­
erated by iiJ', acts irreducibly on Y. We do not intend to 
develop this point here but we refer to Refs. 1, 10, and 22 
Isomorphisms between f!fl' and Y @ Y or iiJ' and 
Y @ Ji'/ (Y) will playa crucial role in our present consider­
ations. We give them below1o

•
22for the antisymmetric case, 

in agreement with our definitions of symmetric. antisymme­
tric and Hermitian Clifford numbers [see (4.6)] considered as 
symmetric, antisymmetric and Hermitian tensors respec­
tively. They allow any m from algebra iiJ' to be treated also 
as an element of tensor spaceY@Y or Y@.9/(Y). 
Therefore, one can express the coordinates of k vector parts 
of any m e iiJ C in terms of the corresponding tensor coordi­
natesofm, meY@Y, ormeY ~Ji'/(Y). 

A. ANTISYMMETRIC CASE 

It is natural to introduce {uJ~ up/} as a basis in 
:7~Ywhi1e{u(J~upJ}and{uIJ~uP /}providebases 
in the space of symmetric (Y ~ .7) + and antisymmetric 
(Y ~ 51- tensors respectively, a,/3 = 1,2,3,4. Then any 
m = m + + m -, meY @ Yand m ± e (Y) ± . We denote by T 

a transposition 7i.uJ~ uP/I: = uJ~ uJ. 
LetP. and a be as before (see Sec. III),jbeing fixed. Let 

meY ~ Y and meiiJ'. Then the map i 
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i: Y ~ Y3 m = mafluJ~ up/_maPPs(ualfa(up) 

=mEiiJ' (6.1) 
provides an isomorphism between :7 ~ Y and iiJ 0 Ref. 10. 
Moreover, the following diagram commutes: 

Y ® :73uJ® Upf~Ps(Ualfa(up)E iiJ' 

T! -{3 t 
i 

:7 ® Y3up/® uJ-+/3s (up lfa(ua ) E iiJ'. 
(6.2) 

From (6.2) we conclude that, if m ± E (:7 ® :7) ± then 
{3 (i(m ± II = ~ i(m ±), which agrees with (4.6). 

Remark: Due to the fact that .'7 is endowed with a 
sy~plectic form 0, one can construct a so called symplectic 
ClIfford algebra over:7 (cf. Ref. 47), Cs(O) by means of the 
quotient ® :711(0 )=C,(O) where 1(0) denotes a two-sided 
ideal in ® Y generated by S ® 7] - 1] ® S - 0 (s,1]). S,1] E Y. 
Therefore, (Y ®:7) II (0)= V 2TC C s+ (0), the even part of 
Cs(O). 

We explore now the relation between the basis 
{uJ® uJ}of:7 ®:7and that of iiJ'. 

:7®Y3uJ®upf==.r" +F""e +IF'1\'e I\e 
UIJ apJ.l 2 a/3Jl v 

*p * 
+ r apepi. + r api.EiiJ'. (6.3) 

Once the Witt base and/are fixed. the numerical values of r 
coefficients can be uniquely determined. We list them in gen­
eral form 

(i) scalar 

raP = rrap I = (u la ® up I>o=(ua 1\ up )0' (6.4a) 
(ii) vector 

r~p = rraP I = e"·(u(a /® upi /)=(e"hap I' (6.4b) 
(iii) tensor 

r~p = rM:;l = (e
V 

l\eP),(uIJ®uw!)=(eV l\eP)laPJ' 

16.4c) 
(iv) axial vector 

* * r~p = Fra,n = - (ieP*)'(u(a f® up()= - (ie"*)(aPI' 

(6;4d) 

(v) pseudoscalar 

* • 
r up = r lap 1= U·u la /® Up If)o=(i.(ua 1\ up)o. 

(6.4e) 

In (6.4b), (6.4c), and (6.4d) a dot . denotes the inner productin 
the Clifford algebra iiJ'. Now one can express the coordi­

nates of any mEiiJ C in terms of the tensor coordinates of a 
corresponding (symmetric of antisymmetric) tensor m from 
Y ®:7. Since (4.31a) and (4.31 b) give the (vector) coordi­
nates of two Clifford numbers which are of special interest to 
us. we rewrite them in the following form: 

(6.5a) 
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(Z2)v 

= 2 mlaP1(iel"* )laPl [mlrc5/(bl(ell Aev)lrc51 + ml€lIl(ell Aev)I€III] 

mlaPl(et AeK)(aPI [mlrc5I(j.,(eK Ae.dl(-tc51 + m(€II I(eK Ae . .d(€lIll 

(6.5b) 

Remark. With the help of (6.4) one can express II (see 
Table I) in terms ofmlaPJ.I =.1& mlaP)mlru) where . I 4"'aPru , 
€aPru is totally antisymmetric tensor, €1234 = 1. Ifm is de­
composable, i.e., m = S ® 1/ for some S,1/ e Y, then I I = 0 
and (6.5a) provides the well-known Penrose projection.7- 9 

B. HERMITIAN CASE 

. In Y ® d(Y) we introduce {uJ® d(U,J)} as a ba-
SIS, where d(uJ)=uJ = - frPs(ua) (ua is the complex 
conjugate of ua ). Then any tensor meY ~ drY) can be 

written asm = maPuJ® uof, and its Hermitian conjugate 
mh: = maPu,J® uJ. 

Let me3- ® dry) and m e iiJ·. Then a linear isomor­
phism w between Y ® ,,('(Y) and iiJ' is given as 

,ry ® <of(Y) 3m = muPuJ® u,J"'-.maPuJrPs(up) 

=meiiJ', (6.6) 

Ps(up)=({3s °as)(up), rf = Jr, r = e2 in our basis. Then, the 
following diagram is commutative: 

Y ® d(Y) 3 m = maPuJ®uP/ ---)~ m=muPuJrPs(u[j) e iiJ' 

!h 1 psoas (6.7) 

T ® .01(7) 3mh = m "P upf® u" f:'({3, 0a,)(m) = m u/J upfr/3,(u" leY' 

for (f3s oas )(f) = - J, ({3s oas )(r) = - r· From (6.7) one con­
cludes that ifmh = m and w(mh) = m, then/3s(m) = m, in 
agreement with (4.6). 

Let the basis of Y ® drY) be related to the basis of iiJ' 
through the r coefficients defined by 

Y ® d(Y)3uJ® d(u,J)==UJ® up/ 
. . 

= raP + r~/3el' + !r '::dev A el' + r~p(iel' .)+ raP i.eiiJ'. 

(6.8) 

Taking inner prodllrts ofu,,/® u,;{ with each element of the 
Clifford base in !iJc and then projectmg the results on sca­
lars, one can calculate all r 's and express them in general 
form. 

(i) scalar: 
raP = rlaP J = (uJ® uP/)o. (6.9a) 

(ii) vector: 

r~p = eV.(uJ® up/)=(eV)a[j. (6.9b) 

(iii) tensor: 

r~fJ = (e V AeI")·(uJ® up/I-lev Ae")aP. (6.9c) 

(iv) axial vector: 

(v) pseudoscalar 

Therefore, the vector coordinates of (z) I [see (4.3Oc)] can be 
written in terms of the Hermitian r forms as: 
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I .' 
(z) I = 8{m'aPJ(eV A e")(aPI [mlrlil(ev)lrc51 + m(€11 l(e).)I€tiI ] 

- mlaPI(i.(uJ® uP/I) [mIPYI(e")lPr) 

+ mlrc51 (e"i·)lyc5I])' (6.10) 

where 

8- 1 = mlaPlmIYlil(e") . (e"1 . (aPI Iy.5) 

+ mlaYlmlPc5l(evi.) . (e ,'.) . lay) v (Plil 

- 2m lap 
Im(yc5)(e")(ap I (el'i.)(yc51' 

mlaPI = !(map + mP") and rlaP) denotes the Hermitian part 
of raP' 

The interrelation between the three projections derived 
above will be discussed in the near future. In particular, the 
new identities between the Dirac bilinears will enable us to 
show in the case of the decomposable tensors, that all three 
give the same point in (M aJ<. 

Finally, we mention that there is a well-known connec­
tion between the supersymmetry theory and the twistor for­
malism (Ref. 48 and the references therein). This results in 
introducing the fermionic twistor variables instead of the 
Penrose bosonic twistors used in the present work. The spin­
orial charges then are the Jordan roots of the conformal gen­
erators. We think that it might be a great deal easier to calcu­
late the Casimir operators of the conformal group and its 
subgroups with a help of the formalism developed here, in 
particular, through the r coefficients (see Sec. VI). 

The subgroups OSp(4,1) and OSp(8,1) have been intro­
duced48 in the supersymmetry theory. The primary groups, 
however, to start with are Sp(4) and Sp(8), the real forms of 
Pin(1/) for f.j)' (see Secs. IV and V) and Pin @ for CC@, the 
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complex Clifford algebra over V2,4 (see Sec, IV), The Witt 
decomposition for V~,4 enables one to introduce an eight­
dimensional, complex spinor space S as an ideal (left or right) 
in C c(g), in analogy with y, Therefore, the twistor space Y 
can be indentified with the even part of S, Moreover, since 
S ® S=Y ® Y ® Y =cc(g) and !iJr is isomorphic with the 
real, even part of C C(g), the components of any m E !iJ r could 
be expressed in terms of the trilinear forms in twistors, This 
will make it possible to replace the bilinear forms in (6,5) by 
the trilinear ones, in the case of the decomposable tensors, 
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APPENDIX A 

We use here notation from Sec, III. C k denotes a vector 
subspace of k-vectors in C (Q), k = 1,2,. .. ,s = dim V. Q is a 
quadratic, nondegenerate form defined on a vector space V 
(real or complex), . and A denote wedge and inner products, 
respectively, in C (Q). If m,n E C (Q), miE Ci , mjE Cj and 
mkE Ck, then the following formulas hold 12 

I 

mimj = L (mimj)!i_jl +2d = !Ii + i-Ii - il), 
k~O 

'rjr- II( ) 
(mn)r=(-I)' f3(n)f3(m) " 

m i A mj = ( - l)ijmj Ami> 

mi·mj = ( - i)iU- Ilmj .mi , i<j, 

mi·(mj.mk)=(miAmj)·mk' i+i<k, iJ>O, 

mi,(mj.m k) = (mi·mj)·m k for i + k<j. 

APPENDIX B 

Below we gIve the list of used notations: 
M real, Riemannian space-time, 
TpM tangent space toM at pointpEMwith bilinear 

form TIp of signature (1,3) and basis [e" l, 
!-l = 0,1,2,3, e" 'ev = TI,,,,, 

. 5V-C(1,3) conformal group acting in TpM, 
M a real, affine Minkowski space-time homogen­

eous with respect to the Poincare group, 
C (Q) Clifford algebra over real vector space V, 

dim V = s, endowed with quadratic, nonde­
generate form Q, 
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B symmetric, bilinear form defined on V X V, 
associated with Q, 

A kV k th exterior product of V, k = 0, 1,2,. .. ,s with 
wedge product A, 

Ck = A kV linear subspace of k-vectorsofC (Q) invariant 
with respect to Clifford group G, 

(m) k k-vector part of mE C (Q), i.e., (m) k E Ck , 

inner product in C (Q ), 
Z * set of all invertible elements of Z, center of 

C(Q), 
a, f3 unique automorphism and antiautomor­

phism of C (Q ), 
!iJ =C (TI) real Dirac-Clifford algebra over TpM, 
• orientation of TpM or unit pseudoscalar of 

IiJ,.2= -1, 
!iJ', (Ma)c, 

(TpMr complexifications, 
V, de Sitter space endowed with bilinear form g 

of signature (4,1) and basis [fa l , 
a = 1,2,3,4,5Ia 1b = gab' 
real de Sitter-Clifford algebra over de Sitter 
space Vs ' 

Y(f)=!iJ l' twistor space as left ideal of!iJ c, generated by 
fE!iJ C and endowed with Hermitian form JY, 
twistor and basis [fa j, a = 1,2,3,4, 

symplectic form in Y, 
symplectic basis in Y, a, f3 = 1,2, 
conjugate dual of Y with respect to JY 
where d is generalized Dirac conjugation in 
Y, 
pseudoscalar of ~ or imaginary unit, 
P = -1, 

1 complex conjugation off 
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Explicit evaluation of certain Gaussian functional integrals arising in 
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An explicit formula is presented for a (conditional) Wiener integral, the integrand of which is an 
exponential of a general quadratic functional of the path. The functional integral~ arising in non­
Markovian Gaussian approximations to various problems of statistical physics (e.g., theory of the 
large polaron, theory of disordered systems) are easily recovered as special cases. 

PACS numbers: 02.50. + s, 05.40. + j 

I. INTRODUCTION 

The purpose of this paper is the explicit evaluation ofa 
certain class of Gaussian functional integrals or path inte­
grals which are frequently encountered in problems of statis­
tical physics. 

The class of integrals considered is given by 

I K .'1(x"Blx·,O) : = f 8R 8 (R (/3) - x)8 (R (0) - x')e -SIR I 

(la) 

S[R] : = f: d7[(Y12)R 2(7) - R (7)1/(7)] 

1 i{3 i{3 + - d7 d7' K (7,7')R (7)R (7'). 
200 

(lb) 

Following the convention of most physicists 1 we have used 
the symbolic notation 

f 8R8(R (/3) - x)8(R (0) - x')exp{ - ~ f: d7 R 2(7)} 

to indicate (conditional) Wiener integration2
-4 over paths 

R (7) of one-dimensional (pinned) Brownian motion with dif­
fusion constant 1I2y starting at time 0 from x' = R (0) and 
arriving at x = R (/3 ) at time P > O. The dot denotes (formal) 
differentiation with respect to 7. The functions 1/(7) and 
K (7,7') [ = K (7',7), without loss of generality] may be quite 
general but are, of course, subject to the condition that the 
integral exists. 

Apart from a pure mathematical interest much of the 
motivation for considering the integral (I) comes from the 
fact that it naturally arises in Gaussian approximations to 
various physical problems with a nonadditive "action" func­
tional5 (being characteristic of non-Markovian behavior). 
Problems of this type are: the calculation of the energy and 
mobility of the large polaron,6-1O the density of electronic 
states in disordered systems, 11.12 the propagation of waves in 
random media, 13 etc. In these circumstances K (7,7') typical­
ly is some (approximate) memory kernel and 1/(7) serves as a 
source function to generate the corresponding Gaussian 
averages via functional differentiation. 

.IPermanent and present address: Solid State Physics Department, Acade­
my of Mining and Metallurgy-AGH. 30-059 Krakow, Poland. 

The physical interpretations and dimensions of the var­
iables entering the integral via the quadratic "action" func­
tional S [R ] depend on the problem one wants to study. For 
example, in quantum statistical mechanics yfz2 is the mass of 
some particle and lIPkB the absolute temperature (21rli: 
Planck's constant, k B : Boltzmann's constant). 

Despite the common dictum that Gaussian functional 
integrals can be done, we have found no reference where the 
above integral has been done in sufficient generality and ex­
plicitness. Either special cases are considered from the very 
beginning6-12 and/or the result is contained in theorems,4 
which look nice but leave the evaluation's hard part to the 
user ifhe wants to particularize. 

For all these reasons we have found it appropriate to 
present a closed-form expression for the "value" of the 
Gaussian functional integral (1) from which previously 
known explicit results are easily derived as special cases. 

In some sense this paper is complementary to a recent 
work 14 in this Journal on the explicit evaluation of path inte­
grals with a general quadratic but single-time action. 

The plan of this paper is as follows. In Sec. II we show 
that the computation of the integral can be reduced to that of 
the minimal value of the action functional. In Sec. III we 
establish the general form of the minimal action and of the 
resulting expression for the integral. By restrjcting ourselves 
to "p-periodic" kernels K in Sec. IV we are able to turn the 
general expressions into explicit ones. Finally, Sec. V is de­
voted to an example, which contains as limiting cases some 
of the explicit results available in the literature. 

II. REDUCTION TO THE MINIMAL ACTION 

In this section we will reduce the computation of the 
functional integral (1) to the computation of the minimal 
actionS(x,x'), which is the action functionalS [R ] evaluated 
at its stationary or the "most probable" path R(7) from x' to 
x. 

We start from 

~ r{3 
- yR (7) + Jo d7'K (7,7')R(7') = 1/(7), 

R(O) =x', R(/3) =x, 

S(x,x') : = S [R]. 

(2a) 

(2b) 

(3) 
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Since S is (at most) quadratic in R, the linear substitution 

R (1")~R (1") - R(7) 

transforms the integral (1) into a corresponding one with 
"vanishing boundary conditions" and vanishing source 
function, i.e., 

I (x,{J lx' 0) = e - slx.x')1 (O,{J 10 0) K,1/' K,a' . (4) 

Identities of this genre and their derivations along the some­
what formal lines indicated are of course well known. I

,15 

Here we want to point out that Eq. (4) and also the subse­
quent equation can be rigorously justified (under certain 
technical assumptions), e.g., in the framework of the usual 
(sequential-limit) definitions 16 of Wiener integrals or within 
DeWitt-Morette's approach l7 via the Fourier transform of 
an appropriate prodistribution. 

In the remainder of this section we assume S(x,x') to be 
known, in particular as a functional of K and 1/. 

As is suggested from finite dimensional Gaussian inte­
grals, the remaining integral in Eq. (4) is essentially the 
square root of an infinite dimensional determinant. Here we 
want to stress that it can be derived fromS(O,O), To show this, 
we replace K by AX, J.. being a positive parameter. Accord­
ingly, S changes to ~ . Now consider the quantity 

J1/(J..) : = In I}'K'1/(0,(310,0), (5) 

with K and (3 fixed as a function of J.. and a functional of 1/. 
According to Eq. (4) we will only need Jo( 1) in the final stage. 
Writing 

Jo(1) = Jo(O) + L dJ.. JJ;~J..) (6) 

we have to specify the "initial" value Jo(O) and the derivative 
JJo(J.. )IJJ... From the normalization factor of the transition­
probability density of the Wiener process or, equivalently, 
from the canonical density matrix of a free particle, it is well 
known 1-3 that 

Jo(O) = In (y 121T(3 ) I /2. 

Concerning the derivative we will use the identity 

JJ7,(J.. ) 

JJ.. 

(7) 

Ilf3 d If3 d 'K( ') -J.I}.) (p J.I}.) -- 7 1" 77e e 
2 a a ' 151/(1")151/(7')' 

(8) 

which is an immediate consequence of the definitions (1) and 
(5). From Eq. (4) we have (with K~J..K and x = x' = 0) 

eJ• 1}.) = e - s.lo,a)eJ<~}'). (9) 

Since Jo(J.. ) is independent of 1/, we finally get 

JJo(J..) _ 1 If3 d lf3d ' K ( ') ----- 1" 7 7,7 
JJ.. 2 0 a 

X [D2~(0,0) _ D~(O,O) D~(O,O) ] I (10) 

151/(7)151/(7') 151/(7) 151/(1"') 1/ ~ a • 

III. GENERAL FORM OF THE RESULT 

According to Sec. II the basic quantity to calculate is 
the minimal action S(x,x') defined by Eqs. (2) and (3). In this 
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section we will first establish the general form of the solution 
R (7) of the variational problem (2) and then that of the result­
ing minimal action. As a consequence we will get a prelimi­
nary expression for the value of the integral (1) which gives 
the general structure and is in "closed form" but is not yet 
fully explicit. 

We start by observing that R(7) may be written as 

R(7) = ,u(7) + J: d7' C (7,1"')1/(7'). (11) 

Here,u(1") is the solution ofEqs. (2) for the homogeneous case 
1/ = 0, and C (1",7') is the corresponding reciprocal kernel or 
Green's function with "vanishing boundary conditions": 

- y :; C(7,7') + J: d1"" K(7,7")C(7",7') = 15(7 - 7'), 

(I2a) 

C(O,1"') = C((3,7') = O. (I2b) 

For the time being we get from Eqs. (2) and (3), upon 
integrating by parts, 

S(x,x')=(y12)[xR((3)-x'R(O))-..!J
f3 

d71/(7)R(7). (13) 
2 Jo 

Multiplying Eq. (2a) by,u(7), integrating the resulting 
equation with respect to 1", integrating the term containing 
R(1") two times by parts, and using the symmetry 
K (1",7') = K (7',7) and the fact that ,u(7) solves Eqs. (2) for 
1/ = 0, we find the identity 

(YI2)[xR( (3) - x'R(O)) 

=(YI2)[XJi((3)-x'Ji(0))-!J:d71/(7),u(7). (14) 

Now Eqs. (13) and (14) combine via Eq. (11) to the gen­
eral form of the minimal action we are looking for 

S(x,x') 

= (yI2)[xJi((3) -x'Ji(O))- J:d1",u(1")1/(7) 

- !J:d7 J:d7' C(7,7')1/(7)1/(1"'). (15) 

For later purpose it is convenient to have those terms, 
which are independent of 1/, rearranged in accord with 

(y12)[xJi( (3) - x'Ji(O)) 

= (y12 (3)(x - X')2 + ~ J: d1" J: d7' K (1",7'),ua(7),u(7'), 

(16) 

where 

,uO(7) : = x' + (x - x')(1"1 (3) (17) 

is,u(1") for K = O. Equation (16) follows from the defining 
equations for ,u(7) and from Eq. (17) after integrating two 
times by parts. 

Having established the form (15) for the minimal action, 
it is easy to give probabilistic interpretations of the functions 
,u(7) and C (7,7'). Consider the expectation value 

(A> : = JDR D(R (3) - x)D(R (0) - x')P [R)A [R) (18) 

ofa general functional A [R ] with respect to the "probability 

Adamowski, Gerlach, and Leschke 244 



                                                                                                                                    

density" functional 

P[R] : 
exp( - S [R]) 

fOR o(R (P) - x)o(R (0) - x')exp( - S [R ]) 

The associated generating functionai 

Z [7]] : = (exp{f: dT R (T)7](T)}) 

is found to be 

I K'1(x, Plx',O) 
Z [ 7]] =~. ~---'---

7f~0 

(19) 

(20) 

IKo(x, Plx',O) 

= exp{f: dT f.l(T)7](T) + 1f: dT f: dT' C(T,T')7](T)7](T')} 

(21) 

according to Eqs. (1), (4), and (15). Hence, P controls a Gaus­
sian stochastic process with mean 

(R (1') = -- = f.l(T) oZ I 
07](1') '1 = 0 

(22) 

and covariance 

(R (T)R (1") - (R (1') (R (1") 

= 02Z, I - f.l(T)f.l(T') = C (1',1"). (23) 
07]( 1')07]( 1') '1 = 0 

The boundary condition (12b) is a reflection of the fact that 
the fluctuations around the average path vanish at both end­
points and are independent of their respective values. 

For many purposes (mainly in quantum statistics) one 
considers instead of the above average (.) over paths with 
both endpoints fixed a "trace-like" average (.) _ over closed 
paths. It is characterized by the following generating 
functional: 

- f dxIK.'1(x,Plx,O) 
Z[7]]:= . 

Jdx IK.o(x, Plx,O) 
(24) 

In order to perform the integations over x in Eq. (24), we 
exploit the fact thatf.l(T) for x' = x varies linearly with x, i.e., 

f.l(T) = X pIT), for x' = x, (25) 

wherep(T) is the homogeneous solution ofEq. (2a) subject to 
the boundary conditions 

p(O) = p( P) = 1. (26) 

From Eqs. (4), (15). and (25) we see that I K,'1(x,Plx.O) is a 
Gaussian of x. Under the assumption 

,o(P) -,0(0»0 (27) 

we can perform the corresponding integrations and end up 
with 

Z[7]] = exp{ ~ f: dT f: dr' C(T.T')7](T)7](T')}, 

where 

C(T,T'): = C(T,T') + ~ p(T)P(T') 
y ,0(/1) - ,0(0) 

= (R (T)R (1") _ . 

(28) 

(29) 

In the two types of averages considered above the actual 
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value of the "remaining integral" I K,O (0, PI 0,0) in Eq. (4) 
played no role. It dropped out as a sort of normalization 
factor. Nevertheless its computation according to the recipe 
given in Sec. II can be carried one step further. In fact, mak­
ing use ofEqs. (15) and (25) the functional derivatives ofthe 
minimal action in Eq. (10) can be taken to yield 

aJ. (A ) 1 r i{3 , _0_ = _ _ dT dT' K (T,T')C,tlT .1'). 
aA 2 0 0 

(30) 

Here C" is C for K replaced by AK. 
It is instructive to exhibit the general structure of the 

right-hand side ofEq. (30) at a formal, algebraic level. Let us 
interpret 8 (1' - 1"), K (1',1"), an5!. C" (T,;!:') as kernels of (sym­
metric) integral operators a 2, K, and C,,' respectively. Then 
we can formally write 

C" = (- ya2 +AK)-l (31) 

and 

1 "" --trKC" 
2 

1 a 2" - 2 aA tr In( - ya + AK) (32) 

- ~ ...!..-In det( - ya2 + AK) 
2 aA 

so that 

1 "" Jo( 1) = Jo(O) - -In det( 1 + KCo)' 
2 

(33) 

Employing the definition (5) and Eq. (7) we eventually arrive 
at 

(34) 

Here Co, according to Eqs. (31) and (12), has the kernel 

Co(T,T') = (lIy)(min!T,T') - TT'/P). (35) 

While Co is the covariance, f.lo [see Eq. (17)] is the mean of 
(pinned) Brownian motion. 

Taken together, Eqs. (4), (15), (16). and (34) give the gen­
eral form of the value of the functional integral (1 I: 
I K,'1 (x, Pix' ,0) 

= (~)ll2[det(l + KCO)]-1/2 exp{ _ L(x _ X')2 
21TP 2P 

_ ~ ({3 dT ({3 dT' K (T,T')f.lo(Tlf.l(T') + (fJ dT f.l(T)7](r) 
2 Jo Jo Jo 

(36) 

Clearly. this is the result one can guess at from formal anal­
ogy to finite dimensional Gaussian integrals, 

Concerning the infinite dimensional determinant in 
Eqs. (34) and (36) we want to remark the following. All that 
we actually have done is to use the left-hand side of the 
equation 

det(l + KCol = exp{fdA f:dT f:dT' K(T,T')C,,(T',TI} 

(37) 
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as a suggestive abbreviation for its right-hand side. This can 
be seen by comparing the expression (34) for I K.O (0, 1310,0) 
with the expression directly obtained from Eqs. (S), (6), (7), 
and (30). Although it is possible to give an "intrinsic" defini­
tion of the determinant, IX the problem often remains to find 
a more explicit expression for it. We will accomplish this in 
the next section for a large class of kernels K by computing 
the right-hand side of Eq. (37). 

IV. EXPLICIT RESULT FOR f3-PERIODIC KERNELS 

The closed-form expression of Sec. III becomes fully 
explicit, when the most probable path ][(1') or, equivalently, 
the mean ,u(T) and the covariance C (1',1") are explicitly 
known. Clearly, for general kernels K (1',1") this is not possi­
ble, because nobody can explicitly solve the most general, 
though linear integral equation. However, we can proceed 
for a restricted class of kernels which is large enough to cover 
many applications in statistical physics and, in particular, 
those mentioned in the introduction. This class is formed by 
kernels of the type 

K (1',1") = 1(1' - T')! (38) 

where/is a real valued, even function in the interval [ - 13, 13] 
supposed to fulfill 

1(1'-13)=/(1'), for TE[O,f3]' (39) 

The last equation represents a necessary condition for 
the action functional S (with sg dr 1](1') = 0) to be invariant 
with respect to constant translations 

R (T)-+R (1') + const, 

which implies that the functional integral (1) depends on x 
and x' only through the difference x - x'. Conversely, trans­
lation invariance follows, if Eq. (39) holds and additionally 

(fJ dr 1(1') = O. (40) 
Jo 
In the remainder of this paper we will derive explicit 

results exclusively for kernels of the type (38). While Eq. (39) 
is imposed throughout, Eq. (40) may hold or not. We will 
refer to these kernels as 13 periodic, because Eq. (39) renders 
possible an extension of Ito the real line, which has period 13. 

For f3-periodic kernels it is possible to solve Eqs. (2) by 
Fourier analysis. We have found it convenient to write ][(1') 
in the form 

R- ( Bo 13) 1 '" Bn ( it'T 1) (1') =,uoT) - -1'(1'- +- '::::"-2 e "- , 
2y Yn,,"OVn 

(41) 
where the sum goes over all integers n except zero, ,uo(T) is 
defined in Eq. (17), and 

Vn : = 21Tn/f3 (42) 

denote the nth Fourier frequency. Obviously, the ansatz (41) 
obeys the boundary condition (2b). For the unknown coeffi­
cients Bn Eq. (2a) requires 

Bn = 1]n - f., (fJ dre - iV"Tj[ (1'), (43) 
Jo 

where 
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Il(J
d 

iv T 

1]n : =- Te "1](1'), 
13 0 

(44) 

I' 1 (fJ iV-I 
J" :=73Jo e ,,' (T)=I_n 

are the Fourier coefficients of 1] and/, respectively. We can 
determine the coefficients B n explicitly by inserting Eq. (41) 
into Eq. (43) and performing the integration over l' term by 
term. The result is 

B [1 + ~ 1310 ] o .::::.. 2 
n~O YVn + f3ln 

= 1]0 - 1310 [+(X + x') - I v. 1]n ] 
n,,"0Y n + f3f., 

(4S) 

and for n =10 

B [I f3ln] x - x' I' f3f., 
n +~ =1]n +-.-In +~Bo. 

YVn IVn YVn 
(46) 

From Eqs. (41), (4S), and (46), for ][(1'), we can infer 
explicit expressions for the mean ,u(T) and the covariance 
C (1',1"). According to Eq. (II), ,u(T) is simply ][(1') for 1] = 0 
and C (1',1") equals the functional derivative 8][(1')/81](1"). 
Since the resulting expressions are somewhat lengthy, we 
leave it to the reader to write them down. However, at the 
cost of having a priori no longer pointwise (let alone uniform) 
convergence for l' = 0 and l' = 13, we can turn these expres­
sions into fairly compact ones by using the Fourier expan­
sions of ,uo(T) and 1'(1' - 13) and rearranging the infinite series 
after one or two partial fraction decompositions. In this way 
we get 

,u(T)=..!..(X+x') I +f3%D(T) +(x-X')yD(T) (47) 
2 1 + 13 2tJ) (0) 

C(T,T') = D(T - 1") +D(O) - D(T) -D(T') 

13 ~t) [D (1') - D (0) 1 [D (1") - D (0)], 
I + 13 "tJ) (0) 

where we have introduced the function 
I eiv,,1 T - T') 

D (1' - 1") : = - I ' 
13 ni'OYv. + f3ln 

which is basic for f3-periodic kernels. 

(48) 

(49) 

While in Eq. (48) the boundary conditions (12b) are 
manifest, the boundary conditions (2b) are obeyed by Eq. (47) 
only aposteriori, becauseD (1') = D ( - 1') is not differentiable 
at l' = 0 (and l' = 13 ) due to a cusp. But, of course, the 
interpretations 

D (j3 - 0) = - D ( + 0) = 1I2y (SO) 

are natural and sufficient. 
If we distinguish explicitly between/o = 0 (translation 

invariance) and/o=l0, we can further simplify Eqs. (47) and 
(48). The simplifications occurring for 10 = 0 are obvious. 
For tJ=lO we can write 

,u(T) = ~(x + x')[D (1')/ D (0)] + (x - x')yD (1'), (SI) 

C(T,T') = D(T -1") - D(1')D (T')/D(O), (S2) 

where 
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15 (r - r') : = D (r - r') + 1113 % 
= ~.2: e;V,,(T - T') 

13 n r~ +131" 
(53) 

is the sum in the definition (49) with the term corresponding 
to n = 0 included, 

The expressions found for fl and C are explicit in the 
sense that they are reduced to the single function D. The 
more explicit our knowledge of D is, the more explicit is our 
knowledge of fl and C. 

In order to complete the particularization of the general 
form (36) for 13-periodic kernels, it remains to specify the 1]­

independent terms in the exponent and the determinant. The 
former can be found either directly from Eqs. (41), (45), and 
(46) or from Eqs. (16) and (47). In any case one gets 

L[xli( 13) - x'Ii(O)] 
2 

(54) 

For the determinant one obtains from Eqs. (37) and (48) by a 
straightforward calculation 

det( 1 + ieo) = [1 + 13 %D (0)] [ IT (1 + 13ln )]2, (55) 
n~1 r~ 

Equations (47)-(50), (54), and (55) in combination with 
the general formula (36) constitute the explicit result for 13-
periodic kernels which we want to present. 

From the above expressions one can read off the follow­
ing necessary and sufficient conditions for the existence of 
the functional integral (1) in the case of 13-periodic kernels 
(and appropriate source functions 1]): 

1 + 13fJr~ >0, n#O 

1 + 13%D(O»O, 
(56a) 

(56b) 

(56c) 

These conditions are in agreement with those given in Ref. 
17. 

We close this section by specifying the covariance 
C (r,r') for 13-periodic kernels. From Eq, (54) we see that the 
condition (27) becomes equivalent to the requirementfo > 0, 
Specializing Eqs. (51) and (54) to x' = x we find from Eqs. 
(29) and (52) 

C (r,r') = 15 (r - r'). (57) 

Hence, although we have introduced D (or D ) mainly as a 
convenient abbreviation, it has a direct probabilistic 
meaning. 

V.EXAMPLE 

For illustrative purposes and in order to make contact 
with some of the explicit results available in the literature, we 
use this section to particularize the expressions of Secs. III 
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and IV for a special class of 13-periodic kernels. This class is 
characterized by 

I(r - r') = r(f'2 + E 2)8(r - r') - rE 2M w(r - r'). (58) 

Here f',E, and Ware three positive parameters. The overall 
constant r is present for dimensional reasons. The function 

Mw(r _ r') : = W cosh (f3 /2 - Ir - r'I)W (59) 
2 sinh (fJW /2) 

serves to model "memory effects" on a "time scale" of the 
order 1IW. Note the properties f: dr' M w(r - r') = I, (60a) 

lim M w(r - r') = 1113, (60b) 
WID 

lim M w(r - r') = 8(r - r'). (60c) 
W -"'00 

The kernel (58) leads to the following quadratic terms in the 
action functional (Ib): 

! f: dr f: dr' I(r - r')R (r)R (r') 

= !Yf'
2f: dr R 2(r) + !yE 2f: dr f: dr' 

XMw(r - r')IR (r) - R (r'W. (61) 

The first (translation noninvariant) term induces the (condi­
tional) Uhlenbeck-Ornstein or harmonic-oscillator process. 
The second (translation invariant) term has been extensively 
used in Gaussian theories of an electron, which is either 
coupled to optical lattice vibrations6--1O ("polaron") or moves 
in a random potential 1 1.12 ("disordered system"). In the lat­
ter case mainly the extreme non-Markovian limit W--O has 
been considered. 12 

Let us now come to the particularization of the expres­
sion in Sec. IV for the kernel (58). We start from the Fourier 
expansion 

(62) 

which is in fact a generalization of the Mittag-Leffler expan­
sion of the hyperbolic function coth (fJW /2). From this rela­
tion we can read off the Fourier coefficients off 

2 yE2~ 
13ln = rf' +. (63) 

~ + W 2 

By a partial fraction decomposition we find 

r 

where the positive numbers W + and W _ are defined 
through 

2W2± : 

= f'2 + E2 + W 2 ± [(f'2 + E2 + W2)2 _ 4f'2W2] 1/2. 

(65) 
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As an immediate consequence ofEqs. (62) and (64) we get the 
jj function associated with the kernel (58): 

- 1 
D (7 - 7') = (W 2 _ W 2 ) r + -

X[(I- ;~ rw , (7-1") 

+ (;~ - 1 rw (7 -7')]' (66) 

According to Eqs. (53) and (63) it is related to theD function 
via 

D (7 - 1") = jj (1' - 1") - lIr13€2. (67) 

While jj becomes singular in the limit €_O, D does not. 
Noting that W + W _ = € W, one finds 

limD (7 - 1") 
<10 

_1 (1- ~)[M (T-T')-~] 
r V2 V 2 v 13 

+ W
2 [_1_ 11'-7'1(11'-1"1-13)+ L] 

rV2 213 12 ' 
(68) 

where 

V: = (E2 + W2)1/2. (69) 

Inserting Eq. (66) [resp. (67)] into Eqs. (51) and (52) 
[resp. (47) and (48)] we get the mean,u and the covariance C 
associated with the kernel (58). The covariance C is directly 
given by Eq. (66) according to Eq. (57). 

It remains to specialize Eqs. (54) and (55) to the kernel 
(58). Because of f3 2J;) = r13€2 Eqs. (66), (67), and (59) give for 
l' = 1" and € > 0: 

1 + 13 %D (0) = r13€2jj (0) 

_____ [(€2 _ W2_ ) 13W + coth 13W + 
W2+ _ W2_ 2 2 

+ (W2+ _ €2)13~ - coth 13 ~ - ]. (70) 

Similarly, from a partial fraction decomposition analogous 
to Eq. (64), we find 

I + I 13ln 
nio0 rv" + 13ln 

W2+ _ w 2 [(W
2
+ - W2) 13~+ coth 137+ 

Finally we observe 

13ln (1 + W2+ /v~)(1 + W2_ I~) 
1 + -= , n#O, (72) 

y~ 1 + W 2/v" 

so that by the Weierstrass-Hadamard factorization of the 
hyperbolic sine we get 

fI (1 + 13ln ) = ~ sinh(f3W +/2) sinh(f3W _12). (73) 
n ~ I yv~ 13€ sinh(f3W 12) 
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Equations (70), (71), and (73) inserted into Eqs. (54) and (55) 
complete the particularization of the general expressions for 
the kernel (58). The resulting value for the corresponding 
functional integral, although already considerably special­
ized in comparison with Sec. IV, still includes the limiting 
cases E-O ("harmonic oscillator") and €_O ("polaron", 
"disordered system") considered in the literature. In par­
ticular, for the latter case we find by collecting the above 
results: 

f SRS(R (f3) - x)S(R (0) - x') exp{ - ~ f: dT R 2(1') 

- !YE2f:dT f:dT' Mw(T- T')IR (1') - R (T'W 

+ f: dT R (7)1J(T)} 

= (L..)1/2!:. sinh(f3W 12) exp{ _ L(x _ X')2 

21T 13 W sinh(f3V 12) 213 

X --+ 1- -- --coth-[ 
W2 ( W

2 
)13V 13 V ] 

V 2 V 2 2 2 

+ f:dT ,u(T)1J(T) + !I:dT f:dT' C(7,T')1J(T)1J(T')}, (74) 

with 

,u(7) = !(x + x') - ~(x - x') 

X [(1 _ ~) sinh(f3 12 - 7)V + W
2 (1 _ 21')] 

V 2 sinh(f3V 12) V 2 13 
(75) 

and 

C( ') 2 (1 W
2 

) cosh !(T - T')V . h 7_ V 1'1' = - - -- - sm --
, yV V 2 sinh(f3V 12) 2 

X sinh 1(f3 - l' )V + W
2 

(1' _ 1'1"). 
2 + r V2 - 13 

(76) 

Here V is defined in Eq. (69) and 

l' + : = max[T,T'J, 1'_: = min[T,T'j (77) 

denotes the larger and the smaller one of the two times l' and 
1", respectively. 

For results in the literature corresponding to Eqs. (74)­
(77) see Refs. 9 and 11. The limiting case W--->O (with Tf = 0) 
has also been computed in Refs. 5, 12, and 19. The subse­
quent limit V -O(i.e., E--->O) gives the "free particle" case, 
which is determined by Eqs. (7), (17), and (35). As it should 
be, this case can be obtained alternatively and more directly 
by letting V ---> W. 

VI. ADDITIONAL REMARKS 

Most of our results have an obvious generalization to 
the case of Wiener integrals over paths R (1') in multi-dimen­
sional space. Moreover, they can be formally turned into 
results for Feynman path integrals by going over to imagi­
nary T. 
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A general method is outlined for calculating the statistical properties of the number of visits to a 
set of points in a random walk. In illustrative examples, known results and new results are easily 
derived. 

PACS numbers: 02.50. + s, 05.90. + m 

I. INTRODUCTION 

Montroll and Weiss ' analyzed the problem of finding 
the distribution function of the number of visits to a given 
lattice point in a discrete n-step random walk. At about the 
same time, Rubin,2 in a study of the adsorption of a chain 
polymer at a solution surface, derived statistical properties 
of a one-dimensional random walk in which the number of 
visits to one or a pair of lattice points in the presence of an 
absorbing point was of interest. In this paper we present a 
formalism with which to calculate statistical properties of 
the number of visits to a set of points S = {R j l, i = 1, 2, 
... ,m. The formalism can be derived in two ways, the first 
related to the analysis of Montro1l3

•
4 on random walks in the 

presence of traps, and the second related to the analysis by 
Rubin. As Montro1l3 has noted, the method had been used 
earlier in studies of properties of harmonic crystals contain­
ing defects.5

•
6 Spitzer7 has also discussed closely related 

problems in a much more complicated (but also more de­
tailed) way. 

II. GENERAL FORMALISM 

We will assume that the random walker is always ini­
tially at r = O. Let the single-step transition probabilities be 
p{r) and let Pn (rill' 12, ... ,lm) be the probability that the ran­
dom walker is at r at step n having visited point Rj Ij times, 
j = 1, 2, ... ,m. One can write an obvious set of recursion rela­
tions for the Pn(rl/

" 
12, ... ,lm) 

Pn + I (rll) = D{r - p)Pn (pll), r~, (Ia) 
p 

Pn + I (Rj II) = D{Rj - P)Pn (pilI' 12, ... ,lj - 1,···,lm), 
p 

j = I, 2, ... m. (Ib) 

These equations are valid when 0 does not belong to S. To 
resolve these equations it is expedient to introduce the gener­
ating functions 

Qn{rlx) = f··· f Pn{rl/
" 

12,···,lm)X;'X~"'X~' (2) 
I, ~o I,"~O 

in terms of which Eq. (I) can be represented as 

Qn + ,(rlx) = D{r - p)Qn (pix), r~, (3a) 
p 

Qn + ,(Rj Ix) = Xj D{Rj - p)Qn (pix), j = 1,2, ... ,m. (3b) 
p 
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The reader will notice that this last relation can be written 
rather simply in terms of matrices if we define Qn (x) to be aD 
dimensional matrix whose elements are the Qn (rlx), p to be 
the matrix of single step transition probabilities, and w to be 
the diagonal matrix 

w= 

(4) 

with Xj the entry in the position corresponding to Rj . The 
matrix equivalent to Eqs. (3a) and (3b) is 

Qn+ I = wpQn (5) 

or Qn = (wptQo. In this form the resulting expression con­
stitutes a generalization of the formalism of Rubin. To make 
contact with Montroll's formalism we can write Eqs. (3a) 
and (3b) as 

Qn+ \ (r) = ~k(r - p)Qn(P) + jt,Or.Rj(Xj - I)p(r - p)Qn(P)] 

(6) 

where, for simplicity we have dropped the argument x. This 
equation suggests the use of a Green's function technique as 
used by Montroll for random walks in the presence of traps 
and by Rubin8 for the vibrational motion of particles in a 
harmonic crystal containing m isotopic defects. Equation (6) 
is valid when none of the Rj is equal to the starting point O. If, 
however, R, = 0, we can take the change into account by 
writing Qo(rlx) = xA.o rather than Qo(rlx) = or.O· 

To solve Eq. (3) or (5) we eliminate the space variables 
by going to a Fourier representation. For this purpose intro­
duce the generating functions 
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Gn(~'x) = LQn(rlx)exp(ir.~). 

r(~.x.z) = ! Gn(~.x)zn. 
n=O 

(7) 

(8) 

By hypothesis Go(~.x) = 1 (except. as noted above. when 
R, = O. in which case Go(~.x) = XI)' It is also convenient to 
have the generating function 

S(r.x.z) = ! Qn(rlx)zn. (9) 
n =0 

We note that r(~.x.z) can be written in terms of S(r.z) as 

r (~.x.z) = IS (r. z)exp(ir.~) (10) 

or 

S (r.z) = (21T) - D L :.J r(~.x.z)exp( - ir.c!» d D~.(l1) 
In addition to these we also define the structure factor 

A (~) = D(r)exp(ir.~). (12) 

where 

Equations (3a) and (3b) are then equivalent to 

r(c!>.x.z) = [1 - ZA (~)]- I 

X {I + j~1 (1 - xj- I)S (Rj.x.Z)eXp(IRj'~)}' 
(13) 

If we take Eq. (10) into account. we find that the S (Rj,z) 
satisfy a set of simultaneous linear equations which can be 
solved formally. 

The solution to these equations can be written in terms 
of the quantities 

P (r.z) = (21T) - D L : .. J [1 - ZA (c!»] - lexp( - ir.~) d D~. 
(14) 

which are generating functions with respect to step number 
for the state probabilities. The solution can be written 

r(~.x,z) 

= [I - ZA (c!»] - I {I + j~I(Xj - 1)(D/D )eXp(iRj'~)}, (15) 

XI + (1 - xl)P(O.z) 
(1 - xdP(R2 - RI.z) 

D(x)= 

(1 - x 2)P(R I - R 2.z) 
X 2 + (1 - x 2)P (O.z) 

(1 - xm)P(R. - Rm,z) 
(1 -xm)P(R2 - Rm,z) 

(1 - x,)P(Rm - RI.z) 

and Dj is obtained from D by replacing itsjth column by 

(

P(RI'Z)) 
P(R2.z) 

. . 

P(Rm.z) 

I t follows from Eqs. (11) and (15) that 

m D(x) 
S(r.x,z)=P(r.z)- L(1-xj )-J -P(r-Rj.z). r=/=Rj • 

j= I D(x) 
(17a) 

(17b) 

If one is interested in statistical properties of the occupation 
time of the set S. then Eq. (15) can be used directly to gener­
ate moments. For example the mean occupancy of S during 
an n-step walk has the generating function 

,us(z) = ~ r(O.x.x .... x.z) I ax x=l 

= (I -Z)-I I P(Rj.z). (18) 
j= 1 

as is otherwise obvious. Somewhat less obvious is the expres­
sion for the generating function for the second moments 

( a2 a) Vs(z) = -2 + - r(o.x .... x,z)lx= I ax ax 
=(I-Z)-I{[2P(O.Z)-I] jtlP(Rj,z) 
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(16) 

+ 2jt/(Rj'Z\~IP(Rk - Rj.Z)). (19) 

k ofj 

These results can also be obtained from the theory developed 
by Darling and Kac. 9 It is also possible to derive generating 
functions for moments and correlations of the occupation of 
multisite sets starting from the expression for r(~.x.z). For 
example the second-order correlation function for two sites 
Rl and R2 has the generating function 

a2 

-a a r(O.X1.X2.Z)lx,=X,=1 
XI X2 -

= - 2(1 - Z)-l [1 - P(O.z)][P(R,.z) + P(R2.z)] (20) 

and higher-order correlations can be dealt with in a similar 
manner. 

III. APPLICATIONS 

We now consider applications of the foregoing formal­
ism in several special cases. 

(i) m = 1. If the set S consists of one point. namely R. 
and if R is not the starting point O. then 

S (R,z) = xP (R,z) 
X + (1 - x)P(O.z) 

(21) 

and 

s(r,z) = P(r,z) + (x - I)P(r - R,z)P(R,z) . (22) 
x + (1 - x)P(O,z) 
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If R = 0 is the starting point and the initial weighted prob­
ability is 

Qo(rlx) = xo.,o, 
then Eqs. (21) and (22) remain valid 

5 (O,z) = xP (O,z) 
x + (1 -x)P(O,z) 

(23) 

and 

f:( ) _ xP(r,z) 
~ r,z - • 

x + (1 - x)P(O,z) 
(24) 

The generating function for the probability of returning to 
the starting point for the first time at the nth step is the 
coefficient of x 2 in the expansion of (23) in powers of x, 
namely 

1 - 11 P (O,z). (25) 

The generating function of the probability of reaching R =I 0 
for the first time at the nth step is the coefficient of x in the 
expansion of (21) in powers of x, 

P(R,z)lP(O,z). (26) 

Finally, the generating function for the probability of reach­
ing r at the nth step having visited R=lr (or 0) exactly s times 
is the coefficient of X S in the expansion of (22) in powers of x, 

P(r-R,z)P(R,z) [1- _1_]5-1, 
[P(0,Z)]2 P(O,z) s> 1 (27a) 

P( ) 
_ P(r - R,z)P(R,z} _ 0 

r,z , s - . (27b) 
P(O,z) 

These generating functions have been obtained by Montroll 
and Weiss. I 

The generating function for the probability-distribution 
function of a random walk with an excluded origin 10 can be 
obtained from Eq. (24). It is the coefficient of x in Eq. (24) 

P(r,z)lP(O,z). (28) 

If we compare (28) with (26) we recognize the obvious, name­
ly the probability-distribution function for first arrival at R 
from 0 is identical with the probability-distribution function 
for going from 0 to r without revisiting O. 

(ii) m = 2. If the setS consists of two points, RI = Qand 
R2, and the random walk starts at 0, then 

5 (R2'Z) = X IX2P (R2'Z)/ D, (29) 

where 
XI + (1 - xdP(O,z) 

D= 

and from Eqs. (15) and (17), 

r(O,z) = (1 - Z)-IXI {X2 + (1 - X2)[P(O,Z) - P(R2,z)]}/D. 
(30) 

The coefficient of x I X 2 in Eq. (29) is the generating function 
of the probability-distribution function for a random walk to 
go from 0 to R2 with no visits of intermediate steps to either 0 
or R2 (a generalization of the excluded-origin random walk) 

1I
0

.R ,(z) = 2 P(R2,Z) . 
. [P(O,z)l - P(R

2
,z)P( _ R

2
,z) (31) 
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The probability of starting at 0 and ultimately arriving at R2 
with no intermediate visits to 0 or R2 is obtained from the 
expression for flo.R , (1). In the case of a symmetric random 
walk, 

flo.R,(I) = fl lR, 1(1) 

= __ ...:.11_2 __ 
P(O,I) - P(R2,I) 

1/2 .(32) 
P(O,I) + P(R2,I) 

The probability of ultimately arriving at R2 in case there 
are no restrictions on the number of visits to 0 is well known 
to be equal to one in the case of one- and two-dimensional 
random walks. This will no longer be the case if restrictions 
are placed on the number of visits to 0 and/or R 2• For exam­
ple, in the case of the nearest-neighbor symmetric random 
walk in one and two dimensions, the structure factors are 

A (.p) = cos ¢ 

and 

respectively. The corresponding perfect-lattice random­
walk generating functions follow from Eq. (14). In the one­
dimensional case, there is the explicit result 

(
1 (I 2)112)IRI P (R,z) = (1 _ Z2) - 112 - ; Z , 

so that the probability /lIR,1 (1) has the value 

flIR,I(I) = [2IR 21]-1 

(33) 

(34) 

The form of P (R,z) is more complicated for the plane square 
lattice. However, it is known I that 

P (R,z) = P (O,z) + g(R,z), (35) 

where g(R,z) is not singular at z = 1. Therefore, it follows 
that 

(36) 

Van der Poll I has given an explicit formula for the nonsingu­
lar part of P (R,z) in case R is a diagonal point such as (m, mI. 
In our notation, van der Pol's result is [ for R2 = (m, m)] 

g(lR 2 1,I) = - 1+ -+-+ ... + ---4( I 1 I) 
1T 3 5 21ml + I 
2 

= -[r+21nz+r/t(iml + ~)I' (37) 
1T 

where r/t(x) = (d /dx)ln r(x) is the logarithmic derivative of 
the gamma function and where r = 0.5772 ... is the Euler­
Mascheroni constant. Therefore, in the limit of large I m I, 

fllR,i (1)~1T[ 41n (Iml)] -I. (38) 

Thus, the probability of ultimately reaching R2 from 0 with­
out returning to 0 decreases to zero logarithmically with the 
distance I R21· 

It is a simple matter to generalize the result given in Eq. 
(32) for flO,R, (I). For example, one can calculate the probabil­
ity of starting at 0 and ultimately arriving at R2 with s inter­
mediate visits to the set of points 0 and R2 . This probability, 
fl~~RJl), can be obtained from Eq. (29) by first setting 
x I = 'x2 = x and then determining the coefficient of x2 

+ , in 
the expansion in powers of x. The first few probabilities are, 
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first from Eq. (32), 

11~k,(1) = l1o,R,(l), 

then 

11111 (1) - 2(1 _ P(O,l) )11 101 (1) (39) 
O,R, - [P(O,lW _ [P(R

2
,1)j2 O,R,' 

and 

l1~k,(l) = {4(1 _ P(O,l) )2 1 
[P(O,lW - [P(R 2,lW 

2P(O,1) - 1 }I1I01 (1) (40) 
+ [P(O,lW - [P(R

2
,lW O,R,' 

In contrast to the applications Fonsidered thus far, where the 
Xi have all been treated stric'tly as counting variables, we 
consider a final application ofEq, (30), where one of the Xi is 
given a thermodynamic significance. In this last application, 
we treat a random walk model of polymer chain adsorption 
at a plane solution surface. Each random walk configuration 
of n steps is weighted by a Boltzmann factor exp(ne ) where n 
is the number of visits of that configuration to the surface 
layer and where the reduced energy, e, equals dkT, where 
the energy, € > 0, is the energy gained for each step in the 
surface layer. In the simplest version of the model, configu­
rations are regarded as nearest-neighbor one-dimensional 
random walks between lattice planes parallel to the solution 
surface. For random walks which start in the surface layer 
(labeled K = 0), we only wish to consider configurations 
which avoid the lattice plane K = - 1 (outside the solution). 
Thus, in this model, the special set of points is R2 = - 1 
with associated weight X 2 and the other point is R 1 = 0 with 
associated weight XI = exp e. Then, the generating function 
for the weighted probability of random walks which start at 
R I = 0 and never visit R2 = - I is given by the coefficient of 
x~ in Eq. (30). This coefficient is simply determined by set­
ting X 2 = 0 in that expression 

r(o,z)lx.~o = 
(I - z)-Iee [P(O,z) - P(l,z)) 

I 
ell + (I - eli)P(O,z) P(I,Z)I 

(I - ee)p(l,z) P(O,z) 

(41) 
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If the nearest-neighbor single-step transition probabilities 
for steps between layers are 

p( ± I) =!a 
and p(O) = 1 - a with p( ± I ill = 0 for Iii >2, then the 
structure factor is 

Il. (1,6 ) = 1 - a + a cos 1,6, 

and the random walk propagator in the perfect lattice is 

P(r,z) = {(I - z)[ 1 - (1 - 2a)zj) -112 

x( 1-(1-a)Z-W-
a
;)[1-(1-2a)zj}1/2 rl• (42) 

If Eq. (42) is used in (41) for r(O,z) I x. = 0' one can obtain the 
result . 

r(o,z) I x. ~ 0 

1 + [1 - (1 - 2a)z) 1/2 (1 - z) - 1/2 

{(I-z)[I-(1-2a)zj}1I2-1-(1-2a)z+2e- o ' 
(43) 

which is identical with the one obtained by Rubin [Eqs. (22), 
(24), and (26)], 2 who used a similar method to count visits to 
layer 0 when layer - 1 was treated as an absorbing layer. 

'E. w. Montroll and G. H. Weiss, J. Math. Phys. 6,167(1965). 
'R. J. Rubin, J. Chern. Phys. 43, 2392 (1965). 
'E. W. Montroll, Proc. Symp. Appl. Math., Am. Math. Soc. 16, 193(1964). 
4E. W. Montroll, J. Phys. Soc. Japan, 26, Suppl. 6 (1969). 
'E. W. Montroll and R. Potts, Phys. Rev. 100, 525(1955). 
hR. J. Rubin, Proc. Inti. Symp. on Transport Proc. in Stat. Mech., Aug. 
1956, edited by I. Prigogine (Interscience, New york, 1958), p. 155. 

'F. Spitzer, Principles of Random Walk, 2nd ed. (Springer, New York, 
1976). 

xR. J. Rubin, J. Math. Phys. 9, 2252(1968). 
"D. A. Darline and M. Kac, Trans. Am. Math. Soc. 84, 444 (1957). 
"'R. J. Rubin, J. Math. Phys. 8, 576(1967). 
"B. van der Pol, Probability and Related Topics in Physical Sciences, edited 

by M. Kac (Interscience, New York, 1959), Appendix IV. 
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Hypervirial calculation of integrals involving Bessel functions 
F. M. Fernandez, A. Mes6n, and E. A. Castro 
INIFTA. Seccion Qutmica Teorica. Sucursal4-Casilla de Correa 16. La Plata 1900. Argentina 

(Received 5 August I9SI; accepted for publication 4 September I9SI) 

A general and simple procedure is presented for evaluating matrix elements that involve Bessel 
functions. The method is based upon hypervirial relationships for systems subjected to Dirichlet 
boundary conditions. 

PACS numbers: 02.70. + d 

The quantum mechanical study of physical systems en­
closed within spherical or cylindrical surfaces 1.2 requires 
quanties of the following kind: 

I~(e) = f6 xNJc(Jc,ix)Jc(Je.kx) dx (I) 
,k U6 XJ;(Jc,;x) dxf6XJ;(Jc,kX) dxjl/2 ' 

whereJc (x) (e>O) is a Bessel function, andjc,i the correspond­
ing ith zero. Suprisingly enough, the current literature on 
this subject 3-7 does not record a single simple formula that 
enables one to calculate the integrals ( I), 

The purpose of this communication is to present a gen­
eral and easy procedure for evaluating the matrix elements 
(I) for N odd, through the use of a recursion formula, The 
method is based upon hypervirial relationships for systems 
subjected to Dirichlet boundary conditions, and which were 
recently deduced,K-11 

Let us start from the stationary unidimensional Schro­
dinger equation 

H¢; =E¢;, H= _D2/2 + V(x), D=dldx, (2) 

with the following boundary conditions 

(3) 

From the hypervirial relations, Eq, (4) can be deduced with­
out any difficulty9: 

!N(N-Ij(N-2)(ilxN-3V> +N(E; +Ej)(ilxN-IV> 
- 2N (ilxN - I V V> - (ilxNV'V> 

+ (E; _Ej )2 (ilxN+IV> =bN{JE; JEj}1/2, (4) 
N + 1 Jb Jb 

When 

V(x) = t 12x2, t> - ! (5) 

Eq, (4) is transformed in a recursion relation for the matrix 
elements of the x powers: 

N + I [b N( JE; JEj)1/2 A ~+ l(t,b) = ---.:-....,... 
(E; - Ej )2 Jb Jb 

+ (N - 1)(t - N(N
4 
- 2))A ~ - 3(t,b) 

- N(E; + Ej}A ~-l(t ,b )], (6) 

where 

(7) 

Equation (2) for the potential function (5) adopts the form 

-~"(x)+ ~;(x)=E;¢;(x). (S) 
2 2x 

The change of variables 

X =p,y, p; = (2E;)-I/2 

transforms Eq, (S) into 

¢ ;'(p;y) + [I - (t ly2)¢;(p;y)] = 0, 

(9) 

(10) 

Obviously, the solutions of this last differential equation are 
related with the Bessel function Je (y) in the following way: 

¢;(p;y)=y1 /2Jc(Y)' e=(t+!)1I2, (11) 

The boundary condition (3) associates eigenvalues E; with 
the zeros of Je through the formula 

E;=l;l2b 2
, (12) 

The substitution of Eq, (12) in the recursion relationship (6) 
for b = I allowed us to obtain 

A ~+ I(t) 

= 4(N+ 1) r,,' +(N-l)(t- N(N-2)) 
( 

'2, _ ,2 )2 pc" Je,k 4 
Je" Je,k 

A N - 3() N( ,2 '2}A N - I( )] X ;k t - - Je; + lck ; k t , 2' , , (13) 

From Eq, (11) the following equality is deduced at once: 

A~(t)=I~+I(e), (14) 

The starting point for the recursion relationship (13) is the 
orthonormalization condition 

A~(t)=bij' ( 15) 

The two first matrix elements are 

A ~k (t) = Sje,i ie,k I(J~,; - i~,k)2 = I ~ (e), ( 16) 

( 
12( '2, '2)) A 4 ,(t)=16',.,1- le,,+le,k 

,k )]e" le,k ( '2, _ '2 ) 
Je" Je,k 

X(J~,; -i~,k)-2=ndc), (17) 

When i = k, Eq, (13) cannot directly be used, However, by a 
simple rearrangement we get 

N-I i,;+(N-l)[t-N(N-2)14]A~-3(t) (IS) 
A (t) = :..:::.:-.......:.-.......:.::........-::...............:........:.......::........:.~ 

" N~ 

and consequently we obtain 

A 2(t) = Ie,; - 4 = 1 I + '2 + 2(t 3) ( 

" 3 '2 J 
)]e.; 

and so forth, 

'le,; 

2(e
2 

- 1)) = n(c) 
.2 II , 

Ie,; 
( 19) 

The finite induction principle allows us to prove that 
recursion formulae (13) and (IS) permit the calculation of 
any matrix element (1) for N odd and e>O, 

While studying the magnetic properties of small quan­
tum systems, Dingle1

,2 used the integrals (16) and (19), which 
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he obtained from Straubel's work4 and Schafheithins formu­
la/ respectively. Both results can be deduced as particular 
cases from our earlier more general equations. 

'R. B. Dingle, Proc. R. Soc. London Ser. A 212, 47 (1952). 
2R. B. Dingle, Proc. Camb. Philos. Soc. 49,103 (1953). 
-'G. N. Watson, Theory of Bessel Functions (Cambridge U.P., Cambridge, 
1922). 
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4R. Straubel, Ingen.-Arch. 13,14 (1942). 
'A. Gray and T. McRobert, A Treatise of Bessel Functions (McMillan, New 
York, 1952). 

"E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cam­
bridge U.P., Cambridge, 1963). 

7G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge 
U.P., Cambridge, 1966). 

"F. M. Fernandez and E. A. Castro, Int. J. Quantum Chern. 19,521 (1981). 
"F. M. Fernandez and E. A. Castro, Int. J. Quantum Chern. 19, 533 (1981). 
IIIF. M. Fernandez and E. A. Castro, Int. J. Quantum Chern. 20, 623 (1981). 
"F. M. Fernandez and E. A. Castro, J. Math. Phys. 22,1669 (1981). 
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Poincare-cartan integral invariant and canonical transformations for 
singular Lagrangians:An addendum 

D. Dominici 
/stituto Nazionale di Fisica Nucleare-Sezione di Firenze, Istituto di Fisica Teorica de//'Universitd di 
Firenze, 50125 Firenze, Italy 

J. Gomis 
Departament de Flsica Teo'rica de la Universitat de Barcelona" Barcelona, Spain 

(Received 21 May 1981; accepted for publication 2 September 1981) 

The results of a previous work, concerning a method for performing the canonical formalism for 
constrained systems, are extended when the canonical transformation proposed in that paper is 
explicitly time dependent. 

PACS numbers: 03.20. + i 

In a previous paper) we discussed in the framework of 
the Poincare-Cartan integral invariant, a method for per­
forming the canonical formalism for constrained systems. 
The basic idea consists of considering a canonical transfor­
mation which brings the constraints into a subset of the ca­
nonical variables. Thus the physical variables can be easily 
obtained by means of a reduction of the phase space. Our 
method is different from the path-integral approach of Fad­
deev2 (see also Ref. 3), which use in addition a set of gauge­
fixing conditions, one for each first-class constraint. Two 
applications of our procedure concerning action-at-a-dis­
tance relativistic models have been recently studied.4 

In this note we extend the method by considering a 
time-dependent general canonical transformation, such that 
all the constraints acquire an explicit time dependence. 

Let us consider a dynamical system described in terms 
of2n degrees offreedom in the phase space qs'Ps (s = I, ... ,n) 
and constrained to the hypersurface S defined by 

ila(q,p) = 0 (a = I, ... ,T - W), 

ilp(q,p) = 0 (j3 = T - W + I, ... ,T), 

(1) 

(2) 

whereila are T - Wfirst-class5 andilp Wsecond-classcon­
straints. In order to guarantee the stability of S during the 
evolution, the ila are required to satisfy 

(3) 

where He is the canonical Hamiltonian. The notation"::::" 
means equality on the hypersurface S ("weak" equality). 

Now, given the set (2), according to some theorems on 
function groups6 and involutory systems 7 it is possible, at 
least locally, to find a canonical transformation 

Iq"ps' s=I, ... ,nj-IQ;,P;, s=I, ... ,nj, (4) 

such that the equations 

Q;=P;=O (f=n2+ I, ... ,n),(n2=n- WI2), (5) 

define the same surface as Eqs. (2) and the following 
equations, 

IQ;,P;. j =oss" 

IQ;,Q;,j = IP;,P;,j =0, (6) 

are identically (and not only "weakly") satisfied. 
If we denote the generating function by F, defined as 

(7) 

the Hamilton equations for the new variables are given by 

Q;::::IQ;,K(Q;,P;,t)). P;::::IP;,K(Q;,P;,t)j (8) 

whereK, 

- - - [ - alip . ] K = Ke + laila - ilpCpp . lilp.,Ke j + at ' (9) 

is the extended Hamiltonian with la arbitrary functions. 
lia •p are obtain~d from Eqs. (1) and (2) by substitution of 
variables, and Cpf3' is defined by 

Cpf3' llip.,lip" j ::::opP"' (10) 

In I we have shown that it is possible to write the equa­
tions of motion for the reduced set of variables 
R / = lQi,P i,j = I, ... ,n 2 j which are free with respectto the 
second-class constraints (5) in a simple form 

Qi::::lQi,KjR" Pi::::IPi,KjR" (11) 

K = K(Qi,Pi,t) = K,,(Qi,Pi,t) + IJia(Qi,Pi,t) (12) 

where I ' j R' denote the Poisson brackets defined on the 
space R / and Ke and lia are obtained by setting equal to zero 
the variables Q ~ and P.1:., corresponding to the second~lass 
constraints, in Ke and ila ofEq. (9). As shown in I the ila so 
obtained are first class, i.e., 

(13) 

and, as a consequence of(d Idt )ila(q,p)::::O, satisfy thestabil­
ity condition 

(14) 

In Eq. (14) we have now supposed the lia explicitly time 
dependent, unlike what we did for the sake of simplicity in I. 

A similar procedure of reduction of the phase space can 
be performed also for the first-class constraints. In fact, a 
theorem on involutory systems7 guarantees that it is possi­
ble, at least locally, to replace the lia by an equivalent set of 
equations 

Pe(Qi,Pi,t) = 0 (e = n) + I, ... ,n 2), (15) 

(n) = n - T + W 12), which are in involution. For instance, 
the set (15) can be obtained by solving the equations 
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(16) 

with respect to an equal number n2 - n 1 of momenta. With­
out loss of generality we suppose Eq. (16) be solved with 
respect to P ; (e = n 1 + 1 ... .• n2 ). or 

lana lap; 1;60. (17) 

Let 

p. =P; -ie(Q;.Qk.pic.t) (k= 1 ..... n 1) (18) 

be the expression of the equations in involution. The stability 
of the hypersurface (18) can be easily proved. In fact. from 

na(Q".Q;.Pk.p; =/.(Q".Q;.p".t).t) =0 (19) 

we get 

Therefore. from Eq. (14) we get 

ana [ ape -] - - + {Pe.Ke JR' :::::0. 
ap; at 

and using Eq. (17) 

ap -
_e + {Pe.Ke JR' :::::0. 

at 
As a final step we make a transformation 

{Qi.Pi.j = 1 ..... n2 J-IQk.Pk.Qe.Pe.k 
= 1 ..... n 1• e = n1 + 1 ..... n2 J 

with 

(21) 

(22) 

(23) 

(24) 

(25) 

where part of the momenta are the set off unctions in the 
involution (18) which are equivalent to the first-class 
constraints. 

Ifwe denote the new canonical Hamiltonian by K; and 
the new expression for the constraints by 

lia(Qk,Pk.Qe.Pe.t ) 

= na(Qi(Qk.Pk.Qe,Pe.t).Pi(Qk.Pk.Qe,Pe.t).t). (26) 

the Hamiltonian equations are given by 

{
qk:::::IQk.K,; +la~aJR (27) 
Pk ::::: [Pk.K e + lana JR 

{
qe::::: {Qe.K,; + la~a J R (28) 
Pe::::: IPe.K e + lana JR 

where now I ' J R denote the Poisson brackets with respectto 
the set 

R = I Qk,Pk.Qe,Pe,k = 1 ..... n 1.e=n 1 + 1 ..... n2 }. 

With respect to the stability of the hypersurface Ii a = O. 
after the canonical transformations (24) we have 
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(29) 

On the other hand. due to the equivalence between lia and 
Pe we may write 

A 

na(Qk,Pk.Qe.Pe,t) = gae,(Qk,Pk,Qe,Pe,t )Pe" detl gl ;60, 

(30) 

where we introduced the strong equality notation "=" fol­
lowing Sudarshan and Mukunda.8 

Thus from Eq. (30) we have 

alia -0 (31) 
at - , 

and using Eqs. (30) and (29) in Eq. (28), we get 

, , aK; 
Pe = IPe,K e J = - :::::0. (32) 

aQ. 

In other words the variables Qe are ignorable variables. 
Finally, the remaining ,equations (27) and (28) become 

{
Q.' k ::::: { Qk ,K,; J R 

(33) 
Pk:::::{Pk,KeJR 

and 

(34) 

where,te = gea la are arbitrary functions. 
We can now consider the reduced space [Qk,Pk,Q.], 

where Qk and Pk satisfy 

. aYe ' 
Qk = aP

k 
' Pk = (k = 1, ... ,nd, (35) 

with 

where the Qe dependence disappears due to Eq. (32) and the 
Qe's are gauge-dependent variables 

, aK; I Qe = -- +,te (e = n 1 + 1" .. ,n2)· 
ape p.~o 

(37) 

In conclusion, we have isolated the set of the gauge­
dependent variables Qe from a set of physical (gauge-inde­
pendent) variables Qk ,Pk ' 

'D. Dominici andJ. Gomis, J. Math, Phys. 21, 2124 (1980); from now on we 
will call it I. 

2L. D. Faddeev, Theor, Math. Phys. 1,1 (1970). 
'Po Senjanovic, Ann. Phys, (NY) 100, 227 (1976); T. Maskawaand H. Naka­
jima, Prog. Theor. Phys, 56,1295 (1976), 

4D. Dominici, J. Gomis, and G. Longhi, "Two applications of a General 
Method for Studying Constrained Dynamical Systems" to be published in 
Nuovo Cimento A. 

sp. A. M. Dirac, Can. J, Math. 2,129 (1950); see also "Lectures on Quantum 
Mechanics", Belfer Graduate School of Science, Yeshiva University, New 
York,1954. 
"L. P. Eisenhart, Continuous Groups of Transformations (Dover, New York. 
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'J. A. Schouten and W. der Kulk, Pfaffs Problem and its Generalizations 
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tial Equations (McGraw-Hili, Kogakusha, Tokyo, 1971), Chap. XV. 
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Solution of a SchrOdinger inverse scattering problem with a polynomial 
spectral dependence in the potential a) 

M. Jaulent and C. Jean b) 

Department de Physique Mathematique. Universite des Sciences et Techniques du Languedoc. 34060-
Montpellier Cedex. France 

(Received II March 1981; accepted for publication 5 June 1981) 

The inverse scattering problem for the scalar Schrodinger equation 

y" + [E - p to (E 1/2") PUp (X)] y = 0, xER, is considered. It is solved by reduction to the inverse 

scattering problem for a matrix Schrodinger equation: Y" + [EI - (U (x) + E lQ (x)] Y = 0, 
XER. 

PACS numbers: 03.65.Nk, 02.30. - f 

I. INTRODUCTION 

The inverse scattering problem (ISP) associated with 
the scalar Schrodinger equation 

y"+ [E- (u(x)+Elq(x)] y=O, xER, (Ll) 

where the complex parameter E is the "energy" and u, q are 
the "potentials", has been extensively studied. I Indeed the 
square root E I being an analytic function on a Riemann's 
two sheet surface, it is convenient to set E = k 2( kECj and to 
represen tEl by " + k " or " - k ". (Ll) is then replaced by a 
pair of equations 

y±" + [k 2 _ (u(x)±kq(x)]y± =0, xER (1.2) 

in which the indices ± correspond to each other. There are 
other ISP in physics, especially in absorbing media which 
can be reduced to this ISP.2 Furthermore a family of non lin­
ear evolution equations has been exhibited3 which can be 
solved by the method of the Inverse Scattering Transform 
(1ST) for (1.2), and a Hamiltonian formulation can be given.4 

There is a one-to-one correspondence5 between these equa­
tions and those derived from the 1ST for the Zakharov-Sha­
bat system.6-8 This transformation is canonical. 9 

In this paper we are interested in the following general­
ization of (Ll): 

y" + [E - pto (E 1/2n)pup(x)k = 0, xER, (1.3) 

where the complex parameter E is the "energy" and 
UO'UI'''''Un are the (n + 1) "potentials", supposed to be suffi­
ciently regular complex functions decreasing fast enough as 
Ixl-oo. In Ref. 10 the Gel'fand-Dikii method has been ap­
plied to an equation more general than (1.3) 

y" + [E- :~~ (Elln)PUp(X)k=o. xER (1.4) 

and a family of nonlinear Hamiltonian equations has been 
derived II which can be solved using the 1ST for (1.4) pro­
vided that the ISP for (1.4) can be solved. It is the aim of this 

aiThis work has been done as part of the program "Recherche Cooperative 
sur Programme No. 264: Etude interdisciplinaire des problemes 
inverses". 

bJPhysique Mathematique et Theorique. Equipe de recherche associee au 
CNRS. No. 154. 

paper to solve the ISP for (1.3) and thus to continue the work 
undertaken in Ref. II. This paper contains proofs of results 
announced in Ref. 12. 

II. EQUIVALENT REPRESENTATIONS OF EQUATION 
(1.3) 

In Eq. (1.3) the (2n)th root E l12n is an analytic function 
on a Riemann's 2n sheet surface. A simple way to take this 
into account is tosetE = A 2n (AEC rand torepresentE 112nby 
Aeihrln, where / can take the values / = 0,1, ... ,2n - 1. Equa­
tion (1.3) is then represented by the 2n scalar Schrodinger 
equations: 

y; + [A 2n - i A Peiphrlnup (X)]y, = 0, xER, 
p=o 

/ = 0, 1, .. ,2n - 1. (2.1) 

Let us remark that Eq. (1.2) corresponds to the case n = I 
and A = k. It is worthwhile to note that we are led to consid­
er the whole system of 2n equations and not just only the 
single equation corresponding to / = ° in order to get a well 
posed inverse problem. 

Clearly if up = ° for p = 1,2, ... ,n - I, (2.1), reduces to 
(2.1)+ for even / and to (2.1)_ for odd /, with A n = k,uo = u, 
and Un = q. This leads us to the conjecture that it is also 
possible in the general case to put (2.1) in a form which is 
"analogous" to (1.2) in some way to be specified. Once this 
conjecture will be verified, the ISP will then be solved in 
analogy with Ref. 1. 

To prove this conjecture we first separate Eqs. (2.1) for 
even / from those for odd / and group each block of equa­
tions. Explicitly we obtain a pair of matrix Schrodinger 
equations, which can be viewed as another "representation" 
of (1.3), 

Y ±" + [A 2nI - V ±(A,x)] Y ± = 0, XER (2.2) 

V ± (A,x) = i up (x) [u± (A)] p = V+' (Ae+' iffln ,x), (2.3) 
p=o 

where I is the n X n identity matrix, 
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Yo 
Y2 · y+ = 
Y21 · · 

YI 
Y3 

y- = 

a 

o 

0 

a n - 1 

(2.4) 

(2.5) 

It is important to remark that 0-+(..1 ) and 0--(..1 ) obey the 
identity 

[0-+(..1 W =..1 nI, [0--(..1 W = -A nI. (2.6) 

At this step we note that there are other matrices a +(..1 n) 
and a -(A n), whose dependence in A is only expressed in 
term of A n and which are also, respectively, the n th root of 

Anland _AnI: 

o 
1 

o 
a± (A n) = 

o 
o 

o 
o 

o 0 .' 0 

o 

o 

(2.7) 

Clearly, o-±(A) and a± (A n) are equivalent matrices, i.e., 
there exists a matrix P ± (A ) such that 

(2.8) 

WefirstcalculateP +(..1 ). To this end, we introduce two bases 
in lR": (el, ... ,e") and (e'l , ... ,et

") and we note the linear applica­
tion fsuch that its matricial representation in the basis 
(e I'" .,e" ) is 0+ (A ) and its matricial representation in the basis 
(e' l, ... ,e'") is a+ (A "), i.e., 

f(ej)=Aaj-'e j, i=l •... ,n (2.9) 

f(e' .. ) = e;+ I' i = 1, ... ,n - 1,J(e'n) = A ne'l' (2.10) 

We recall that if ~ (j = 1, ... ,n) are the components of e'l in 
the basis (el, ... ,en ) then ~ (j = t, ... ,n) are the elements of the 
ith column of P + (A ). Substituting e'l by l:j = 1 ~ej in (2.10) 
and using (2.9) we obtain, for all i 

{
X~ = Aaj 

- IX; 

Xi =Aai-Ixl p p-I' 
x~ = (A "/al-I)x; 

p=2, ... ,n. (2.11) 

If we choose Xii = 1, i = 1, ... ,n, we find 

P+(A)=M(a)D(AJ. (2.12) 
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where 

I a a 2 a n- I 

1 a 2 a 4 a 2(n- 11 

M(a)= 

a"-I a 2(n- 11 a(n-Il' 

1 o 

(2.13) 

o A"-I 

A glance at (2.3) allows us to write 

P -(A) = P + (Ae i1T
/"). (2.14) 

Using properties of a, for example, 1 + a + a 2 + ... + an - 1 

= 0, it is not difficult to calculate [P + (A )] -1: 

[P+(A )]-1 = (l/n)D(A -1) M(a- I ). (2.15) 

Setting now 

Y ± = [P ± (A )} -) y ±, (2.16) 

we deduce from Eq. (2.2) another representation of Eq. (2.1), 

Y±" + [k 2I_ V±(k,x)]Y± =0, xeR (2.17) 

V ± ( k,x) = [P ± (A)] -I V ± (A,x)P ± (A), k = An. 
(2.18) 

Substituting V ± (A,x) by (2.3) in (2.18) and using (2.8), (2.7), 
and cyclical properties of a ± ( k ), we finally obtain 

V ± (k,x) = t up(x)[u± (k)]P = U(x) ± k Q (x), 
p=o 

(2.19) 

where 

o 

Un _ 1 ... u2 U 1 Uo 

Un Un _ 1 U 1 

Un 

Q= (2.20) 

0 Un _ 1 

To sum up, we have obtained three equivalent "repre­
sentations" (2.1). (2.2), (2.17) for Eq. (1.3). We now have to 
verify that these equivalences are "canonical", i.e., they 
"preserve" the scattering data information, so that we can go 
easily from one formulation of the ISP in a representation to 
another. The "natural" representation is the first one, (2.1). 
The family of nonlinear equations obtained in Ref. 11 origi­
nates from it. The "good" representation to solve the ISP is 
the third one, (2.17), because of the analogy with (1.2). Note 
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that going from (2.2) to (2.17) we have lost the diagonality of 
the potential V (A,X) but we have won an easier dependence in 
A. 

III. COMPARISON BETWEEN THE SCATTERING DATA 
FOR (2.1), (2.2), AND (2.17) 

First we remark that in order to define the scattering 
data for a matrix Schrodinger equation we have in general to 
make use of matrix solutions (for the energy-independent 
case and for the solution of the corresponding ISP, see Ref. 
13). Nevertheless, because of the special features of the ma­
trix potentials in (2.2) and (2.17), it is sufficient here to make 
use of vector solutions. This will greatly simplify the solution 
of the ISP. 

A. The right and left Jost solutions 

We suppose that the potentials U i (i = O ... n) satisfy the 
following conditions DI and D 2 : 

D 1: For i = O, ... ,(n - 1), ui(x) (xER) is continuously dif­
ferentiable, and x ui(x), U'i(X) are integrable on R. 

D 2 : Un (x) (xER) is twice continuously differentiable, and 
un (X), u'n(X), U" nIx) are integrable on R. 

<-

The right and left Jost solutions ft(A,X) and ft(A,X) of(2. n, 
respectively, F.,± (A,X) and F ± (A,X) of (2.2) ± ' respectively, 
f ± ( k,x) and f ± ( k,x) of (2.17) + , are defined as follows: 

fA"x +- fA. "x ft(A,X) - e , ft(A,x) - e - , (3.1) 
x --"00 

x--... oo x-----> - oc 

(3.2) 

f ±( k,x) _ eikxV, P ±( k,x) e-ikxV, k =A ", 
x.oo X"-oo 

(3.3) 

where Tmeans "transposed" and V = (1,0, .. ,0(. 
ft(A,X) and.ft(A,x) are defined equivalently as the solution in 
the class of continuous functions for real x of the following 
integral equations: 

ft(A,x) = eiA"X + i oo 
sinA n(y - x) 

x An 

X Lt/PeiPI1Tlnup(y)}t;(A,y)dY, (3.4) 

.ft (A,x) = e - iA"x + fX sinA nIx - y) 
-00 An 

X Lt/ peiPI1Tlnup(y)V(A,X)dY. (3.5) 

ft(A,X) and.ft(A,x) are (for fixed x) defined and continuous for 
O<:arg A <:rr/n, analytic for 0 < arg A < rr/n and obey the 
bounds 
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Vt(A,X) I <:e - bXed(xi, O<:arg A <:rr/n, b = 1m A n;>o, 
(3.6) 

VI±(A,X) I <:ebXi(Xi, O<:argA<:rr/n, b;>O, (3.7) 
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where 

d(X)=2i
oo 

(y-x+ 1) ptalup(Y)ldY, (3.8) 

d(x) = 2 f: 00 (x - Y + 1) pta lup(Y) Idy. (3.9) 

It is clear that F ± (A,x) and F ± (A,X) are also defined and 
continuous for O<:arg A <:rr/n, analytic for 0 < arg A < rr/n 
and verify 

F ± (A,x) = eiA "x(l, ... , 1( + i oo 
sinA n(y - x) V ± (A,X) 

x An 

XF ±(A,y)dy, (3.10) 

F ± (A,X) = e - iA "x(l, ... ,l)T + f 00 SinA]~ - y) V ± (A,X) 

XF ±(A,y)dy. (3.11) 

Using the formulas (2.15) and (2.17), we have 

f ± (k,x) = eikxV + i oo 
sin k (y - x) V ± (k,y) 

x k 
xi' ± ( k,y)dy, (3.12) 

i ± ( k,x) = e - ikxV + fX sin k (x - y) V ± ( k,y) 
t' -00 k 

XF ±( k,y)dy. (3.13) 
- ".. 

It is not difficult to prove that F ± ( k,x) and F t ( k,x) are 
defined and continuous for 1m k;>O, analytic for 1m k > 0, 
and admit the following bounds: 

II f ± ( k,x)11 <:e - bXeh(Xi, xER, b = 1m k;>O, (3.14) 

II F ± ( k,x)11 <:ebXi(Xi, xER, b;>O, (3.15) 

where 

h (x) = 2 ioo[ (y - x) :~~ lup(Y) I + ptl lup(Y) I ]dY, 

(3.16) 

h(X)=2f:J(X-y<~~ IUp(Y)1 + ptllup(y)l]dY, 

(3.17) 

II(vl, ... ,vn)11 = max IVi 1,(vl"",vn )TERn. (3.18) 
1= l .. n 

B. Reflection coefficients 

For A> O,ft(A,X) andft _ I (Aei1T1n ,x) form a fundamental sys­
tem of solutions of(2.1)1' So, for alii and with the convention 
I-I = 12n _ I' we have the relation 

.ft(A,X) = bl(A )ft(A,X) + al(A )ft _ I (Aei1T1n ,x), A> 0 
(3.19) 

where 

al(A ) = (1/2iA n) W [.ft(A,X),ft(A,X)], (3.20) 

bl(A)= -(1/2iAn)W~(A,X),/;_1(Aei1Tln,x)]; (3.21) 

W [J,g] is the Wronskian of I and g. 
We see from formula (3.20) that the function al(A ) admits a 
unique continuous extension al(A ) (O<:arg A <:rr/n) which is 
analytic for 0 < arg A < rr/n. [For A = 0, by using supple-
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mentary conditions on potentials it is possible to get over the 
difficulty. For the greatest accuracy, see Ref. 1. (case xeR)]. 
Because of the convention/_I = /2n _ I , we have 

[J2n _ I (A,x)'/I(A,x),oo''/2n _ 3 (A,x)] T 

= O'+(1)[JI(A,x),oo'/2n_1 (A,x)y, (3.22) 

where 0'+(1) has been defined in (2.7). 
It follows from (3.19) and (3.22) that diagonal matrices 
A ± (A ) and B ± (A ) exist and verify 

F + (A,x) = B +(,1 ) F + (A,x) + A +(,1 )a+(1) F -(Aei1rln ,x), 
A> 0 (3.23) 

F -(A,x) = B -(A )F -(A,x) + A -(A )F + (Ae i1r1n ,x), 
,1>0 (3.24) 

and have the form 

ao(A) 0 

o a2(n _ 1) (A ) 

al(A) 0 

o a2n _ I (A) 

o 

(3.25) 

b2(n - I) (A ) 

o 

and analytic for 1m k > O. The reflection coefficients (to the 
right) '/(,1 ) for (2.1)1' respectively, R ± (A) for (2.2) ± ' respec­
tively, R ± ( k) for (2.17) ± ' are defined and connected as 
follows: 

'dA) = b/(A )lal(A), A> 0, (3.30) 

R ±(A)= [A ±(A)]-IB ±(A), ,1>0, (3.31) 

R ±(k)= [J±(k)]-IJj±(k) 

= [P ± (A )]-IR ± (A )P ± (A ),k = A", keR. (3.32) 

'/(,1 ) and R ± (A) are continuous functions for A> O. And so, 
R ± ( k) is continuous for keR and Jj ± ( k) too. 

C. Bound states 

The "bound states" of (2.n, i.e., the square integrable solu­
tions, correspond to the zeros AIJ (j = 1,2,oo,JI ) of al(A ). We 
impose the condition D3: 

{

The zeros AIJof alIA ) are simple, in finite, 

number JI; 0 < arg AIJ < 17'/n and AIJ #AI.J, if 1#1 " 

have the same parity. 

The "bound states" of (2.2) ± [respectively, of(2.17) ± ], i.e., 
the square integrable vector solutions, correspond to the ze­
ros Am ± (m ± = 1,2,oo.,M ±) of det A ± (A) [respectively, to 
the zeros km ± = (Am ± )n (m ± = 1,2,oo,M ± ) of 
detA ±( k). 
lt is clear that 

{Am+ ,m+ = 1,2,oo,M +} = {A2/J ;/ = O,I,oo,n - 1; 
j = 1,2,oo,JI }, (3.33) 

{Am- ,m- = 1,2,oo,M-} = {A 21 + IJ; 1= O,l,oo,n - 1; 
j = 1,2,oo,JI}. (3.34) 

To each zero AIJ of a I (A ), respectively, Am ± of det A ± (A ), 
respectively, km ± of J ± ( k), we associate a constant scalar 
cIJ ' respectively, matrix Cm ± : 

. . bM) 
clJ = I hm (A - A/J) --, 

A~A1J al(A) 
(3.35) 

o o 
o 

Clearly, A ±(A)canbedefinedandcontinuousfor Cm' =n(Am+ r- I 
C2/J 

O<arg A <17'/n and analytic for 0 < arg ,1< 17'/n. 0 
Starting from relations (3.23) and (3.24), taking into account 0 0 
the formula (2.16) and the equality if Am+ = A2/J , 

[P+(A)]-I O'+(l)= [P-(Aei1Tln)]-I, (3.27) 0 

we obtain 
~ - - --
F ± ( k,x) = B ± ( k)F ± ( k,x) + A ± ( k)F ± ( - k,x), 

k = A n, keR 

where 

J ± ( k) = [p ± (A)] -lA ± (A )P ± (A ), 

Jj ± (k) = [p ± (A )]-IB ± (A)P ± (A ). 

(3.28) 

(3.29) 

The function A = k lin being continuous for O<arg k< 17', 
analytic for 0 < arg k < 17', J ± ( k) is continuous for 1m k>O 
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o 
C2/ + IJ (3.36) 

o 
o 

if Am = ,12/ + IJ 

Cm± = [P±(Am+ )]-ICm±P±(Am,), km± 

= (Ami )". (3.37) 

We define the scattering data s for (2.1), respectively, .Y for 
(2.2), respectively, Y for (2.17) by 

M. Jaulent and C. Jean 261 



                                                                                                                                    

s = {r,(A. ),(A. > O);A.,j;C,j(j = 1,2, .. ,J,), (/ = 0,1, .. ,2n - I)}, 
(3.38) 

Y = {R ± (A. ),(A. > O);A.m + ;Cm + (m ± = 1,2, .. ,M ± )}, 

(3.39) 

Y = {R ± ( k ),( keR);km + ;Cm + (m ± = 1,2, .. ,M ± )}. 

(3.40) 

Clearly, the scattering data s, Y, and Yare equivalent. So 
are the corresponding ISP for (2.1), (2.2), and (2.17). There­
fore, later on we just consider the ISP for (2.17). 

IV. STUDY OF THE ISP FOR (2.17) 

First, we start from Eq. (2.17) with the potentials satis­
fying the conditions DI and D 2• In Sec. 4.1, we show that 
F ± ( k,x) can be determined by two functions f ± (x) (scalar) 
and A ± (x,t) (Rn vector), through an integral representa­
tion;! ± (x) and A ± (x,t) are solutions ofa partial differential 
equation system. In Sec. 4.2 we deduce some properties of 
A ± ( k ), iJ ± ( k ), and R ± ( k ). In Sec. 4.3, we establish the 
"inversion integral equations" with a coupling condition. 
Finally, in Sec. 4.4, we show how to construct the potentials 
from the scattering data Y. 

A. The Jost solutions 
- -=-We recall the F ± ( k,x) respectively, F ± ( k,x), is de-

fined equivalently as the solution in the class of continuous 
f~nctions for rtal x ofEq. (3.12), respectively, (3.13) and 
F ± ( k,x) and F ± ( k,x) are (for fixed x) continuous for 1m 
k>O and analytic for 1m k> O. By applying the successive 
approximation method to Eq. (3.12) and (3.13), we find the 

I 

[ 
a2 a2 a ] 
ax2 - at 2 - U(x) =F iQ(x) at A ±(x,t) = 0, t>x, 

behavior for large values of I k I of these functions. If - - ~ 
F o± ( k,x), ... ,F n±- 1 ( k,x), respectively, F,f ( k,x), ... , 
!n±- 1 ( k,x) are the components of F ± ( k,x), respectively, 
F ± ( k,x), we can write the results whose proofis given in the 
Appendix: 

F ±( k,x) = eikx f±(x)V + e; W(x) + o( k\ ). 

1m k>O, I k 1-00, (4.1) 

F ±( k,x) = e-ikXJ±(x)V + e:
kX 

W(x) + o( k\ ). 

1m k>O, I k 1-00, (4.2) 

where 

f±(x)=exp[ ± ~ fOUn(t)dt], (4.3) 

J ± (x) = exp [ ± ~ J: 00 unIt )dt ], (4.4) 

+-
W(x) and W(x) are Rn vectors. 

Consequently, F ± (k,x) - eikx f ± (x) V, for fixed x, be­
longs to L2(R), and admits a Fourier transform. In fact, simi­
larly to the case n = 1 (cf. Ref. I), F ± ( k,x) has the following 
representation: 

F ± ( k,x) = eikxf ± (x) V + 100 

A ± (x,t )eik'dt, 

1m k>O, xeR, (4.5) 

wheref ± (x) has been defined by the formula (4.3) and 
A ± (x,t) = (A o± (x,t ), ... ,A n±- 1 (x,t)) is the Rn-valued func­
tion solution of the partial differential equation system: 

(4.6) 

f±'(x)V-2~A ±(x,x)=FiQ(x)A ±(x,x)- U(x)f±(x)V=O, 
dx 

(4.7) 

and the condition A ± (x, 00) = O. (4.8) 

Indeed, we start from Eq. (2.17) in which we substitute Y ± by F ± ( k,x) given by (4.5). After different integration by parts, we 
obtain 

[2lf±'(x)V=Ff±(x)Q(x)V]keikx + V±"(X)V-2 d~ A ±(x,x)=FiQ(x)A ±(x,x)- U(X)f±(x)V]eikx 

iOO[~ ~ a] + ---- U(x)+iQ(x)- A ±(x,t)eik'dt=O' 
x ax2 at 2 at ' (4.9) 

and then we deduce the formula (4.3) and the relations (4.6) 
and (4.7). It is important to remark that, if we seek U and Q in 
the form given by (2.20), we can construct them fromf+,f-, 
A +, andA -. Using the formula (2.20) in (4.6) and taking into 
account the relation (4.3) we obtain the triangular system 
with (n + I) equations and (n + I) unknown values 

Uo,U 1""'Un: 
n-I 

=Fi I un_i(x)A i±(X,x) - uo(x)f ± (x) 
;=0 
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r 
=Fi n-i-1Un_i(x)A i~p(X,x) - up(x)f±(x) 

;=0 

d 
= 2 dx A /(x,x); p = 1,2, .. ,(n - I), (4.10) 

f±' 
un (x) = ±2i~. 

f±(x) 

Clearly, uo(x), ... ,un (x) are uniquely determined by the system 
(4.10). 

B. Some properties of 
A ± ( k), iJ ± ( k), A ± ( k ) - I, and R ± ( k ) 
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First, we precise the form of the matrices 1 ± ( k ) and 
B ± ( k). We remark that the matrices [a+(A W, respective­
ly, [a-(A W,p = O, ... ,n - I, being respectively, the nth of 
A nJ and ( - A n)J, form a basic system in the space of the 
diagonal matrices. So, we can find unique scalar al (A) and 
f3l (A ) such that 

n-I 

A ±(A)= Lal(A)[a±(IlW, A>O (4.11) 
p~o 

n-I 

B ±(Il) = L f3l (11 )[a±(A)]p, A >0. (4.12) 
p~o 

Applying the formula (3.29) and by analogy with the compu­
tation of V ± ( k,x) from V ± (A,X), we obtain the matrices 
A±(k) 

( 

clo± ~ ~) ( ± k )an±- I. (.k ) ........... ( ± k)at (k) ) 

cl l±( k r '. . '. . : 
= :' . . clo± ( k) , . '(' k) -' ( k) • . . . .. ± an_I 

cln±_tlk) ....... :cll±(k) cl~(k) 
B ±(k) 

l
~ o± ( ~ ~. (± k vJ n±- 1 ( ~ ) ., ............ ( ± k ~ I± ( k) ) 
f3

1
±(k) •.•• ". : 

= :' • • • . • '. P 6' ( k l. .••• ( ± k )f3-= ± (k) , 
• • • • • I n - 1 

-n±_I(k),,:,:PI±(k) ······Po±(k) 

(4.13) 

wherecll (k) = al (A ),Pl (k) = f3l (A ),p = O, ... ,(n - 1). 

Let us note that [1 ± ( k )] -I and R ± ( k ) can have a matri­
cial representation as 1 ± ( k ). 

We also need to know the estimate for 1 k 1-00 of 
1 ± (k ),B ±( k), [1 ± (k)] -1,andR ± (k). Tothisend,itis 
convenient to rewrite Eq. (3.13) thus: 

F ± ( k,x) = eikx [ V - fX ei~Y V ± ( k,y)F ± ( k,y)dy] 
- "" 21k 

+eikx[fX e-.
ikY 

V±(k,Y)F±(k,y)dY]. 
- "" 21k 

(4.14) 

Looking at the formulas (3.28) and (4.14) when X-oo, we 
obtain 

1 ± ( k )V = V - -.- V ± ( k,y)F ± ( k,y) dy, 1m k>O 
f

"" eiky ... 

- "" 21k 
(4.15) 

B ± ( k)V = f"" e -.ik
Y 

V ± ( k,yf ± ( k,y) dy, keR. (4.16) 
- "" 21k 

Using different integrations by parts and thanks to the 
bound (4.2), we find 

1 ±(k)V = (clo±(k), ... ,cln±_I(k)T 

=j±(oo) + ~ + o( k\ ), 

B ±( k)V = Ct3o±( k ), ... ,/3 n±- d k )T 

1m k>O, 1 k 1-00, 
(4.17) 

where W is a constant Rn vector. 

Thanks to the matricial representation of 1 ± ( k ) and 
B ± ( k ), we derive the following results for 1 k 1-00 : 

1 ± ( k ) = j ± ( 00 )J + T + 0 ( !), 1m k>O 

[1 ± ( k )] - 1 = j =t' ( 00) + T' + 0 ( ! ). 
(4.19) 

(4.20) 

where T and T I are constant superior triangular matrices 
with zeros on the diagonal, and 

B ± ( k ) = ..!.. ° (1), keR, 
k 

R ± ( k ) = ..!.. ° (1), keR, 
k 

(4.21) 

(4.22) 

detl ±(k)= [j±(oo)]n+o(!). Imk>O (4.23) 

det [1 ± ( k )] - 1 = [f=t' ( 00 )] n + 0 ( ! ), 
1m k>O, k oI=km ±-. (4.24) 

Let us remark that R ± ( k ) has a Fourier transform in L 2(R). 

C. Inversion equations and coupling condition 

In order to establish these equations, we start from the 
formula (3.28) written in the form -[1 ±( k)]-IF±( k,x) - [1 ±( k)]-IB ±( k)F ±( k,x) 

= F =t' ( - k,x), keR (4.25) 

and in the equivalent form, for fixed x, 

G x±( k) - H x±( k) =F=t'( - k,x) - e-ikxf=t'(x)V 

= 1"" A =t' (x,t )e - iktdt, (4.26) 

where 
- ~ 

Gx±(k)= [A ±(k)]-IF±(k,x)-e-ikxf=t'(x)V, 

Hx±(k)= [1 ±(k)]-IB ±(k)F±(k,x) 

= R ± ( k)F ;!: ( k,x). 

(4.27) 

(4.28) 

Let us evaluate the Fourier transform of these two functions. 
The function G x± (k) is continuous for 1m k>O, k oI=km±, 
and analytic for 1m k> 0, k 01= km ± • It is obvious, from the 
formulas (4.3) and (4.4) that 

f±(xii=t'(oo) =f'f(x), (4.29) 

and then G x± ( k ) can be expressed as 

G x± ( k) = [1(1 ± ( k)] -I - f'f (00)1] 

X (F ± ( k,x) - j ± (x)e - ikxV] 

+ [[1 ±(k)]-lj'f(oo)Jll±(x)e-ikXV 

+ j'f(oo)[F ±( k,x) - j±(x)e-ikXV]. 

Using the bounds (4.20) and (4.2) we obtain 

(4.30) 

= k\ o( !). keR, 1 k 1-00, (4.18) Gx±(k)=e-ikxo(!). Imk>O,kol=km±' (4.31) 
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We now consider the integral f rG x± ( k) i kt dk (t > x) where 
r is the closed path in the upper half of the complex k plane 
and consisting of the segment [ - p,p] and of the half-circle 
1 k 1 = p. Thanks to (4.31) we can apply a Jordan lemma to 
prove that the integral along the half-circle vanishes for t > x 
and p- 00. So, we have 

lim J" G x± ( k )eikt dk 
p-+«> -P 

M± _ ~ 

=2i11" L Res([A ±(k)]-IF(k,x)eikt,km± ).(4.32) 
m±=l 

It is clear that 
- <:.-

Res([A ±(k)]-IF±(k,x)eikt,km±) 

= Res([1 ±( k)] -IB ±( k)F ±( k,x)eikt,km± ) 

= lim (k-km±)[1 ±(k)]-IB ±(k)F±(k,x)eikt. 
k~km± 

(4.33) 

Resorting to the formulas (3.29), (3.36), and (3.37), we finally 
find 

J
+R 

lim G x± ( k )eiktdk = 211"A l' (x,t) 
R-oo _ R 

M ± _ _ ilk +Jt 

= L Cm±F±(km±,x)e m-. (4.34) 
m*=l 

To obtain the Fourier transform of H x± ( k ), we write thus 

H x±( k) = R ±( k)[ F ±( k,x) - 1±(x)eikxV] 

+ R ± (k)1 ± (x)eikxV. (4.35) 

Recalling the formulas (4.22) and (4.5) and taking into ac­
count the result (4.34), we obtain the "inversion equations" 

A ±(x,t) =/1' (x)S l' (x + t)V 

+ L'" S l' (t + y)A l' (x,y)dy, t > x, (4.36) 

where 

S±() 1 l' JP -± ·k X = - - .l.m R ( k )e' xdk 
211" p-+", ._ p 

(4.37) 

and I.i.m. stands for "limit in mean". 
To the system of coupled Fredholm integral equations 

(4.36) and (4.37) we add a coupling condition. We start from 
the last component of(4.7)+ and (4.7)_. We find 

Un_I (x) 

= [/+(X)]-I[ -2! An+_,(x,X)-iUn(X)An+_,(X,X)] 

= [f-(X)]-'[ -2! An-_dX,X)+iUn(X)An-_dX,X)]; 

(4.38) 

recalling that unIx) = ± 2i I ± '(x), we obtain 
I±(x) 

I-(x) d~ A n+- I (x,x) + 1-'(x)A n+- I (x,x) 

d 
=I+(x) dx A n-_I(x)+I+'(x)An+_.(x,x) (4.39) 
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and using the condition (4.8), we have the coupling condition 

1-(x)A n+- I (x,x) = 1+(x)A n-- I (x,x), n> l,xER. (4.40) 

D. Construction of potentials from scattering data f 

In the ISP for (2.17), the scattering data Y [formula 
(3.40)] is given and we seek the matrix potentials U (x) and 
Q (x) written with n + 1 scalar potentials up (p = O, ... ,n) as in 
the formula (2.20), U (x) and Q (x) admitting Y as scattering 
data. To this end, we construct S ± (x) from Y through the 
formula (4.37). If we suppose that (4.36) has a unique solu­
tion (A +(x,t),A -(x,t)) for given/+(x) and/-(x), we seek to 
make the dependence of A ± (x,t ) on I ± (x) explicit. Let 
C ± (x,t) be the solution of Eq. (4.36) corresponding to 
I ± (x) = 1 and D ± (x,t) be the one corresponding to I ± (x) 
= 1 andD ± (x,t) be the one corresponding tol ± (x) = + i. 

Let C ± (x,t ) and 15 ± (x,t ) be the functions defined for 
(t;>x,xER) by 

C~ +( ) C ±(x,t)+iD ±(x,t) 
- x,t = , 

2 

15 ± (x,t) = C ± (x,t ) ± iD ± (x,t) . 
2 

It is easy to find the relation 

(4.41) 

A ± (x,t) = I ± (x)C ± (x,t ) + 11' (x)D ± (x,t ), t;>x,xER, 
(4.42) 

which we can also write 

A l(x,t) =1±(x)C l(x,t) + 11'(x)D l(x,t), 

p = O, ... ,n - 1 (4.43) 

where C l (x,t), respectively, D: (x,t), is thepth component 
of C ± (x,t), respectively D ± (x,t). Using (4.43) in the case 
p = n - 1 in (4.40), we have the equation 

yD n-.. I (x,x) - (l/y)D ~t-_ I (x,x) = C n+- I (x,x) - C n-. I (x,x), 

y = [f+(xW, (4.44) 

whose solution givesy (note that for n = 1, instead of(4.44), 
we obtain a Riccati type equation-see Ref. 1]. Hence I + (x), 
I-(x), A +(x,t) and A -(x,t), U, and Q in the form (2.20) are 
then obtained (the proof has been given in Sec. 4.1). 
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APPENDIX 

We want to estimate the behavior of F ± (k,x) for 
1 k 1-00. We start from Eq. (3.12) which we write 

F ±(k,x) = eikxV + ('" sin kly -x) UIy)F( k,y)dy 
1x k 

± L'" sin k Iy - x)Q Iy)F ± ( k,y)dy, (A 1) 

for b = 1m k;>O, XER. 
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We consider the Neumann series of P ± (k,x), more especial­
ly the Neumann series of each component P s± (k,x) of P ± 

(k,x), which we define 

P s± (k,x) = f P s± (k,x)p, s = O, ... ,n - 1 (A2) 
p=O 

where 

P o± ( k,x)o = eikX, P / ( k,x)o = 0, s = 1, ... ,n - 1, 
(A3) 

- = r"" sin k lY - x) u',,)P ± (k ) d F s± ( k,x)p + I Jx k V' s ,y p y 

± LX) sin k lY - x)Q lY)P s± ( k,Y)pdy. 

(A4) 

Throughout the proof, we use the following results which 
are easily established: 
if u(x) satisfies the condition D I , so 

I"" sin k lY - x) I,,) ikYd e
ikx 

() ----''-----'- UV' e y = - a x ; 
x k k 

I a(x) I ~L"" I ulY) I dy, (AS) 

L"" sin k lY - x)ulY)eikYdy 

=eikX [ ~ L"" UlY)dY ] + e: [ U~) +P(X)], (A6) 

where IP(x)1 ~L"" I u'lY)Idy. 

We give explicitly the computations for P s± ( k,x)1 and 
P s± ( k,xh, for all, s, s = O, ... ,n - 1. We first start from the 

relation (A4) for p = ° in which we substitute P s± ( k,y) by 
the formula (A3) and U and Q by their representation (2.20): 

F- ± (k ) -I"" sin k lY - x) I,,) ikYd o ,x I - UOV' e y 
x k 

± I"" sin k lY - x)unlY)eikYdy, (A7) 

F- + (k) r"" sin k lY - x) I,,) ikYd 1 1 .,- ,x I = Jx k UsV' e y, s = , ... ,n - . 

Applying the results (AS) and (A6), we have 

Pcf'(k,X)I=eikX [ ± ~ l""UnlY)dY ] 

e
ikx 

[ U (x) ] +1: ±7+ VOl (x) + VOI(x) , 

(A8) 

(A9) 

_ eikx 
F s± ( k,x)1 = I: V,I (x) S = 1, ... ,n - 1 (AlO) 

where 

I vodx) I ~l"" I u' n (t) Idt, (All) 

IVsdx ) I ~L"pto IUp(t) Idt = r(x). (Al2) 

Let us now consider the relation (A4) for p = I. Thanks to 
(2.20), we obtain, for s = 1, ... ,n - 1, 
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- 1"" sin k lY - x) -F o± ( k,xb = uolY)F o± ( k,y) Idy 
x k 

± L"" sin k lY - x) ptlUPlY)P n±-p( k,y)ldy, 

(AI3) 

P'± ( k,xh = roo sin k lY - x) i up lY)P s":.. p ( k,yltdy 
Jx k p=o 

± I"" sinklY-x) :~:us+plY)Pn±_p(k,y)ldY. 
(AI4) 

We remark that, in every component P s± ( k,xh, we find all 
the values ofuilY) andP i± ( k,y)1 once and only once. But, we 
have P o± ( k,y)1 in the second term only in the expression 
(A13) which we rewrite thus: 

- 1"" sin k lY - x) -F o± ( k,xh = uolY)F o± ( k,y)ldy 
x k 

± 1"" sin k lY - x)un lY)P o± ( k,y)ldy 

± 1"" sin k lY - x) :~: uplY)P n±-p (k,y)ldy. 

(AIS) 

Thanks to (AS), (A6) and (A9), (AlO), we can write 

1"" sin k lY - x) - eikx ( 1 ) 
-~-~uolY)Fo±(k'Y)ldy=-wl(x)+O -2 ' 

x k k k 

where I wl(x) I ~l"" I uolY) I dY.r I Un (t) Idt; 

± 1"" sin k lY - x)un lY)P o± ( k,y)ldy 

(AI6) 

(AI7) 

= ± 1"" SinklY-X)UnlY)[ ± ~ L""Un(t)dt]eikYdY 

r"" sin k lY - x) [ Un lY) A ] ·k ± J k UnlY) ± -4- + VOIlY) + VOIlY) e' Ydy, 

(AI8) 

where 

± 1'0 sin k lY - X)UnlY)[ ± ~ L"" unIt )dt ]eikYdy 

=e
ikX

[ ± ~1""UnlY)dYr/2! 

+ e;x [ ± Unt) ( ± ~ 1'0 UnlY)dY) + W2(X)], (AI9) 

1"" sin k lY - x) lY)[ + Un lY) ] ikYd _ e
ikx 

() + Un -- e y--W3X, 
- x k - 4 k 

(A20) 

roo sin k lY - x) ,,,)A I,,) ikYd _ e
ikx 

(). (A21) ± L k unV'vOIV'e y-I: W 4 X , 

where I wi(x) I ~!1°O I u' n lY) Idy 100 

I Un lY) Idy, i = 2,3,4; 

(A22) 
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("" sin k (y - x) . eikx 
± L k un (y)Veli (y)e1kYdy = k W5(X), (A23) 

where / w5(x) / <1"" I Un (y) I y(y)dy; (A24) 

± L" sin k (y - x) :~: up(y)F n±_p(k,y),dy 

= ± (""sin k (y - x) nf' Up (Y)V1n _pll (y) e,ky dy 
L p~1 k 

eikx 
= k W6(X), (A25) 

where / w6(x) / <L'" (:~: I up (y) I )Y(Y)dy . (A26) 

Adding (AI7), (A24), and (A26), we obtain 

/ v02(x) / = / wl(x) + w5(x) + w6(x) / <y2(x)/2!. (A27) 

We deduce from (A22) that 

/ vedx) / = / w2(x) + w3(x) + w4(x) / <a(x)y(x), (A28) 

wherea(x) = fO IU'n(t)ldt. (A29) 

Collecting all these results, we can write that 

F o± ( k,xb = eikX [ ± ~ fO Un (y)dy r/2! 

It is easier to evaluate the behavior of F s± ( k,xb, 
s = I, ... ,n - 1. Let us start from (AI4) and consider each 
term of these relations: 

1'" sin k (y - x) ~ U (Y)F- ± (k ) d 
k 

~ p s-p,y I Y 
x p~o 

= (00 sin k (y - x) (y)F ± (k ) d L k Us 0 ,y I Y 

+ o( k\ ) 
= loosink~-x)us(y)[ ± ~ .CUn(t)dt]eikYdY 

+ o( k\ ) (A30) 

e
ikx 

( I ) ± T W7(X) + 0 """k2 ' (A31) 

where IW7(X)i <100 Ius(y) Iy(y)dy (A32) 

± 100 
sin k(y -x) ;.t:us+p(Y)F n±-p( k,y),dy 

_ 100 
sin k (y - x) n~s (y) (y) ikYd - ± ~ us + p VsI e Y 

x k p~ I 
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eikx 
=-ws(x), 

k 

where / ws(x) / <100 C~: I Us+ p(y) I )Y(Y)dY. 

Ifwe add (A32) and (A33), we obtain 

(A33) 

(A34) 

- e
ikx 

( I ) Fs±( k,xb = k vs2 (x) + 0 """k2 ' s = I, ... ,n - 1 

(A35) 

(A36) 

One can prove similarly, by recurrence, that we have, for 
p>2, 

F l( k,x)p = eikX [ ± ~ 100 
un(t )dt Yip! + e;x 

x{ ± unt) [± ~l°OUn(t)dt r-j (P-I)! 

+ Vop(X) + Vop(X)} 

+ o( k\ ). (A37) 

s = I, ... ,n - I (A38) 

( y(x»P 
Ivsp(X) I <--, s = O, ... ,n - I 

p! 

(A39) 

(A40) 

a(x) and y(x) being defined by (A29) and (AI2), respectively. 
For that we are obliged, in particular, to use the inequality 

p - 2 + I + ~< I, p>2. 
P - I (P - I )2P 2P 

t- It is clear that, similarly, we can estimate the behavior 
ofF±( k,x) for / k /-00. 
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Some specific properties and the evaluation of the generalized second-order Coulomb phase shift 
functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The 
dependence on the three momenta k.,k,k2 , corresponding to the final, intermediate, and initial 
states is illustrated. 

PACS numbers: 03.80. + r, 34.40. + n 

I. INTRODUCTION 

The expression of the unitary scattering amplitude for 
particle-atom collisions derived recently· includes second­
order phase shift functions. The theory is valid both for elas­
tic and inelastic collisions. In the derivation of this ampli­
tude the summation over the intermediate states is per­
formed by introducing a finite, mean excitation energy of the 
atom. Consequently, both the amplitude and the phase shift 
functions depend on three momenta, k ";Z,k2, corresponding 
to the final, intermediate, and initial state, respectively. We 
name these phase shifts the generalized phase shift func­
tions. There are four contributions to the generalized phase 
shift functions: The two particle-nucleus and particle-elec­
tron double scattering processes, the particle-electron-nu­
cleus, and particle-nucleus-electron processes. The last two 
processes are simply related to each other but difficult to 
deal with analytically. On the other hand, the phase shift 
functions of the two double processes are proportional to the 
generalized second-order Coulomb phase shift functions. 
The discussion ofthe latter and its evaluation is the subject of 
the present communication. 

The generalized second-order Coulomb phase shift 
functions are defined by 

where 

1\21 = - Pi'''' rdr j,(k.rli/(kr)ioor'dr'n/(kr'li/(k/). 

( 1) 

( 1') 

Herejl and nl are spherical Bessel and Neumann functions, 
respectively. Note that 1}II(k.,k,k2) = 1\21(k2,k,k l ). In Sec. II 
the two integrals 1\11 and 1}21 are calculated in a straightfor­
ward way, for I = O. However for higher angular momenta 
this method becomes extremely unmanageable. A different, 
very simple, but indirect method based on the partial wave 
expansion of the second-order amplitude is discussed in Sec. 
III. This method gives the phase shift functions ofEq. (1), but 
it does not give the two integrals ofEq. (I') separately. The 
phase shifts are calculated for k I = k = k2' as well as for the 
general case when all three or two of the momenta are differ­
ent from each other. 

II. S-WAVE PHASE SHIFTS 

We shall calculate the s-wave phase shifts directly. We 
distinguish between six different possibilities. 

(i) kl = k = k2=k. In this case the two integrals ofEq. 
(1') are equal. We have for k #0, 

I - 1 100 

sin2kx d IX sin
2
kx' d ' 0---2 X x. 

2k 0 x 0 x' 
(2) 

Introducing the new variable k' by kx' = k 'x, this becomes 

1 =_1_ roo dx r
k 

dk' 
o 4k 2 Jo x Jo k ' 

X [sin2kx - !sin2(k + k ')x - !sin2(k - k ')x].(3) 

Next, introducing an upper, finite limit T, it is permissible to 
reverse the order of integration 

10=_1_ lim rkdk' (dx 
4k 2 T-oo Jo k' Jo x 

x [sin2kx - !sin2(k + k ')x - !sin2(k - k ')x]. 
(4) 

Integration by parts of the last two integrals yields 

10 = _1_ lim (~lnk + r\nk 'dk ,sin2(k + k ')T 
4k 2 T~oo 4 Jo 2(k + k ') 

_ r
k 

Ink 'dk' sin2(k- k ')T) (5) 
Jo 2(k - k') 

where we have made use of the step function 

1](a) = ~ SOO sinax dx 
1T 0 X 

equal2 to 

{

I, 

= 0, 

- 1, 

Now, let us take advantage of Dirichlet's limit formula3 

1T . La sinxT -f(k) = hm f(x+k)~x, 
2 T_ oo 0 X 

(6) 

(7) 

which holds for arbitrary positive values of a; the functionf 
is supposed to be sectionally smooth. The same result is ob­
tained if the integral is taken from - a to O. Applying Eq. (7) 
to Eq. (5) shows immediately that the second term is zero, 
and the third term is equal to 11Tlnk. It follows that 

10=0 (8) 
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i.e., the s-wave phase shift function is identically zero for 
every k ¥O. 

We have also proved by the same kind of analysis that 
the p-wave phase shift function is zero. 

(ii) k 1 < f < k2• The first integral of Eq. (1) becomes, 
after putting kx' = k 'x, 

Igl(kl,f,k2) = _1_ roo sinklxcosfx dx 
klk2 Jo x 

k sink IX sin(k':k 'x) 
X ( k dk', 

)0 k' 

which becomes, as is easily verified, 

1 111 _ 1 l' l' If dk' iT dx o - -- 1m 1m -- --
8k lk 2 T-.oo ~~o ~ k' 0 X 

(9) 

4 _ _ 

XL [sin (f;(kl,k,k2;k 'Ix) - sin(f;(k"k, - k2;k ')x)], (10) 
i= 1 

where 

f(k
"

k,k2;k ') = k, + ( - I)ili+ !)I2f + ( - IV(1- k 2/f)k'. 

(10') 

Integration by parts of each of the above eight double inte­
grals gives 

-,- ~sin(f;(k 'Ix) = Inf !Ii dx If dk' iT d iT sinl'(f)x 

~ k 0 x 0 X 

i T sin I'. (O)x If sinl'(k ')T 
- Ine !Ii dx - Ink 'dk 'f;(k ') !II , , 

o X 0 f(k ) 
(11 ) 

where we have putf(k
"

f,k 2;k ') /;(k ') for short. We then 
find that among the first four integrals ofEq. (10), the second 
and the third cancel each other, and among the last four 
integrals, the first and the fourth cancel each other. As to the 
remaining four integrals, they are easily worked out, making 
use of the definition of 17 and the limit formula, Eqs. (6) and 
(7), respectively. We then find for nil from Eq. (10), 

(Ilk k-k 1T {[ - f-kl Io( I" 2)=-- l-iJ(k 1 +kz -2k)]ln--_ 
16k l kz kz - k 

- [I -17(k1 - 2k - ktl 1 In_l -_ . k +f} 
k2 - k 

(12) 

The second integral fIoZI(k 1,k,k1 ) ofEq. (1) is related to 1611 by 

I~I(kjZ,k2) = I~I(kl,k,ktl. (13) 

Going through the same analysis as above, we find 

1611(kz,f,kl) = - fIo'1(kl,f,k2)' (14) 

In other words, we have proved that the generalized second­
order s-wave Coulomb phase shift functions, o~l(kl,k,kl) are 
equal to zero for all values of k"f and k2 which satisfy the 
inequality kl <f <k2 • 

268 

(iii) (k I <kz < f). We find 

o~l(kl,f,kz) = 8;k
2 

{[17(kz - k l ) - Illnl ~ ~ ~: I 
+ [17(k l - k2 ) - Illnl ~ + kl I}. (IS) 

k-kl 
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For the particular case kl = k3,; k, this becomes 
('(21 k k-k) 1T 1 k + k 00 ( I' , 2 = ---2 n-_--. 

4k k-k 
(15') 

It thus has a logarithmic divergence when f-~k. However, 
for f = k, we have 8g1 = 0 according to (i). For k I < k2 and 
k--+k2 + 0, we get according to Eq. (15), 

,,(21 k 0 k ) 1T 1 k2 + k I 
U o (k l , 2 + , 2 = - -- n . 

4klkl kl - kl 
(IS") 

Approaching kl from the left, k--+kl - 0, we have 
8gl(k l.kz - 0,k2 ) = 0 according to (ii). The function there­
fore has a discontinuity at the point f = kz' 

(iv) f < kl <k2. In this case the phase shift function is 
obtained from Eq. (15) by multiplying it by - 1 and inter­
changing k 1 with k2 in the logarithmic functions. 

(v) k, <kl = f. We find 

t5(2)(k f k ) = __ 1T_ln k2 + k l . 
o 1" z 8k k k _ k 

I 2 2 I 

(16) 

Hence the value of 0621 at f = kz is half the value one obtains 
by approaching kl from the right. 

(vi) f = k 1 < k 2 • The phase shift function is equal to Eq. 
(16) multiplied by - 1. 

III. PHASE SHIFTS FOR ANY ANGULAR MOMENTUM 

The calculation of the generalized second-order Cou­
lomb phase shift functions for any angular momentum I by 
the method of Sec. II is obviously not feasible. Even the cal­
culation of the p-wave phase shift by this method is a consid­
erable task. On the other hand, to obtain the generalized 
phase shifts through the second-order amplitUde is straight­
forward. The only disadvantage is that this method yields 
only the phase shift functions 8gl(k l ,k,k11 of Eq. (1), but not 
the two integrals I ~ll and I \21 separately. 

Let us start with the second-order scattering amplitude 

f(21(k l,f,k2) = -212fflil(kl - q) Z ~~ . f~ll(q - kz)·(17) 
1T q - -Ie 

Generally, the magnitude of the three momenta kl,k,kz are 
not equal to each other. We assume that at the two vertices, 
act two different, spherical symmetric potentials functions 
VI(r) and Vz(r). Heref\ll andfhll are the corresponding first­
order scattering amplitudes. They are given by i = 1,2, 

f\ll(kl - k1 ) = - 4~fe-ik,rVi(r)eik,.rdr. (18) 

The partial wave expansion of these functions is easily de­
rived. We have 

f iIl(k l - k1 ) = _1_~(21 + l)Pt(cosilk ,,)0\1)(k l,k2 ), (19) 
, 1/k

l
kz£r ,,2 • 

where the first-order generalized phase shift functions are 
given by 

0\.I)(kl,k2) = - 1/klk2 f" rdfjt(k lr)Vi (r)jt(k2r). (20) 

Putting these expressions of the first-order amplitudes back 
into Eq. (17), and making use of the integral representation of 
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the radial Green's function 

( ') 21
00 

2' () dq . ( ') g/ r,r = - q1t qr 0 k 2 .1/ qr , 
1T 0 q" - - l€ 

which is equal to fig/(fr < )h \11(fr > ), we obtain, for the real 
part of the second-order amplitude, the expression 

Rej!2)(k l,f,k2) = ~ ~(21 + 1)p/(COSt1klk,)8\21(kl,f,k2)' 

(21) 

where the second-order generalized phase shift functions 8121 

are given by 

8121(kJZ,k2) = - p[ 100 

rdrj/(k Ir)V1 (r)n/(kr) f r'2dr1t!kr')Vz(r'Y/(k/) 

+ .r rdrj/(klr)Vl(rY/(kr)i
oo 

r'2dr'n/(kr')Vz(r'y/(k2r')]' (22) 

We shall now specify the form of the functions Vj by choosing them to be the Yukawa potentials e - "-;r I r. The corresponding 
first-order amplitudes [Eq. (18)] are then given by 

jll)(k l,k2) = - 1/(,1 7 + Q 2), 

where Q = kl - k2 is the momentum transfer. Substitution of this expression into Eq. (17) gives 

j!21(k kk) = _1_ f dq 
I' '2 2r [(k l _ q)2 + A n(q2 - P - i€) [(q - k2)2 + An' 

(23) 

Now making use of the well-known Feynman technique,4 Eq. (23) is easily transformed into an one-dimensional integral, the 
real part of which is given by 

Re j!2)(k l,k,k2) 

I I k2 _p 2 -A 2 

= -! _ I A Uk 2 _ p2 _ A 2)2 + 4k 2A 2] dz, (24) 

where 

A 2 = lQ2{1 - Z2) + HA i + A D + HA ~ - A i)z, (24') 

and 

A2+p2=Hki +k~ +Ai +AD +Hk~ -ki +Ai -Ai)z. 

The expression [Eq. (24)] can be converted by a simple transformation into the integral 
(24") 

Rej(21(k l,k,k2) = _..!... f' (a + /3t 2)dt 

Q " (a+/3t2f+(~)2[(Ai -Ai)2+Q4+2Q2(Ai +An]r 2 
(25) 

Here the coefficients a, /3, rl, and t2 are known algebraic 
functions of AI and ,12' the three momenta ktiZ,k2, and the 
momentum transfer Q. 

As in Sec. II, here also we shall discuss the six different 
possibilities (i)-{vi) one by one. 

(i) kl = f = k2=k. Here we putAI #0 andA 2 = O. We 
then find 

a= - (AiIQ2){Ai +Q 2), /3=0. 
and 

tl=AIIQ, t2=00. (26) 

The real part of the second-order amplitude thus becomes, 
according to Eq. (25), 

Rej(21(k l,f,k2) = [2k (Q2 + A m- ltan- I{A I12k). (27) 

Applying now Eq. (21) in order to calculate the phase shifts, 
we get in conjunction with Eq. (22), 

l'" r dr jT(kr)e - AIJ'" r'dr'n/(kr')j/{kr') 

+ loo r dr j/{kr)e - A,rn/{kr)fr'dr1J{kr') 

1 -I AI II P/(;.J)dll 
- 4k 2 tan 2k _ I 2k 2(1 _ Il) + Ai' (28) 
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The integral on the rhs is known to be equal to k - 2Q/ 

(1 + A ~ 12k 2), where Q/ is the Legendre function of the 
second kind. Now in the limit ,11-0, 

Q/ (1 + A ~ 12k 2)_ - In(A /2k ); 

thus the rhs of Eq. (28) vanishes when A 1-0. Now, the two 
integrals on the lhs ofEq. (28) are both continuous functions 
of A I' Therefore, the processes of integration and of taking 
the limit A 1-0 can be interchanged. To show that the inte­
grals are continuous in A I we have to prove that they con­
verge uniformly (in A I) in an interval which includes A I = O. 
To prove this for the first integral of Eq. (28), consider the 
expression of the remainder for Ak> I, 

RA = f"rdr j7{kr)e- A,r f"r'dr'n/(kr')j/(kr')' (29) 

Making use of the asymptotic expansions for jl and n I, this 
becomes 

k 4RA = ~( - 1)/ roo dr sin2(kr - ~l)e - A"si(2kr), (29') . - L r 2 

where si(x) = - L" sintdt It is the sine integral. The domi-
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nant term of si for x:> 1 is - cosx/x; hence, 

k41RAI =_1_1 roo drsin2(kr-~/)e~).,rcos2krl <_1_. 
4k L r 2 4kA 

(29") 

From the fact that the rhs does not depend on A 1 follows the 
uniform convergence of the integral. The uniform conver­
gence of the second integral in Eq. (28) can be proved along 
similar lines, as 

To summarize, we have proved that for all k # 0, and all 

This integral has been dealt with extensively in the litera­
ture.5 We find that subject to the above condition on the k 's, 
the above integral is identically zero. We therefore conclude 
by Eqs. (21) and (22) that the generalized second-order Cou­
lomb phase shifts are identically zero for every angular mo­
mentum I, and all values of k l,k,k2, provided kl < k < k2. 
Thus, according to Eq. (1), we have 

8~I(kl,k,k2) = I\11(kJ(,k2) + I\11(k2,k,ktl = 0. (34) 

(iii) kl<k2 <k. The coefficients a andfJ are the same as 
in (ii). According to Ref. 5 we get 

Rel21(kjZ,k2) = - (1T/2Q) 

X [PQ2 + (p - ki)(k 2 _ km- 1/2. 
(35) 

Hence the phase shift functions are determined by 

8~I(kl,k,k2) = I\11(k p k,k2) + I\1I(k2,k,ktl 

1Tk II P,(p,)df..l 
-7 _IQ[k 2Q2+(k 2_kiHk 2 _Q)]1/2' 

(36) 

whereQ2 = (k l - k2)2 + 2k1k 2(1-f..l).Itdoesnotseemtobe 
possible to express the above integral in terms of known 
functions. However, for given 1 the evaluation is simple. In 
particular, for 1 = ° calculation of the integral yields the re­
sult of Eq. (15). For I> 1, the above expression is generally 
rather cumbersome; yet, for the particular case when 
kl = k2=k, it is easily estimated by making use of the ei­
konal approximation P/(p,),;::;Jo(bQ), b being the impact pa­
rameter (I + Wk. Thus for 1>1 andl1k /k<1 with 
iJ.k = k - k, 

8(21(k k k ) _ _ 1Tk roo Jo(bQ) dQ 
/ 1" 2- 4k2 Jo [k2Q2+(k2_k2)2JI/2 

1T 
';::; - 4k 2 Io(Mk )Ko(Mk ), (37) 

where 10 and Ko are the modified Bessel and Hankel func-
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angular momenta I = 0,1,2, ... , 

100 

r dr J,(kr)n, (kr)Lr'drJ7(kr')=0, (31) 

i.e., all the second-order Coulomb phase shift functions are 
identically zero. 

For all the other possibilities we take Al = A2 = 0, i.e., 
VI = V2 = l/r. 

(ii) kl < k < k 2 • We find 

a=P-k;, fJ=P-ki, 

II = 0, 12 = 00. (32) 

Hence, the real part of the generalized second-order ampli­
tude of Eq. (25) is determined by the expression 

(33) 

tions of zero order, respectively. Comparison with Eq. (15') 
shows that even for s-states the above result is very 
satisfactory. 

(iv) k < kl <k2. As the coefficients a and fJ are the same 
as above, but negative, the phase shifts are given by the same 
expression as in (iii) multiplied by - 1. Hence, 

8\21(k k k ) = 1Tk II P/(p,)df..l 
/ 1" 2 4 -I Q [k 2Q2 + (k 2 _ kTHk2 _ k~)r/2' 

(38) 

Suppose now that kl and k2 are the two roots of the quadratic 
equation (p - k i HP - k ~) = Pk ~, where ko is an arbi­
trary, but non vanishing momentum; then the two expres­
sions of Eqs. (36) and (38) are equal and of opposite sign. 
Hence, 

8\21(k l,kl,k2) + 8\21(k l,kz,k2) = 0. 

or in terms of the I-integrals of Eq. (1), 

I\11(k l,kl,k2) + I\11(k2,kp k l) + I\11(k l,k2,k2) 

+ I\11(k2,k2,k l) = 0. 

(39) 

(39') 

In other words, to every k2> k2 at which the phase shift is 
given by the expression of Eq. (36), corresponds a kl < k I at 
which the phase shift is equal but of opposite sign. In particu­
lar, to the point k2-k2 + ° corresponds the point 
kl-kl - 0, and to k2-00 corresponds kl-+o. 

(v) k\ < k2 = k. In this case a = ° and fJ = k ~ - k T. 
Thus, by Eq. (25) we get 

Rej(Zi(k l,k,k2) = - 1T/4kQ 2, 

and the phase shifts become 

8)2I(k l,k,k2) = - (1T/8k 1k2)Q/(1 + (k2 - ktl 2/2k 1k2)· 
(40) 

Comparison with Eq. (36) shows that this is half the value 
one obtains when k-k2 + O. 

(vi) k = kl < k2• The phase shift function is equal to mi­
nus the value of Eq. (40). 
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IV. SUMMARY 

We have calculated the generalized Coulomb phase 
shift functions defined by Eq. (1). We have to distinguish 
essentially between two possibilities: (i) all the three mo­
menta involved are equal to some k. Then for all values of k 
different from zero and all angular momenta 1 the phase shift 
functions, proportional to the two-dimensional integral 
I/(kkk) ofEq. (1'), are identically zero. (ii) The momenta kl 
and k2 are different from each other, say kl < k 2. Then con­
sidering the phase shifts as functions of f, we find that for 
k I < f < k2 they are equal to zero, again for all angular mo­
menta I. Thus in terms of the integrals of Eq. (1 ') this is 
equivalent to the interesting relation I (I)(k l ,f,k2 ) 

= - I(I)(k2,f,kd. For f> k2 and f < kl' the phase shift 
functions are determined by Eqs. (36) and (38). It is relatively 
easy to evaluate these expressions for any given angular mo­
mentum I. For I> 1 and the particular case k I = k2=k with 
If - k l/k<l, a good approximation is provided by the ex­
plicit expression Eq. (37). When f approaches k from the 
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right or from the left the phase shift functions (for k I = k 2 ) 

diverge logarithmically like ± In I f - k I. The value of the 
phase shift for f close to k is essentially independent of I. 
When k I < k2' the phase shifts are finite everywhere, howev­
er, they have discontinuities at the points k I = f and k2 = f. 
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Einstein's equations can be expressed in the tetrad form so that coordinates do not appear 
explicitly. Tetrads, however, are usually defined on a manifold, which means that coordinates 
have been introduced. The notion of a manifold without coordinates (a pre-atlas manifold) is 
described here and it is shown that Einstein's equations can be expressed in this setting without 
introducing coordinates at any stage. Conditions on a pre-atlas manifold are given which ensure 
that a CO-atlas can be generated. The motivation for this formulation is the desire to incorporate 
the philosophy of relativity, which asserts that the mathematical laws of nature are essentially 
independent of observers or coordinates. "The introduction of numbers as coordinates .. .is an act 
ofviolence."-H. Weyl 

P ACS numbers: 04.20. - q, 02.40. + m 

I. INTRODUCTION 

An n-dimensional differentiable manifold is usually de­
fined· to be a pair (M,.of) where M is a topologized set (the 
manifold topology is one possibility) and .of is an atlas pro­
viding the differential structure. The atlas consists of n-co­
ordinate pairs (cp, U), where U is a subset of M and cp is a 1-1 
map of U onto an open set in R ". It is possible for different 
atlases to give the same differential structure, in which case 
they may be called equivalent. The manifold may be thought 
of as (M,[.of]), where [.of] is an equivalence class of atlases. It 
should be noted that a given topological space can have ine­
quivalent atlases. 2 

A semi-Riemannian manifold is a quadruple 
(M,Mp ,g,.of), where for each pEM, Mp is the tangent space at 
p, gp is the metric defined on Mp X M p' and .of is the atlas. A 
second metric g gives a second semi-Riemannian manifold 
(M,Mp,g,.of), which is defined to be isometric to the first one 
if gp and gp are related by the usual change of coordinate 
formulas. A given manifold (M,Mp "of) can generally have 
many nonisometric metrics (e.g., g and g may be conformally 
related). 

For the application of differentiable manifolds to the 
theory of general relativity, Einstein's equation have to be 
incorporated. In the usual treatment, these are written as a 
set of partial differential equations in coordinate patch of an 
atlas, thus presupposing the existence of an atlas. These are 
tensor equations and thus covariant under a change of co­
ordinates. But it would conform more closely to the objec­
tive philosophy of relativity if these could be expressed with­
out even using coordinates. In this paper we find such 
formulations of Einstein's equations by defining the notion 
of a pre-atlas differentiable manifold (M,Mp ,g,.7). 

We also consider the question of how to define the atlas 
.of operationally if(M,Mp ,g,.7) is known. Synge' has shown 
one way to do this using geodescis and clocks. The concept of 
a pre-atlas differentiable manifold is also useful here to give a 
rigorous foundation for these attempts. In this paper, we find 
conditions on such structures which guarantee that a CO atlas 

"'Both authors belong to the Theoretical Science Institute, S.F.U. 

can be defined operationally. It is an open problem whether 
these conditions guarantee a C 00 atlas. However, the major 
open problem that remains is how to integrate these equa­
tions in a coordinate-free manner. 

2. PRE·ATLAS MANIFOLDS AND EINSTEIN'S 
EQUATIONS 

An atlas serves to determine which functions on the 
manifold are differentiable and which are not. The approach 
here will be to turn this around by starting with a family Y 
of real valued functions, all of which are to be smooth, and 
deriving the atlas from them. (This might be called a basis for 
a smoothness structure in the terminology of Milnor and 
Stasheff4). Furthermore, these functions should all be phys­
ical quantities that can be determined by experiment. Some 
examples would be the eigenvalues of the energy-momen­
tum tensor, radar coordinates,5 etc. A collection of such 
fields, which are smooth functions of the proper time of the 
observers, could be used for the family .'/. 

Definition 1. A family .'/ of real-valued continuous 
functions defined on open subsets of a topological space M is 
called an algebra of functions if the following properties 
hold: 

(1) If A is an open subset of the domain ofJ,fE.'/, then 

flA is in .'7. 
(2) If A = UAa andfisdefined onA withfIA"EY, thenf 

is in Y. 
(3) Iffand h belong to Y and are both defined on an 

open subset A #cp, then 
(a) af + bhEY, for all a,bER, 
(b)/hEY, and 
(c)f-':-hE.'7, ifh #OonA. 

These operations all preserve smooth functions .. '/ can­
not be closed under the extraction of roots because this does 
not preserve smoothness. 

Definition 2. A tangent vector at p is a real valued func­
tion Xp on .'7 p = IfE.'/ :pEdomf l such that 

Xph If.J2) = h,.Xpf. + h'2Xpfz, 

wheneverf.J2EYp' h (f1(P)J2(p))EY p' and h is a differen­
tiable mapping from R 2 into R. 
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The following properties of tangent vectors can be 
deduced: 

Xp(f + h) =Xp(f) +Xp(h), Xpcf= cXpJ, 

Xp(fh) = (Xpf)h (P) + J(p)Xph. 

Definition 3. The tangent space to M atp, denoted by 
M p ' is the set of all tangent vectors at p. 

It can be considered as a vector space over the reals if we 
set(Xp + Yp)f=Xpf+ Ypfand(bXp)f=b(Xpf)· 

Definition 4. Apre-atlas differentiable manifold (PDM) 
is a triple (M,Mp ,Y) with Y and Mp as defined above. 

Definition 5. A vector field X on a setA ~M is a mapping 
that assigns to each point p in A a vector Xp in Mp. 

A vector field X is smooth on A if A is open and for each 
fEY the functionfx defined by fx (p) = Xp f belongs to Y p' 

In this case we see that Xfx (which may be denoted 
fxx), Xfxx, etc., will all be in 5;-. In this way the functions of 
Yare infinitely differentiable with respect to a smooth vec­
tor field. 

Note that the existence of a smooth vector field X guar­
antees a certain form of consistency of Y. For example, sup­
posethereisafunctionfinYp withf(P) = OandXJ= c#O. 
Then the function h fl/3 cannot belong to Y p , for it ifit 
did, then by Definition 2, when q is near p, but not equal to p, 

Xqh = V- 2/3Xc/ 

As q approaches p, Xc/-+<: andf2/3-o, so Xqh cannot be 
defined continuously at p, and hence does not belong to Y p' 

Thus h does not belong to Y p' 

In the following, we suppose that (M,Mp ,Y) is a PDM 
and A is a subset of M. 

Definition 6. A metric field g on A specifies a mapping 
gp:Mp X Mp-+R for each pEA such thatgp is bilinear, sym­
metric, and non degenerate. It is smooth if for any two 
smooth vector fields X, Y, the function takingp to gp (Xp, Yp) 
belongs to .'7. It will be assumed that g is smooth in the 
following. 

Definition 7. A covariant differentiation operator on 
(M,Mp ,g,5') is an operator D that assigns to each pair of 
smooth vector fields X and Y with domain A, a smooth vec­
tor field Dx Y, with the same domain; and if Z is a smooth 
vector field on A andfEY, then D satisfies the following six 
axioms: 

(I)Dx(Y +Z) =DxY + DxZ, 

(2) Dlx+ Y)Z = DxZ + DyZ, 

(3) DvxI Y =fDx Y, 

(4) Dx(fY) = (Xf)Y + fDx Y, 

(5) Dx Y - DyX = [X,Y], 

(6)Zg(X,Y) =g(DzX,Y) + g(X,DzY). 

Definition 8. The curvature operator R of a covariant 
differentiation operator D is defined by 
R (X,Y)Z ==-DxDyZ - DyDXZ - D1x.y IZ, whereX,Y, and 
Z are smooth vector fields. 
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Definition 9. The Riemann-Christoffel curvature tensor 
field is defined by K (w,x, Y,Z )=w(R (Y,Z)X), where w is a 
dual vector field and X, Y,Z are smooth vector fields. 

An open set A is said to be framed I if the space of 
smooth vector fields on A has a basis of smooth vector fields 
Xiii' i = 1, ... ,n. (This implies that dimMp = n for all pEA ). If 
the tensors defined above are evaluated at a point p of a 
framed set, the values obtained will depend only on the val­
ues of the vectors fields at p. In the following, it is assumed 
that we are working on a framed set. Then we may write 
DX",X(r) = rlkl{riIX(k» where the r's are real valued func­
tions on A. One can check that these all belong to Y. Note 
that the order of i and r gets reversed, and that (ri) does not 
denote symmetrization. 

Axiom (5) implies that [Xiii ,xlil ] must be a smooth vec­
tor field, so we may write [X(il,xU)] = run Ik IX(k I' These are 
related to the r's by the formula YU.ll (k) = r(k\F) - r lk )IiJ1' 

If g is a smooth metric, then the real functions 
gWI =g(Xlil ,Xlii) belong to :7 and det [gwi # 0 ]. Thus one can 
define glijl = (g- \' and one can prove from the above axi­
oms that 

r lkl - !ulkr)[X g + X g X g ] 1;'1 - 20 Iii (r.ll li1 In1 - Irl 1;'1 

+ 1 [.")k I + .A)k I A Ik I] 
'2 r· IiJ1 r lit] - r(ij] . 

Indices are raised with gWI. 

and 

Let us define 

{~:il=~lkrl [XUIglr.ll + Xlilglril - X(rlgliJ1 ] 

.)k I =-=-1 [.A)k I + .A)k I _ A Ik I] r (;,)- 2 r {ij] r liil rl;,1 . 

Thus Eq. (1) becomes 

r lkl _ {(k I} _ .)kl 
(ij]- (ij) r 1iJ1' 

One also finds 

YIiJ1 (k 1= ylk IWI - ylk lliil . 

(1 ) 

(2) 

Using a dual basiswuI , i = 1, ... ,n, for M;,pEA, onehas6 

R Imlwk I =K (w(ml,x(il ,xlii ,x(k I I 

= X li1 V;\} -X(kl {\;/l + Ii::} t~~\} - {(~:\}{i~:} 
- X li1 ylmlUk I + X(k I ylm\;,1 + ylm\n.ll yln\ik I - ylm\nk I yln\;,) 

_ {(m)}.)nl _ .)ml {(n)} { (m) }.)nl .)ml {In)} 
(nj) r Ukl r (n.l1 (ik) + (nk) r {ij] + r (nkl (ij) 

_ {(m)}(.)nl A)n l ) + .)ml (A)nl .)nl) 
(in) r Ukl - r (k.l1 r Unl l likl - r (k.l1· 

Definition 10. The Ricci tensor is defined by I 

Ric(X, Y )===(tr l ,3K )(X, Y )= i K (W(k l,x, y,x(k I)' 
k~1 

One can check that this definition is independent of the par­
ticular basis used. 
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_ {(k )},)n) _ ,)k) {(n)} {(k) },)n) ,)k) {In)} 
(nj) r lik I r Injl (ik) + (nk) r WI + r Ink I (ij) 

_ {(k )}(,)nl _ ,)nl ) + ,)k I (,)nl ,)nl ) 
(in) r (jkl r Ikjl r lilll r (jk) - r Ikjl· 

Definition 11. Let (M,Mp ,g,Y) be a PDM with smooth 
metric g. An open set A eM is called special Einstein pro­
vided that for all X, Y on A 

Ric(X, Y) = 0. 

Condition (3) can be expressed as 

R lijl =0. 

A third equivalent form of these equations is 

where C Imlwk I is the Weyl conformal curvature tensor. h 

(3) 

(4) 

(5) 

In case dimMp = 4 and the signature of gp is - 2 (or 
else + 2) any of the above three equations represent Ein­
stein's vacuum equations. In case an orthonormal basis set is 
chosen, 

{~::} = 0, and the yk IIiJ) are the usual Ricci rotation 

coefficients. The complex linear combinations of(S) give pre­
decessors of the Newman-Penrose equations. In case a co­
ordinate basis is chosen, yk IWI = 0, and the 

{~:n are the usual Christoffel symbols and Eqs. (4) are 

the standard vacuum equations. 

3. CONSTRUCTION OF COORDINATES IN A PDM 

To construct coordinate patches on a PDM (M,Mp ,Y), 
the following assumptions are used. 

(a) Each point has a neighborhood on which there exists 
a basisofn smooth vector fields X I ,x2, ... ,xn (locally framed). 
(b) Local path connectivity hypothesis: For each point rand 
each neighborhood JV of r there is a neighborhood U2r ~JV 
ofr such that for any two pointsp,q,p#q, in U2r there exists 
in U2r a continuous curve oit ), O.;;;t..;; 1,joiningp toq. Further­
more, for all/in Yoj/!' 

d . 
-foit) = UiX~/)(f), 
dt 

for some constant vector a = (ui ) of Euclidean length 1. 

(6) 

Theorem. If a PDM (M,Mp ,Y) satisfies (a) and (b), then 
CO atlas exists. 

Proof: Let rEM. It will be shown that there exist n func­
tions/; in Y, such that the matrixJ~~~/; is nonsingular. 
By way of contradiction, suppose that for every n functions 
this matrix were singular. Expanding the determinant along 
the last column, we find akX kin = 0, where the ak 's are co­
factors. Since/n is arbitrary and theXk's are independent, 
all the a k 's must vanish. In particular, 
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I 
0= an = det[XJ;], i,jE{ I,2, ... ,n - 1 J, so we can expand 
again along the last column. Continuing in this way we find 
X 11 = ° for all/I· This contradicts the linear independence 
oftheXkos. 

Let us write J(q,a) for the vector with components 
UiJ~. Since this depends continuously on q, one can show 
that there is a neighborhood U2r of r such that 

IJ(q,a) - J(r,a)I..;;~IJ(r.a)l· 

for all p,q,EutI and all a. Let the neighborhood uti be chosen 
small enough7 so that in addition (a) and (b) hold. Let 
m = mint IJ(r,a)I:lal = 1 J. 

If </J: U2r ~R n is defined by 

</J (q) = (f1(q)!2(q)'···!n(q)), 

then (</J, uII) will be a coordinate patch on M. It suffices to 
show that </J is 1-1. Let p and q be distinct points in if; , and let 
u be the path joining them, given by (b). Then 

l
id 

</J (q) - </J (P) = </J°oiI) - </J·oi0) = ~·oit )dt 
o dt 

= f J{oit ),ajdt 

and 

I</J (q) - </J (P)I = I fJ(r,U)dt + f [J(u(t ),a) - J(r,a)]dt I 

>1 fJ(r,a)dt I-I f [J(oit ),a) - J(r,a)]dt I 
>1 J(r,a) 1 - ~IJ(r,a)1 >m/2. 

Thus </J is 1-1. 

4. PHYSICAL INTERPRETATION OF THE 
COORDINATES 

Let M be a topological space and let 0 be the set of all 
curves u: (a,b )--+M representing the world lines of observers 
with Coo acceleration, where the parameter t of oit ) corre­
sponds to the proper time (or any Coo transformation there­
ot). Let Y be the collection of all scalar functions / on M 
such that/ can be experimentally determinedandfoit) is 
Coo. Then Y is an algebra of functions. Let 0 p the set of 
these curves which pass through p; i.e., Op = (UEO:p = oit ) 
for some tE(a,b ) J . 

The tangent space Mp can now be defined. If/EYp• 
thenfu is Coo, so one can define a function u*: Yp~R by 
the rule u*( /) = (d / dt lfoit ) Ip . It can be shown that u* is a 
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tangent vector, and we define Mp to be the vector space gen­
erated by the O"*'s; i.e., 

Mp=tttaio1:O"iE8p and nEN}. 

It is assumed that dimMp is four for a pre-atlas semi-Rie­
mannian manifold of space-time events. 
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We show that asymptotic projective twistor space &' Y+ is an Einstein-Kahler manifold of 
positive curvature. We then use the Chern-Moser theory of hyper surfaces in complex manifolds 
to show that the Kahler curvature of &' Y+ is closely related to the CR curvature of its boundary. 
We also give a proofthat the Kahler potential function defining the boundary satisfies the 
complex Monge-Ampere equations. 

PACS numbers: 04.20.Cv 

INTRODUCTION 

During the past few years a great deal of work has been 
done in the applications of complex manifolds to the theory 
of general relativity. In particular, much attention has been 
paid to half-flat space-times; that is, four-dimensional com­
plex manifolds with Ricci flat, self-dual curvatures. 1-4 It has 
been shown by Newman and his coworkers2 that given an 
asymptotically flat space-time (1, g), there exists a natural­
ly associated half-flat manifold called an Jf'space. 

It is also possible to construct from (1, g) an asymptot­
ic twistor space Y(1) and a corresponding projective twis­
tor space &' Y(1). 5 In the presence of gravitational radi­
ation the space Y is a curved four-dimensional Kahler 
manifold of signature (+ + - -). The Kahler potential 
L (2", za) is a real valued function built out of a solution to 
Newman's good cut equation. 

The equation L = 0 defines in &' Y a five-dimensional 
real hypersurface &' A/' with a non degenerate Levi form of 
signature (+ -). The hypersurface bounds a region 
&' c'/-+ = I L > 0 J which has been suggested as representing 
a nonlinear graviton of positive helicity.3-5 

It has been known for some time that the Ricci tensor of 
the Kahler metric of Y vanishes, while the full curvature 
tensor contains information about the radiation field of the 
original space-time. 5 

Aside from the facts just mentioned very little is known 
about this Kahler structure. There have been suggestions 
that this structure is well suited to the implementation of a 
scattering theory of nonlinear gravitons,4 but this goal is far 
from complete. It also seems likely that there is enough in­
formation coded in the CR structure of 9 JV to extract an 
intrinsic definition of the elusive concept of asymptotic flat­
ness of ~ spaces, but how this is to be done is still an unan­
swered question. 

With this motivation in mind we study in this paper the 
Kahler structure induced on the projective twistor space .'7. 
We show that f:IJ c'/-+ is an Einstein-Kahler manifold of 
positive curvature. We then apply the Chern-Moser theory 
of pseudoconformal geometry of real hypersurfaces in com­
plex manifolds 7 to conclude that the Kahler curvature of 
93/-+ is closely related to the Chern-Moser invariants of 
the boundary. We also give a short proof that the function 

alPart of this work was done at the University of California at Berkeley. 

defining 9 ff satisfies the complex Monge-Ampere 
equations. 

The reader is assumed to have some familiarity with the 
spinor formalism and with the 0 operator of Newman and 
Penrose. 2-4 The paper will be arranged as follows. In Sec. 1 
we briefly review the construction of ~ spaces and asymp­
totic twistor spaces. In Sec. 2 we discuss the Kahler structure 
of 9 Y-+ and in Sec. 3 we relate this structure to the CR 
structure of the boundary. 

I. HALF FLAT SPACES 
A. Jf'-space 

Let (1, g) be an asymptotically flat space-time with 
complexified null infinity U+. Let; and t denote the ste­
reographic coordinates on the complexified two-sphere and 
introduce the quantity 

(1.1) 

By a "good cut " one means across section u = X (;'; )of 
U+ satisfying the equation 

82x = UO(X,;, t). (1.2) 

Here, the operators 8 and its dual 0 (edth) acting on a 
function 17 of spin weight s are defined by 

017 = 2P b -s ~(Pb17)' a; 
671 = 2p I +s~(P -S71) 

./ 0 a; 0 ./' 

(1.3) 

and aO is the asymptotic shear of a Bondi family of null sur­
faces. 2 In a Bondi coordinate system the commutator of 0 
and a is given by 

(1.4) 

The nonlinear differential equation (1.2) has a four-pa­
rameter family of solutions for UO sufficiently close to zero. 
The manifold of such solutions is the ~-space associated 
with (1, g). 

If aO = 0, the solutions to (1.2) are of the form 

X = (WO + tw l )!2Pa, (1.5) 

with 

(1.6) 

Wi =Y + v{;. 

The four quantities (u, v, x, y) parametrize the (W· space 
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which in this case is isomorphic to complexified Minkowski 
space CMI,3' 

B. Asymptotic twistor space 
Denote by LA the spinor field pointing along the gener­

ators ofU+. By a hypersurface twistor with respect to 
U + one means a pair (1T A , r), where r is a complex curve 
in U+ and 1TA is a spinor field on r satisfying 

(a) t a = ~BLA~ is tangent to r, 
(b) LA~V AB1T c = ° on r, 
(c) 1Ti #0 on r. (1.7) 

Here a"AB are the usual Pauli spin matrices. Condition (b) 
states that 1T A is parallelly propagated along the curve r 
which is referred to as a twistor curve. Condition (c) is added 
to avoid the possibility of having r coincide with one of the 
generators of U+. 

The collection of all such pairs (1TA' r) is a four-dimen­
sional complex manifold associated with U+ known as the 
asymptotic twistor space Y of J(. The projective asymptotic 
twistor space Y is obtained by taking the quotient of Y with 
the equivalence relation (1T A , r d ~ (P A , r 2) iff r I = r 2 and 
1TA = CPA for some number CEC·. 

In a similar fashion we may define the space Y· of dual 
hypersurface twistors to be the space of pairs (1J A , r) 
satisfying 

(a) ra=a" AB 1JAiB is tangent to r, 
(b) A AiBV AB 1Jc = ° on r, 
(c) 1JI#O onr. 

(1.8) 

The space Y· also has a projective structure defined exactly 
as above. We will denote the corresponding dual asymptotic 
projective twistor space by f:!! Y-·. The curves r are called 
dual twistor curves. 

It turns out that if J( is taken to the Minkowski space, 
then the definition of the asymptotic twistor space given here 
coincides with the usual flat twistor space 'f. Furthermore, it 
has been shown2 that the space 9 Y arises as a deformation 
of the complex structure of a region on the flat projective 
twistor space lP'f",,-,ClP3 . 

The relation between the asymptotic twistor spaces and 
the jfo spaces associated with a space-time J( is contained 
in the following theorems. 

Theorem 1.1: (Penrose2
.'). If ::?7 is a sufficiently small 

deformation of lPT, then there exists in ;;fJ.7 a four-com­
plex-parameter family of compact holomorphic curves with 
the same homology class as a sphere S 2. Furthermore, the 
manifold parametrizing these curves is isomorphic to ,W. 

Theorem 1.2: Each point of .0/' .(7 corresponds to a twis­
tor curve in U+ and the good cuts ofU+ are ruled by a 
ClP I 's worth of twistor curves. 

Define two points in ,W' to be null separated if the corre­
sponding holomorphic curves in .9 Y intersect. This en­
dows jfo with a conformal structure and we have: 

Theorem 1.3. The conformal structure of jfo is half-flat. 
For the convenience of the reader we brei fly explain the 

correspondence between 9 Y and jfo. Consider a particular 
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surface u = X(t, t) in U+ satisfying Eq. (1.2). For a fixed 
value of t = tl' the good cut equation becomes an ordinary 
differential equation and the solution is a twistor curve r 
lying in X (t, t). In fact, it is not hard to see that the twistor 
curve is a null geodesic in U+. The curve may be parame­
trized by three numbers ({U0, (UI, tl)' where we may think of 
{UA = ({U0, (UI) as the constants of integration of the differen­
tial equation. The quantities ({U0, (UI, tl) define the twistor 
line up to proportionality, and thus they may be regarded as 
the local coordinates of a point in 9 Y. As the value of t 
varies along the good cut we get a curve in 9 Y which is 
holomorphic since X (t, t) is assumed to vary holomorphical­
ly with respect to both t and t. The curve so obtained is an 
element of the four-parameter family of curves whose exis­
tence is guaranteed by Theorem 1.1'. 

11. KAHLERIAN STRUCTURES 
A. Klihler structure of Y 

In the space of asymptotic twistors it is possible to de­
fine a scalar product and a Kahler structure using the ideas 
of local twistors.4

,5 Consider two arbitrary hypersurface 
twistors (r, 1T A )EY and (r, 1J A )EY· respectively. In general, 
there exists at most one generator y of Cf+ intersecting 
both of the twistor curves rand r. Supposing that such a 
generator exists, we represent the hypersurface twistor 
(r, 1T A ) by a local twistor ({UA, 1T A ) = (0, 1T A ) at P and the dual 
hypersurface twistor (r, 1JA) by a local twistor (1JA' 0) at Q, 
where P and Q are the corresponding points of intersection 
of rand r with the generator y. 

The scalar product between (r, 1T A ) and (r, 1J A ) is de­
fined by propagating the local twistor Z a = ({UA, 1T A) Up the 
generator y using local twistor transport 

[AiBVAB{UC(x) = - i1Tdx)[c, (2.1) 

[AiBV AB1T c(x) = - iPIBic{UB, (2.2) 

and then taking the local scalar product with Za = (1J A'S A) 
at Q. Thus, the scalar product is given by 

L (za, :ta) = ({UA1JA + 1TASA)(Q) = (UA1JA (Q). (2.3) 

We could, of course, propagate the dual twistor Za 
from Q to P and take the local inner product at P, but this will 
clearly yield the same answer. It may happen that there ex­
ists no generator y intersecting both of the twist or curves. In 
this case the twistor scalar product is not defined. 

The Kahler structure of asymptotic twistor space is ob­
tained by viewing the scalar product as a potential for a 
Kahler form on Y- defined by 

<p = [a2L (Za,Za)/Jz"azP]dza /\dzP, (2.4) 

where~, is the dual asymptotic twistor associated with the 
complex conjugate of the curve defining the twistor za, and 
z" (a = 0, 1,2,3) are local coordinates oL'T. The curvature 
properties of the Kahler metric of.::;- have been computed by 
Penrose, Newman, and Ko-~ using local coordinates z" 
= ({U0, {U I, {;, A ), where A is essentially the component 1Ti 

taken with respect to a conformal rescaling K A of the spinor 
[A, the conformal factor being taken so as to make the in­
duced metric c.Y+ become flat. In the paper just mentioned, 
it was found that in local coordinates the scalar product can 
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be expressed in terms of the good cut function X (CUO, cu I , ;, t) 
as 

(2.5) 

and the curvature tensor is expressible in terms of the tJi ~, 
tJi~ and ImtJi~ components of the Weyl tensor of the space­
time JI. In this sense the Kahler structure codes into the 
asymptotic twistor space the information about the gravita­
tional radiation field of the space-time. 

Remark: The scalar product (2.5) agrees with the usual 
fiat twistor scalar product when we consider the space of 
asymptotic twistors of Minkowski space. To see this write 
the solution to the good cut equation as in (1.5). Choosing 
coordinates 

ZO = !v'U (icu l +;), 
Zl = !v'U (icu l -;), 

(2.6) 

s=A. 

We get the inner product in the form 

L (Z, Z) = Izol2 - Iz l 12 + !i(ws - sW). (2.7) 

Note that these coordinates are homogeneous in A. 

B. Kahler structure of g; Y 
Since the quantities t a = (cuA

, ; ) are good inhomoge­
neous coordinates in 9 Y, we can replace L by 

K = 2iPo(X - X\ (2.8) 

and we get a Kahler metric in the region 9 Y+ defined by 
K> 0 by taking 

ds2 = 2gap dt a dt P = 4(a21nK lataat p) dt a dt P. (2.9) 

Using subscripts to denote the derivatives of K (i.e., Ka 
= aK lata,Kp = aK latP,KA = aK lacuA

, etc.) we can write 
the metric tensor as 

(2.10) 

Setting V = X - X and observing that VA = XA, Vlf = XB' 
and VAB = 0, we find a more explicit form of the metric 

11

- 2VA VlflV
2 12(VVA~ - VA V~)/V2 II 

gaii = 2(VV~B - V~ VlflV
2 2(VV~~ - V~ V~)/V2 + !Po

2 . 

(2.11) 

Following the conventions of,6 we find that the only 
non vanishing components of the connection are 

rJ1- - g rJ'V rJ1- - riL - g - _rJ'v (2.12) ay - aV'r5, P6 - {3{j - J1-P'65 , 

where g"v is the matrix inverse of gaP (i.e, gapgYP = o~). 
The Riemann curvature is given locally by the 

expression 

R~r.5 =r~y . .5' 

and the Ricci tensor defined as 

(2.13) 

RaP = R ~J1-P (2.14) 

can be obtained from the determinant g of the metric 

a2 

RaP = - - log. (2.15) 
at a at P 
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A long but straightforward computation using (2.10) and 
(2.13) gives the following formula for the Riemann tensor. 

Raprli 
= - !(gapgyli - galigyp) + 2K -2(KKaPrli - KayKiJ.5) 

+ 2K -4g"V(KKary - KarKv}{KKviJ.5 - KiJ.5KJ1-)' (2.16) 

As a consequence of this we have 
Proposition 2.1: The space lPT + is an Einstein-Kahler 

manifold of constant holomorphic sectional curvature equal 
to 1. 

Proof In this case the solution to the good cut equation 
IS 

X = (2Po)-I(cuO + tcu l
), 

so that 

K = i(cuO + tcu l 
- (;jl- ;(j)I). 

It follows immediately from (2.16) that 

R aPrli = !(gapgrli - galigrP)' (2.17) 

which is the form of a Riemann tensor of constant hoi om or­
phic curvature equal to 1. That the space is Einstein then 
follows trivially. 

Remark: The metric on lPT+ has signature (+ - -) 
and is the semidefinite analog of the Fubini-Study metric of 
ClP3

• 

Proposition 2.2: The Kahler structure of lPT+ is invar­
iant under the action ofSU(2,2), and, up to a scalar multiple, 
it is the only one with this property. 

The proof follows from the fact that the action of 
SU(2, 2) preserves the Hermitian form (+ + - -) as well 
as the complex structure of C4

• 

The analog of the Weyl tensor for a Kahler manifold of 
complex dimension n is given by the Bochner tensor 

Capyli = RaPyli + (n + 2)-1 

X (Rapgyli + Rypgali + gapRrli + gypRali) 
- R (n + 1)-I(n + 2)-I(gapgrli +grpgali)' 

(2.18) 

where R is the scalar curvature R = ~PRaP' 
Proposition 2.3: The Bochner tensor ofPT+ vanishes. 
Proof Contracting the expression for the Riemann cur­

vature with the metric tensor we get 

RaP = 2gap , 

R=6. 

Substituting into (2.18) and making further use of (2.17) we 
find 

Capyli = R aprli - JR aPrli + !Rapyli = O. 

Theorem 2.1: The space 9 Y+ is an Einstein-Kahler 
manifold of constant scalar curvature equal to 6. 

Proof First, we notice that the upper left comer block of 
the metric (2.11) has vanishing determinant. Thus, expand­
ing the full determinant g of the metric by minors along the 
bottom row, we find after some cancellations that g can be 
expressed in the rather simple form 

g= V- 4pp, 
(2.19) 
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The proof then follows by a long computation using (2.15) 
and the good cut equation. The details are found in the Ap­
pendix. Theorem (2.1) states that the nontrivial part of the 
curvature is contained in the Bochner tensor. This tensor 
may be calculated using (2.16), (2.18), and the lemma in the 
Appendix. We will spare the reader the long details of the 
computation and we just remark that the tensor is express­
ible in terms of space-time Weyl components tf;~, tf;~, and 
1m tf;~. In other words, the gravitational radiation data of J( 

is coded into the bochner tensor of f!l y+ . 

III. CR STRUCTURE 
A real hypersurface on en + I inherits from the ambient 

space an intrinsic structure called a pseudoconformal or CR 
structure. That is, there exists a 2n-dimensional subbundle 
of the holomorphic tangent bundle having a complex vector 
space structure on each fiber. The theory of pseudoconfor­
mal structures has been used by Chern-Moser7 to study the 
invariants of strongly pseudoconvex hypersurfaces (i.e., hy­
persurfaces with positive definite Levi form) under biholo­
morphic mappings. The known invariants at present consist 
of a curvature tensor and certain real curves called chains. 

Pseudoconformal geometry is important in complex 
analysis because one often has to deal with domains in en + I 

and the boundaries of domains are real hypersurfaces. In this 
context, biholomorphic invariants have also been indepen­
dently studied by Fefferman8 by constructing a defining 
function for the hypersurface which is an approximate solu­
tion to the complex Monge-Ampere equations. The invar­
iants found by Fefferman have been related to those of 
Chern-Moser by work of Burns and Shnider9 and 
Webster. 10 

Most of the known results on the subject until now 
make use of the assumption of strong pseudoconvexity and 
they do not apply to situations where the hypersurface does 
not have positive definite Levi form. Although the case of 
f!l ff is not a favorable one in the sense that its Levi form has 
signature (+ -), it is still possible to extend some of the 
known results to our situation. 

The CR structure of f!l JY is important on several 
grounds. First, we need to understand the boundary to clari­
fy the notion of positive frequency of nonlinear gravitons. 
Secondly, the CR structure contains important information 
about the space-time. In fact, it seems plausible that all of JY' 
space may be recovered by studying the chains in f!l ff. Fi­
nally, the results of this paper (in particular Theorem 3.2) 
together with the observation that the good cut equation is 
the Dolbeault version of twistor deformations II brings into 
play powerful machinery of complex theory which hopefully 
can be used to gain further insight into the structure of the 
half-fiat Einstein equations. 

The theory of pseudoconformal structures is perhaps 
not well known to mathematical physicists and unfortunate­
ly it is impossible to present a detailed description of the 
geometry in these few pages. Thus, we will content ourselves 
with drawing a quick sketch of the ideas involved by evoking 
our knowledge ofthe theory of surfaces in Euclidean three 
space. For a more complete account, the reader is referred to 
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the extensive work in the literature. 7
-

1O 

The simplest and most important surfaces in 1R3 are the 
planes. They are the prototypes of fiat surfaces in Rieman­
nian geometry. The theory of surfaces in Euclidean space is a 
generalization of the geometry of planes. To be specific, let 
us consider a smooth surface which near the origin is defined 
by an equation of the form 

z = /(xt i = 1, 2. (3.1) 

The local properties of the surface may be understood 
classically by expanding the function/in a Taylor series 
around the origin: 

(3.2) 

where the coefficients bl) ... , denote the value of the partial 
derivatives of/ at the origin. If we neglect all but the linear 
terms of the series we get the equation of a plane. This is the 
osculating plane which best approximates the surface at the 
origin. The quadratic coefficients bl} represent the compo­
nents of the second fundamental form. By applying a linear 
transformation, if necessary, we can rotate the surface so 
that bi = 0; in other words, we can choose our frames such 
that the osculating plane becomes horizontal. With this 
choice, the determinant 

(3.3) 

is the Gaussian curvature of the surface at the point in ques­
tion. The fundamental theorem of geometry states that al­
though the second fundamental form depends on the embed­
ding, the Gaussian curvature is an intrinsic property of the 
surface and it is a bending invariant. 

The geometric structure of the surface may also be 
viewed in terms of a principal fiber bundle with a connection. 
Classically, the fiber of the bundle at a given point on the 
surface is the tangent plane at that point. The unique Levi­
Civita connection defines a law of parallel transport which 
allows one to construct the tangent space of a point in terms 
of that of a neighboring point. The curvature of the connec­
tion, defined by the second structure equations, has only one 
independent component which is the Gaussian curvature of 
the surface. 

The situation for real hypersurfaces in en + I is, of 
course, more complicated but we can get some feeling for the 
geometry by trying to emulate the discussion above. It may 
be helpful for the reader to keep in mind the following lexi­
con of corresponding concepts. 

Surfaces on 1R3 Real hypersurfaces on en + I 

Planes Real hyperquadrics 
Riemannian structure Pseudoconformal structure 
Fundamental form Levi form 
Group of motions 
Bundle of frames 
Geodesics 

Biholomorphic transformations 
Pseudoconformal bundle 
Chains. 

Suppose that near the origin the hypersurface is gven 
locally by a real valued function 

(3.4) 

We assume that not all of the partial derivatives of r 
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vanish at the origin. In particular, if we define 

w = zn + I = U + iv 

we may assume that 

(3.5) 

rw #0. (3.6) 

By a linear change of coordinates, Eq. (3.4) may be put 
into the form 

v = F(z, z, u). (3.7) 

What Chern and Moser do is to take the last equation and 
write it in normal form; that is, they express F in terms of a 
power series in z and zwith coefficients depending on u. 
Then, by applying appropriate coordinate transformations, 
the power series is reduced to the simplest possible form. 

v = (z,Z) + N22 + I Nw 
k + 1;,5 

where 

(z Z' = h - zCi,zj3, 
, "I alP. ' 

N b a, a,J3, B, 
kl = a, ... ajJ •... jj,Z ···z z: ···z . 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Here, the quantities N22 and Nkl are symmetric on the 
a's and f3 's, and they satisfy some trace conditions that we 
will not discuss. 

The equation 

v=(z,z) (3.12) 

represents a real hyperquadric of signature (p + 1, q + 1), 
where (p, q) is the signature of the quadratic form haJ3" also 
called the Levi form of the surface. It will be assumed that 
the Levi form is nondegenerate. Equation (3.8) states that 
any nondegenerate real hypersurface in en + I may be oscu­
lated to high order by a quadric, whose Levi form is of the 
same signature of that of the given surface. For this reason 
real hyperquadrics are of fundamental importance in the 
theory. In fact, transformations of a surface into normal 
form are unique only up to the group of matrices which pre­
serves the quadric, as well as the origin. The group H of such 
transformations is the isotropy subgroup ofSU(p + 1, q + 1) 
which leaves the origin fixed. The group H plays a role in 
pseudoconformal geometry analogous to that of the orthog­
onal group in Riemannian geometry. 

The quartic coefficients ba,ajJ,jj, depend on the first four 
derivati ves of the defining function r. They may be regarded 
(up to a constant factor) as the components of the so-called 
fourth-order Chern-Moser tensor. The tensor is an intrinsic 
quantity and it is invariant under the pseudogroup ofbiholo­
morphic transformations. There are, of course, higher order 
invariants associated with the fifth- and sixth-order coeffi­
cients but we will not be concerned with those here. 

As in the Riemannian case, there is a coordinate-free 
formulation of pseudoconformal structures in terms of a 
bundle with connection. For a given point on the hypersur­
face, the fiber is a homogeneous space, namely, the tangent 
hyperquadric. The fundamental theorem of Chern-Moser is 
that on the bundle there exists a torsion-free Cartan connec­
tion 1T defining a notion of "parallel transport" among tan-
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gent hyperquadrics of infinitesimally close points. The pseu­
doconformal invariants are defined in terms of the 
connection via Cartan's structure equations 

d1T + 1T 1\ 1T = n. (3.13) 

CR structure of o/y 
As before, we let t = ! t a J be the natural coordinates in 

an open set UI of 9 Y+. The forms! () a, () CiJ, where () a 

= dt a, then define a basis for the cotangent space over U I • 

In terms of this coframe the Kahler metric (2.9) and the cor­
responding Kahler two-form ~ can be written as 

(3.14) 

(3.15) 

From Eq. (2.9) it follows that we can also write the 
Kahler form as 

(3.16) 

Consider now the real valued function ron Y defined 
by the equation 

r = ssK (t a, t Ci) - 1 
=L-1. 

A 

The real hypersurface.ff given by 
r=O 

(3.17) 
(3.18) 

(3.19) 

is then a circle bundle over ::1), T + . The hypersurface is a CR 
manifold whose Levi form is simply the lift of the Kahler 
form (3.15) to the bundle. This kind of hyper surface is exact­
ly of the kind studied by Webster iiI a except that in his paper 
he was only concerned with the the positive definite case. 

To get an idea of what kind of bundle we are dealing 
with, we consider the situation when the base manifold is 
taken to be the "fiat" projective twistor space lP'1'+. This 
manifold admits a homogeneous space representation of the 
form 

lP'1'+ = U(2,2)1(U(I,2)XU(I,0)). (3.20) 

It follows from this observation that the corresponding 
circle bundle ff is just the Steifel bundle 

UII.O) 

U(2,2)1U(2,1) _ lP'1'+ (3.21) 

offrames of type (1,2) in T, with fiber U(I,O) = S 1. 

To understand the nature of the circle bundle in (3.21) it 
is helpful to compare (3.17) with (2.5). It follows at a glance 
with the surface N associated with lP'1'+ is nothing else but 
the hyperboloid oftwistors of unit helicity in 1'. The topol­
ogy of this hyperboloid is S 2 X R 4 as can be seen from the 
equation 

L = [ZO[2 - [ZI[2 + ~i(ws - sw) = 1. (3.22) 

In view of this it becomes evident that the nontrivial part of 
s' 

the bundle (3.21) S3 X R 4_S2XR 4 isjust the usual Hopf 

s' 
fibration S 3---+S 2. 
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Introduce a new variable Z4EC, and "homogenize" 
(3.17) by letting S_SIZ4. Then, z"'~z'" IZ4 and t a~t a. In A 

terms of these quantities we get a "projective" version f)'./v 
of the surface./V defined by the equation 

s.fK(ta, tal _JZ4J = O. (3.23) 

The manifold of null projective twistors 9./V then sits as the 
submanifold of f)';Y defined by setting Z4 = O. 

To gain more geometrical insight into what is going on, 
we will again look at the flat N. In this case, the coordinates Zi 

give an embedding of C4 as an open set in cp4 and we get the 
following diagram 

PN-Cp4 

JNJ3. 
The expression (3.23) then becomes a Hermitian form ofsig­
nature (+ + - -), and it defines a quadric Q(2, 3) in cp4. 
The quadric has topology S 3 X S 4 and it is, of course, the 
compactification of N = S3 x R 4. The map (s, wA

, t, Z4)_ 

(s, wA
, t, 0) gives a natural embedding of cp3 into cp4. The 

induced embedding gives PN as the submanifold defined by 
the intersection ofPNwith the plane at infinity Iz4 = OJ. 

The interesting fact is that there exists a theorem of 
Webster lOa which can easily be extended to Kahler mani­
folds with indefinite signatures to give the following 

Proposition 3.1: The Bochner tensor of ff!.,'7+ is equal 
to the fourth-order Chern-Moser tensor of ./V. 

On the manifold cY one can find certain distinguished 
real curves called chains defined by the differential system 
1T _I = 1T1 = 0. 12 Chains are the analogs of geodesics in CR 
manifolds. Very little is known about these objects, but they 
seem to carry a lot of information about the intrinsic geome­
try of the hypersurface. In the case ofPN, the chains are 
obtained by the intersection of complex secant lines with the 
quadric. The chains have topology S I and there is an eight­
real-parameter family of them. The space of chains has the 
structure of a complex manifold which can be identified with 

(;M1.3· 
In a general CR manifold the space of chains is not so 

nice. In fact, it seems that generally there will exist a large 
number of chains which will spiral into a point. 8 In the situa-

S' 
tion here the base manifold of the bundle;Y _f)' ,'7+ has 

constant scalar curvature. This is necessary and sufficient 
condition for vertical curves to be chains. Furthermore, on 
;Y we have a free S I action and no spiralling occurs. 

The final result in this paper is the following. 
Theorem 3.2: The function K defining the null twistors 

satisfies the complex Monge-Ampere equations. 

Proof Define a new function R on U X C, where U is an 
open set in f)','7+ with Un f)',/V #0, by the equation 

R = (zoiYK. 

Here ZOEC and p is a positive constant. One can then define a 
Kahler metric on a circle bundle over f)'./V using R as the 
Kahler potential. By a computation exactly analogous to 
that of Theorem (2.1) we find that the Ricci tensor of this 
metric vanishes. By the results of Ref. (lOb) the assertion of 
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the theorem follows. 

CONCLUSIONS 

The results in this paper show that asymptotic twistor 
space possesses a rich geometrical structure which up to now 
has been neglected. We expect to explore this structure fur­
ther by applying the ideas to some specific self-dual metrics 
recently found by the author, but clearly much work remains 
to be done. 

APPENDIX 

Lemma: If V(tl) is a scalar function of spin weight 
s = 0 on the sphere then the first fourth-order derivatives of 
V with respect to t and t can be written in terms of the edth 
operator according to the following equations: 

V; = (2Po)-ldV, _ 
V;; = (2Po)-2WV - 2t~V), _ 
Vm = (2Po)-3(d3V - 6td~V + 6;;d~), __ _ 
V;m = (2PO)-::.4(d4V - 12td3V + 36ttd2 V - 24tttdV), 
V~ = (2Po)-ld ~ 
V,~ = (2Po)-2MV, 
V;;~ = (2Po)-3(d2dY - 2t~~~), __ _ 
V~~;~ = (2PO)-4(d3dV - 4td2dV + 3ttMV), 
Vtt = (2Po)-2(d2V - 2tdV), 
V~;; = (2Po)-3(d~2y - 2td~~ - 2~V)!... 
Vm·; = (2Por4(d2d2V - 2tcfdV - 4MV 

+ 4 -; ~V - 2td~2V + 4ttd~V). 
Remark: The formulas above follow by recursive use of 

the definition of the edth operator. The operator ~ is defined 
exactly as in (1.2) but replacing t by f We note that the rest 
of the formulas for derivatives of order <;;;4 are obtained from 
the above by complex conjugation. It is in fact possible to 
write a general formula for derivatives of any order but it is 
not simple and we do not need it here. 

ProofofTheorem 2.1: Using Eq. (2.15) we compute the 
Ricci tensor. For the RAjj components we have 

R Ajj = 4JAJjjlnV - JAJjjlnp - JAJjjlnp 

= - 4VA VjjlV 2 

= 2gAjj· (AI) 

Next we compute the RA2 component which is given by 

RA2 = - 4JAJ~lnV - JAJ~lnp - JAJ;lnp. (A2) 

Using the previous lemma and the facts that (}2 X = 00 
and 02 X = aO

, we find that the second term in the right-hand 
side of the last equation becomes 

p-2€CD~F IXEXFt(XCAXDtt + XCXADt;-) 

- XEXF;f(XCAXDf + XCXDAt)l 

= p - 2€CD rF (2Po) -4 IX E ax AdX D dX CA 

+ dXcdXDA +XCA(lT°XD - 2tdXD) 

+XC[OOXDA - 2tdXDA )] -XE(OOXF - 2tdXF) 

X(XcAdXD +XcdXDAll =0. 

In the computation above we have used the fact th&t the 
contraction of €CD with a symmetric spin or F CD is identically 
equal to zero. The last term of(A2) also vanishes by virtue of 
the remarks following Eq. (2.10). Hence, the only surviving 
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term is 

RA2 = 2gA2 · 

Computation of the R22 component is a bit nastier since 
it involves third-order derivatives with respect to ; and t. 

R22 = 4a,af logV - a,aflogp - a,a;-logp. (A3) 

By further use of the lemma, we find some nice cancellations 
take place and the second term in the right hand side of the 
equation above reduces to 

a,a;-lnp 

= p-2ECD~F(2Po)-4XEdXF((7°XDaXC + XCdZaxD). 

Applying formula (1.4) to the quantity dXD we get 
2<2 2<2 -a aX D = dO X D - 2aZ D' 

Substituting this into the last equation and using (1.2) yields 

a,a;-lnp = - 2p-2(2Po)-4(ECDXcdXD)(~FXKdXL) 

= - 1I2Po ' 

Since the last term in (A3) is the complex conjugate of the 
preceding one, we see that 

R22 = 4a,af lnV + lIP~ = 2g22· 

Thus we have shown that 

RatJ = 2gatJ.·. R = 6, 

concluding the proof of the theorem. 
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A new formulation is presented for analyzing the structure of a space-time at timelike infinity. An 
asymptotically simple space-time is defined as a space-time (1, g) which can be imbedded in a 
space (vff ,j) with boundary Y, a C '" metric g and a C '" scalar field a, such that a = 0 on Y, 
a> 0 on 1 - Y and §!'1' - §!'AgVpalAalp = a -2[('1' - a -4[('Ag1'pa;Aa;p in a neighborhood of 
.'}'. Demanding that Y = Y-uY+, where each one of Y- and Y+ is isometric to the unit 
spacelike hyperboloid, and §!'1'al/l-a1v = fl -4[('vfl;/l-a;v = 1 on Y, we have an almost 
asymptotically flat (at timelike infinity) space-time. The group of asymptotic symmetries of(1,g) 
at timelike infinity is found to be isomorphic to the Lorentz group. Some properties of the space­
time near Yare shown. 

PACS numbers: 04.20.Cv 

1. INTRODUCTION 

In the framework of general relativity and other similar 
metric theories of gravity it is believed that a bounded 
source, e.g., a binary neutron star or a dust cloud, generates a 
curved space-time which at large distances from the source 
becomes in some sense more and more Minkowskian. Al­
though a mathematically rigorous study of the near zone is 
extremely difficult, substantial progress has been made in 
the study of the asymptotic region. 

To study null infinity (i.e., the asymptotic region 
reached when traveling infinite affine distances along null 
geodesics) Penrose! has introduced the idea of conformal 
completion of the space-time. Using Penrose's technique we 
can attach a three-dimensional null boundary .f to the 
space-time, define a C '" four-metric in a neighborhood of.f 
and use ordinary local differential geometry as in any other 
regular region ofthe space-time. Conformal mapping, how­
ever, does not give satisfactory results at spatial and timelike 
infinities, that is, for the asymptotic regions at infinite space­
like and timelike distances respectively. In fact conformal 
mapping "shrinks" spatial and timelike infinites too much, 
so that they become the single points zf) (spatial infinity), i­
(past timelike infinity), and i+ (future timelike infinity). Sev­
eral studies2

•
3 along these lines have shown some awkward 

and undesired features for the space-time at zf), e.g. the un­
physical metric is only C > 0 at zf). For timelike infinity a new 
complication arises, since the source itself reaches timelike 
infinity (after infinite time), while it does not reach null or 
spatial infinity. Thus the structure attributed to i- and i+ by 
the conformal mapping technique, although not investigated 
yet, is expected to be much more complicated than that of zf). 

An alternative approach has been presented for spatial 
infinity4 and for timelike infinity.5.6 The central idea is to 
attach three-dimensional boundaries to the space-time (one 
at spatial infinity and two, past and future, at timelike infin­
ity) and define only projective structure near each boundary. 
Thus in the projective completion approach we avoid the 
definition of a four-metric smooth on the boundary. Howev­
er, projective structure seems to be inadequate when we are 

dealing with physical questions. Thus, e.g., the conformal 
completion, although resulting in an awkward structure at 
/l, is more effective in the study of the physical fields than the 
elegant projective completion. 

To overcome these difficulties a new approach has been 
proposed7,8 to define asymptotic flatness at spatial infinity. 
In this formulation a three-dimensional boundary Y (a unit 
timelike hyperboloid) is attached to the physical space-time 
(1,g) and a C '" four-metric g is defined on the extended 
manifold ~ = 1uY. Working along the same lines we 
propose in this paper a similar formulation for past and fu­
ture timelike infinity. The basic requirement is that the 
space-time admit a natural timelike boundary Y consisting 
of two separate pieces Y- (past timelike infinity) and Y+ 
(future timelike infinity). The term "natural boundary" asso­
ciates with Y the following three properties: (aj Y is three­
dimensio~l; (b) the unpl)ysical metric g is C '" on a neigh­
borhood U of Y; (c) on U the unphysical metric g is deter­
mined uniquely from the physical metric g (and a scalar field 
fl ) and vice versa. In building up the structure near Y we 
follow a step-by-step process, imposing at each step only the 
requirements which are necessary. Thus we define first as­
ymptotic simplicity at timelike infinity. In the second step 
we specify the intrinsic structure of Y. In the third step we 
describe how Y is attached to the space-time. Finally, in the 
fourth step we examine the physical fields and determine 
other conditions which will give a rich and physically inter­
esting space-time. 

In this paper we examine only the geometrical fields 
which provide the background geometry and some physical 
fields which do not affect this geometry. Since a world tube, 
which includes the bounded source, reaches Y eventually, it 
is expected that for the most interesting space-times (e.g., a 
binary star, a Schwarzschild or a Kerr black hole) the phys­
ical fields will affect (at least on some part of Y) the back­
ground geometry. This is an important difference from the 
corresponding case of spatial infinity. A future detailed in­
vestigation of the structure at the points where the source 
touches Y is expected to give a classification of asymptoti­
cally flat space-times and a better understanding of the 
Cauchy problem. 
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In the Eardely-Sachs formulation5 a space-time (..ff ,g) 
has a C k regular future projective infinity 7 iff there exists a 
C k Hausdorff manifold J/ = ..ffl.Yr with boundary 7 and a 
C k - 2 symmetric connection F such that (..ff ,g) and (J/ ,F) 
have the same geodesics and each timelike geodesic of J/ 
can be extended to intersect 7. It is obvious that such a 
space-time mayor may not be asymptotically flat, whatever 
"asymptotic flatness" means. We can add some conditions 
which will ensure similarity of 7 with the future timelike 
boundary of Minkowski's space-time. Such an approach, 
however, will not give a metric structure to J/. On the other 
hand an almost asymptotically flat (at timelike infinity) 
space-time, as it will be defined in Sec. 3, does not have, in 
general, a regular future projective infinity, unless an addi­
tional condition is fulfilled (Sec. 5). 

In Sec. 2 we define the concept of asymptotic simplicity 
at timelike infinity. In Sec. 3 we give the conditions which 
define an almost asymptotically flat space-time. In Sec. 4 we 
examine the group of asymptotic symmetries. Some proper­
ties of almost asymptotically flat space-times are presented 
in Sec. 5. In our notation Greek indicesA,,u,v, etc., take val­
ues 0,1,2,3 while Latin indices iJ,k, etc., take values 0,2,3. 
Covariant derivatives with respect to the physical metric are 
denoted by V"' with respect to the conformal metric by V" 
or a semicolon, and with respect to the unphysical metric by 
V" or a vertical rule. If [J - n If! admits a smooth extension to 
!T, we write If! = On. Finally, the symbol ::2:: denotes a rela­
tion which holds on.<7 only. 

2. ASYMPTOTIC SIMPLICITY AT TIMELIKE INFINITY 

To determine the relation connecting g and g we start 
from the Minkowski metric in coordinates t,r,(J,cp which is 
diag(1, -1, -r, -rsin2(J] (we take c = 1). To study ti­
melike infinity we set y = (t 2 - r)I/2 with r < It I and 
t = qcoshX r = ysinhx (€ = 1 and € = - 1 respectively for 
future and past timelike infinity). Thus we have a new set of 
coordinates X,Y,(J,CP. Since timelike infinity is reached when 
y_ + 00 with X,(J,cp constant, we set U) = y- I. In coordi­
nates X,U),(J,cp the physical metric of Minkowski's space-time 

is 
h = diag[ - U)-2 U)-4, - sinh2xU)-2, - sinh2xsin2(JU)-2). 
~v ' 

(1 ) 

Let now [J be a scalar field such that in coordinates X,U),(J,cp 
we have [J = u). We define the conformal metric 
- 2 
h"" = [J h"" 

= diag[ - 1, U)-2, - sinh2x, - sinh2xsin2(J], (2) 

with contravariant form 

h""=diag[ _1,U)2, -sinh-2x, -sinh-2xsin-2(J). (3) 

Obviously h"" is singular at U) = 0 because hll = U) - 2 or be­
cause h II = U)2. To eliminate this singular behavior we define 
a new metric h"" whose contravariant components satisfy an 
equation of the form 

hI'" - h /lAh VP[J [J = h /'" - ii "Aii "f'[J [J (4) IA If' ;A ;p' 

Note that in our coordinate system [J;A = [JIA = ol and (4) 
changes h II only (it makes it different than zero) without 
affecting the other components near the hypersurface 
[J = O. 
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We state now the definition of asymptotic symplicity. 
Definition: A space-time (..ff ,g) is asymptj!tically simple 

at timelike infinity iff there exist (a) a space (..ff ,g) with a 
nonempty boundary f!lJ (f!lJ

A 
C~) and a X '" metric g on 

some open neighborhood U of f!lJ (f!lJ C U), (b) a diffxomor­
phismf U_U - f!lJ from an o"een subset U oJ..ff to U - f!lJ , 
and (c) a C '" scalar field [J on U, positive on U - f!lJ and zero 
on f!lJ, such that on f) 
f''' - f'Ag"P[JIA[Jlp = [J -2g1''' - [J -4g1').g"P[J;).[J;p' (5) 

Equation (5) is the basic relation which essentially de­
termines the unphysical metric tensor g from the physical 
metric tensor g and the scalar field [J. It should be empha­
sized that the quadratic terms in both sides of (5) have a 
minus sign in front of them, contrary to the case of spatial 
infintiy. 

A consequence of the above definition is that an asymp­
toticaly simple space-time accepts a boundary which satis­
fies condition (b) of Sec. 1 for being a natural boundary. Fur­
thermore we can prove now the following theorem. 

Theorem 1: For an asymptotically simple (at timelike 
infinity) space-time (a) if on some part jJ! of f!jJ 

[J -2g;"[J;"[J;,, ::2:: - 1 and f'''[JI,,[JI,,::2:: 0, (6) 

then on some open neighborhood on ,A/' we have 

§I'" = g;", (7) 

while (b) if on some part ,'T of ,ug 

[J -2g;"[J'I
1
[J;" ::2:: 1 and f'''[JI,,[JI,,::2:: 1, (8) 

then on some open neighborhood of ,r we have in a coordi­
nate system x" with [J = Xl (iJ = 0,2,3) 

g"=I-g'I, 

tl =ll( - 1 + l/g"), 

(9) 

(10) 

gli = gij + gilgl [ _ 1 + (1 - l/g")2). (11) 

Proof It is enough to show Eqs. (7) and (9)-( 11) in a 
coordinate system x" with [J = Xl. In such a system (5) gives 

( 12) 

If (6) hold, then gIl ::2:: 0, t I ::2:: 0, and (12) gives Eq. (7). If (8) 
hold, then gil ::2:: 0, t I ::2:: 1, and (12) gives Eqs. (9)-( 11). 

This theorem indicates an unexpected relation of as­
ymptotic simplicity at null infinity and at timelike infinity. 
This property and the corresponding in the case of spatial 
infinity8 will be used in a future paper to unify asymptotic 
simplicity and flatness at timelike, null, and spatial infinity. 
Also from the previous theorem we conclude that if we im­
pose conditions (8) then our asymptotically simple space­
time admits a boundary which fulfills conditions (b) and (c) of 
Sec. 1. For Minkowski's space-time the unphysical metric 
can be obtained easily from (3) and (9)-(11). We have in co­
ordinates X,U),(J,CP 

h"" = diag[ - 1, 1 - 0/, - sinh- 2x, - sinh-2xsin-2e], 
(13) 

h'l" = diag[ - 1, (1 - U)2)-1, - sinh2x, - sinh2xsin2e]. 
(14) 

Thus h"" and h "" are C '" on a neighborhood of the hyper-
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surface w = 0, which is the timelike boundary of ~. This 
hypersurface has two separate identical parts Y- and Y+ 
(Y = Y-uY+) corresponding, respectively, to t--+ - 00 

and t--+ + 00 (a separate coordinate system X,w,e,q; is need­
ed to cover a neighborhood of each Y- and :7+, while 
w > 0 on ..4'). The induced metric on each part of Y, i.e., on 
Y- orY+ is 

rij = diag[ - 1, - sinh2x, - sin2x2sin2e], (15) 

namely the metric of a three-dimensional unit spacelike hy­
perboloid. The coordinates X,e,q; take always values in the 
intervals - 00 <X < + 00, o<e< 11", o<q; < 211" (q; = 0 is iden­
tified with q; = 211"). 

3. ASYMPTOTIC FLATNESS AT TIMELIKE INFINITY 

The space-time generated by a bounded source can be 
regarded as a space-time for which the energy-momentum 
tensor vanishes outside a world tube which extends from 
Y- to Y+. Consequently, asymptotic flatness at timelike 
infinity is expected to be a much more delicate and compli­
cated concept than it is at null and spatial infinty. There is, 
however, an encouraging element in the definitions of as­
ymptotic flatness at null9 and spatial8 infinity. These defini-

I 

[ -I + 0, a+OI 0 1 

A _ a + 0 1 (3+0 1 r+OI 
gl'v - 0

1 r+OI - sinh2x + 0 1 

0 1 /5 + 0 1 0 1 

with a,y,/5 arbitrary functions of X,e,q; and 

(3 = 1 - a 2 
- ysinh- 2x - /5 2sinh-2xsin- 2e. 

tions do not assume that the energy-momentum tensor is 
zero near the null or the spatial boundary. Thus we can pro­
ceed and define the concept of almost asymptotically flat 
space-time (AAFS) at timelike infinity as a space-time in 
which the energy-momentum tensor and the curvature are 
not strong enough to destroy the background geometry at 
Y- orY+. 

Working along these lines we require for the space-time 
to be asymptotically simple and a part of its boundary identi­
cal to the timelike boundary of Minkowski's space-time. 
Some additional conditions are needed to specify how the 
boundary is fastened to the interior of the space-time. These 
conditions, and a way to define asymptotic flatness in terms 
of tensor relations as well as in terms of the existence of a 
special class of coordinate systems, are indicated by the fol­
lowing theorem. 

Theorem 2: For an asymptotically simple space-time 
with boundary YJ, :7' a part of YJ and fj an open neighbor­
hood of Y' the following conditions are equivalent. 

(a) /;T' is isometric to the unit spacelike hyperboloid and 
on Y' the conditions (8) hold. A 

(b) There exists a coordinate system (x,w,e,q;) on U in 
which we have fl = w, t I = w2 + 0 3 , and 

(16) 

(17) 

(c) There exists a coordinate system (x,w,e,q;) on fj in which we have fl = w, t I = w2 + 0 3 , and (a,/3,y,/5 as before) 
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a+O, aysinh- 2x + 0, 
ysinh- 2x + 0, 1+0, 

ysinh- 2x + 0, 
osinh- 2xsin- 2{1 + 0, 

(-1 +rsinh-2x)sinh-2x +0, 
rosinh-4sin-2{1 + 0, 

(d) There exists a coordinate system (x,w,e,q;) on fj in which we have fl = w, gil = 1 + 0 1 and 

0 1 

r+OI 

a+OI 
w- 2 + 0 1 

y+OI 
8+01 

- sinh2x + 0 1 

0 1 

(e) There exists a coordinate system (x,w,e,q;) on fj in which we have fl = w, gt I = 1 + 0 1, and 

aw2 + 0 3 

w2 + 0 3 

ysinh- 2xw2 + 0 3 

8sinh- 2xsin- 2ew2 + 0 3 
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0 1 

rsinh-2xw2 + 0 3 

- sinh-2x + 0 1 

0 1 

(19) 

(20) 
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We will omit the proof since it is similar to the corresponding case at spatial infinity. 8 However, the formulas (16)-(20) are 
different from the corresponding cases at spatial infinity. Another difference is that a space-time which is asymptotically 
similar to Minkowski's space-time is expected to have two separate pieces of its boundary, each one similar to Y'. This is 
incorporated in the following definition. 

Definition: A space-time is almost asymptotically flat (or Minkowskian) at timelike infinity iff it is asymptotically simple 
and for each one of two separate parts Y- and Y+ of its boundary qj one of the conditions (a)-(e) of Theorem 2 is satisfied. 

Obviously an AAFS admits a natural boundary Y = Y-uY+ in the sense of Sec. 1. Near Y- and Y+ we can give a 
general expression of the physical metric using the relation gJlV = n -2gJlv ' From (19) we have 

°_2 
w-4 + 0_ 3 

0_] 

0_ 2 

0_ 2 

0_ 2 

- sinh2xw-2 + 0_] 
0_] 

(21) 

This expression is very useful for practical calculations 
near the boundary, something which is not possible in gener­
al in the conformal or projective completion. The explicitly 
given terms represent the "geometrical" part of gJlV' while 
the "physical" part is hidden in the terms On' 

4. ASYMPTOTIC SYMMETRIES 

Since Y is a real boundary of the space-time manifold 
with a C 00 four-metric on it, we can define asymptotic sym­
metries in three equivalent ways. The most natural defini­
tion is based on the form of the physical metric tensor near 
the boundary and defines the group of asymptotic symme­
tries as the group of coordinate transformations 
(x,w,O,ip)--+(x ',w',O ',ip') which preserve the form (21). The 
most general transformation which maps w = 0 to w' = 0 
and the region w > 0 to the region w' > 0 is 

X=Xo+O], (22) 

w = w]w' + °2, 

0= 00 + 0], 

ip = ipo + 0], 

(23) 

(24) 

(25) 

with w] > 0 and Xo,Oo,ipo functions of X ',0 ',ip'. Calculating 
g~v and demanding that it be of the same form as (21), we 
have 

( aXo )2 + ( aoo )2 sinh2x + (aipo)2 sinh2x sin20 = I 
aX ' ax ' 0 ax ' 0 0 , 

(26) 

( aX 0)2 + ( aoo )2 sinh2x + ( aipo )2 sinh2x sin20 
ao' ao' 0 ao' 0 0 

(29) 
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(30) 

aXo aXo + aoo aOosinh2x + aipo aipo sinh2x sin20 = o. 
ao' aip' ao' aip' 0 ao' aip' 0 () 

(31) 

After some calculations we obtain also the useful relation 

( ax o)2 + (aXO )\inh-2x' + (aXO)\inh-2x 'sin- 20= I 
aX ' ao ' aip' ' 

(32) 

and for the Jacobian of the transformation (00, ipo)--+(O ',ip'), 

aXo sinh2x 'sinO' 
J(Oo, ipo; 0', ip ') = ± - . (33) 

aX' sinh2Xosin80 

We can also define the group of asymptotic symmetries 
as the group of the transformations (x,O,ip)--+U' ',0 ',ip') which 
preserve the intrinsic geometry of Y+ (or Y-), i.e. preserve 
the three-metric (15). This condition gives again equations 
(26)-(31) with X 0,80,ipo replaced by X,8,ip. Thus the two defi­
nitions are equivalent. Finally we can consider the group of 
asymptotic symmetries as the group generated by the as­
ymptotic Killing vector fields t Jl of the unphysical space-

"'-
time (1,g). As in the case of spatial infinity, this definition 
implies that the restriction of t Jl to Y- (or Y+) is a Killing 
tensor field of the intrinsic geometry of Y- (or Y+) and 
consequently generates the same symmetry group. It should 
be noted also that linearization of Eqs. (26)-(31) gives the 
Killing equations for the six linearly independent Killing 
vector fields or(15) which can be solved directly. 

To identify the group of asymptotic symmetries we con­
sider the three-dimensional hypersurface 'T/Jlvx"xv = 1 of a 
four-dimensional Minkowskian space-time with 'T/JlV 

= diag (1, - 1, - 1, - 1). With 

X
O = coshX, 

Xl = sinhxsin8coSip, 

x 2 = sinhxsinOsinip. 

x 3 = sinhxcosO. 

(34) 
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the induced metric on the hypersurface is given by (15) and 
the hypersurface is the unit spacelike hyperboloid. Any 
transformation (x,O,tp)-(x ',0 ',q/) which preserves (15) can 
be written as H -I LH where H is the fixed (with no arbitrary 
parameters) transformation (34), H -I its inverse, and L an 
arbitrary Lorentz transformation Xll_X'I'. The group of as­
ymptotic transformations H - I LH is the group of asymptot­
ic symmetries and is obviously isomorphic to the Lorentz 
group. 

5. PROPERTIES OF AAFS NEAR .'T 

In this section we derive some properties of almost as­ , 

Hence on Y we have 

a+O I 

- 1 +f3+ 0 1 

r+OI 

0+0 1 

ymptotically flat space-times at timelike infinity assuming 
that the conditions of the definition (Sec. 3) are satisfied at 
every point of :T. Besides describing AAFS, these properties 
indicate some of the quantities which should be examined in 
detail for specific bounded sources near :T. 

The first property refers to the way:T+ (and :T-) is 
fastened to the space-time. Let nl' be the unit normal on a 
hypersurface n = const (which is close to n = 0), 
ql'v = gl'v - nl'nv the intrinsic metric induced on the hyper­
surface, andpl'v = r/;.if:,V;.np its extrinsic curvature. Using 
the form (21) of the physical metric with a few higher order 
terms as defined in Theorem 2, we obtain, after some 
straightforward calculations, 

0 1 

r+OI 
- sinh2x + 0 1 

0 1 

(35) 

n 2ql", ~ - npl'v' (36) 

Straightforward calculations of the Riemann, Ricci, and Weyl tensors give the same order relations as at spatial infinity, 
namely 

R ).I'pv = 0 _ I _ n , R ).I'pl' = 0 7 + m , 

R I'v = 0 3 + m _ n , R I'l' = Os + m' 

Rl'v = 0l-n, 

R=03' 

(37) 

(38) 

(39) C).I'Pv =O-I_n' C).I' Pl'=03+m_n' 

where m (n) is the number of upper (lower) indices which are 
equal to 1. From these relations we have for the Weyl tensor 
of the conformal metric gill' = n 2glll' 

C).I'Pl' ~ 0 n -lc).l'pvn ~ 0 n -2c).l'pl'n n ~ 0 
, ;/1' ;/-L;V· 

(40) 

Further calculations give for the electric El'v = C).I'Pl'n).nP 

and the magnetic Bl'v = C !I'P"n).nP part of the Weyl tensor 
EI'" = 0, and BI'" = 0 1 near Y or 

EI''' ~ 0 and Bill' ~ O. (41) 

Consequently n -IEl'l' and n -IBl'l' induce on Y+ (and 
Y-) two (symmetric and trace-free) smooth tensor fields 
expected to have physical content. 

Finally we examine the relation between these two con­
cepts: a space-time with regular future projective infinity 
(PI) and an almost asymptotically flat (at future timelike in­
finity) space-time. It is obvious that the boundary of a PI 
space-time is not necessarily a spacelike hyperboloid, since 
some well-known cosmological models are PI space-times. 5 

On the other hand, the conditions for a space-time to be 
almost asymptotically flat at timelike infinity are not enough 
to imply a regular future projective infinity for the space­
time. From the Eardley-Sachs definition given in Sec. 1 the 
key question is whether a connection r can be defined on 
~ = Jlu.;r+ so that (~,r) be projectively equivalent to 
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(JI,r), where r is the metric connection on the physical 
space-time as determined by g (ris not necessarily a metric 
connection). For this to be possible the two connections 
should satisfy on JI the relations 

r). I(rp £).+r-p £).) 
{LV - '5 ILpUv Vpuf.1 

(42) 
= r~l' - Hr~po~ + r~p8~ ). 

Since r can be smoothly extended to Y+ , so can both sides 
of (42). But a straightforward calculation shows that the 
right-hand side of (42) is smooth on Y+, except for (A.,,u,v) 
equal to (0,1,1), (2,1,1), and (3, 1,1) which cases give ~a 11,2 cu - I 

+ 0 0 , ~all,2 sinh- 2x cu - 1 + 0 0 , and !a ll ,3 Xsinh- 2x 
X sin -20CU -I + 0 0 respectively, where we have set 
gil = cu- 4 + a llcu- 3 + 0_ 2 , Thus we must have all,a 

= a 11,2 = a 11,3 = 0, This condition can be put in tensor 
form if we consider the scalar 

<I> = n -5gApn;).n;p - n -I. 

In our coordinates (x,cu,O,tp) we have 

<I>=CU- 5g ll -cu- 1 = -all +01, 

(43) 

(44) 

Hence an almost asymptotically flat space-time has a regu­
lar future projective infinity iff <I> is constant on Y+ or 
equivalently 

<1>;1' - (<1>;). n). )nl' ~ 0, (45) 
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where nJ1- is the unit normal on Y+. This condition is expect­
ed to imply some restrictions on the physical fields and at 
this stage it seems unwise to impose it on the space-time in a 
definition of asymptotic flatness. 

6. GENERAL REMARKS 

The definition given in Sec. 3, the theorems of Secs. 2 
and 3, and the properties of almost asymptotically flat 
space-times presented in Secs. 4 and 5 establish a new for­
mulation for the study of asymptotic structure at timelike 
infinity. Some remarks, however, should be made. 

First, a definition of asymptotic flatness at timelike in­
finity has not yet been given. A detailed study of specific 
sources is expected to show essential differences in their be­
havior near Y and indicate what new conditions should be 
added and which of the conditions for AAFS should be re­
laxed on some part of !Y. At the same time this study is 
expected to indicate criteria for classifying asymptotically 
flat space-times depending on their behavior near Y. Some 
of the quantities to be examined in such a study have been 
already pointed out in this work. Many related questions, 
such as the dependence of tensor fields at points of Yon the 
direction of approach to Y should be examined. 

Three major classes of asymptotically flat space-times 
are expected depending on whether the conditions of the 
definition of AAFS (Sec. 3) are (a) fulfilled throughout !Y­
and Y+, (b) violated at some point (or a set of points with 
zero volume) of Y, and (c) violated at some set of points of Y 
with nonzero volume. In case (a) (e.g., a field of pure radi­
ation whose energy escapes eventually to A/+) the energy­
momen tum tensor of the source will not be strong enough to 
destroy asymptotic flatness as Y. In case (b) (e.g., the space­
time of a dead star or a black hole) the source will touch Yat 
a point (i.e., the end of the source's world tube). The depen­
dence of the energy-momentum tensor and other fields on 
the direction of approach to that point will provide criteria 
for subclassification. 
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Second, the relation of asymptotic flatness at all three 
infinities should be studied. The emergence of conformal 
mapping in Theorem 1 for that part of gj called fl indicates 
a close relation between Penrose's formulation for null infin­
ity and the present formulation for timelike infinity. In a 
future paper we will relate this observation with the corre­
sponding one made for spatial infinityH and present a unified 
formulation for the whole boundary gj . 

Third, the essential question of uniqueness of the 
boundary should be examined. Since we are interested in the 
physical fields which register on Y and in general on &J, we 
have to know to what extent the informations contained in 
the extension of the fields to gj describe properties of the 
physical space-time independently of the completion. 

After answering the above questions we will be able to 
attack new problems related to the stability of asymptotic 
flatness, the multipole moments, the Cauchy problem, etc. 
The main difference in a reformulation of the Cauchy prob­
lem is expected to arisefrom the fact that.T- and. f '- (i.e., 
the hypersurfaces on which initial data will be specified) 
have now well-known and relatively simple intrinsic geome­
tries, contrary to the case where an arbitrary spacelike hy­
persurface is used. 
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A formulation is presented for studying simultaneously the timelike, null and spatial infinities of 
space-times which resemble asymptotically Minkowski's space-time. For this a relation of the 
form/(g,g, n ) = Oisdeterminedsothatgivenaspace-time(~,g)aspace(~, g) with boundary f!I 
can be found with ~ imbedded in vIf and g and f1 C 00 fields on:tl. A space-time (~, g) for which 
this is possible is called (globally)asymptotically simple. Then the conditions for f!I to resemble 
the boundary of Minkowski's space-time are determined. Thus the concept of a (globally) almost 
asymptotically flat space-time is defined. 

PACS numbers: 04.20.Cv 

1. INTRODUCTION 

In the last two decades substantial progress has been 
made towards understanding the asymptotic structure of 
space-times which resemble Minkowski's space-time 
at large distances from the source. l-ll Although there 
are many different attitudes and approaches in the nu­
merous papers on timelike,9,12 nuUl •2.l3 and spa­
tiaI 4 • s•7 •8 ,14.ls infinity, there are some common fea­
tures. First, there is a tendency to try to bring the 
asymptotic region closer by imbedding the physical space­
time in a larger manifold with boundary, this boundary 
representing "infinity." Second, each asymptotic re­
gion is studied separately and in most cases by differ­
ent techniques. 

In a recent formulation, however, of spatial infinitylS 
an unexpected feature arose: a definiton of asymptotic 
simplicity at infinite spacelike distances gave as a case 
to be excluded the conformal mapping proposed by Pen­
rose for null infinity. A similar feature appeared in a 
study of timelike infinity12 by the same technique. Thus 
a question is raised: Is there a unified formulation of 
asymptotic structure possible? 

This paper presents a positive answer to this ques­
tion. Starting from observations made on the two inde­
pendent but similar formulations of spatial and time­
like infinity we give a global definition of asymptotic 
simplicity. Then depending on the relations satis­
fied by the physical and unphysical metrics on each 
part of the boundary we define the time like , null 
and spatial infinities. Demanding that the intrinsic 
geometry of the whole boundary is identical to 
the intrinsic geometry of the boundary of Minkowski's 
space-time we have a global definition of asymptotic 
flatness. Thus a common base is established for study­
ing the asymptotic structure of asymptotically flat 
space-times at timelike, null and spatial infinity. 

There are perhaps three arguments supporting the 
usefulness of a unified formulation of asymptotic flat­
ness. First, it makes the whole formulation more ele­
gant and transparent and brings out the close analogy 
between the threatments of different asymptotic re­
gimes. This is accomplished by giving a single defini­
tion of the global boundary which is then divided into 
pieces (timelike, null and spatial boundaries) depend­
ing on the particular properties of each piece. Second, 
such a unified formulation is expected to be very useful 

in relating the physical fields of one piece to the phys­
ical fields of another piece (e.g. the Bondi mass at null 
infinity to the ADM mass at spatial infinity). A direct 
link between two separate pieces of the boundary does 
not seem to be possible and a unified formulation is ex­
pected to provide a possibility of going from one piece 
of the boundary to the interior of the space-time and 
then to the other piece of the boundary. Third, a uni­
fied formulation emphasizies the existence of a bound­
ary and its COO structure, leaving flatness as a secondary 
feature. This raises the possibility of defining bound­
aries for space-times which do not resemble asymptoti­
cally the Minkowskian space-time (e.g. for cosmological 
models). Obviously, there are many problems to be 
solved at spatial and (particularly) timelike infinity (e.g. 
uniqueness of the boundary, definition of physical fields, 
etc.). The presentation of a unified formulation before 
the solution of these problems will help us to have a 
complete and coherent picture of all fronts and thus be 
able to coordinate more effectively the attacks on the 
several problems. 

This work is based on many and lengthly results ob­
tained in three previous papers refering to null,13 spa­
tial ls and timelike12 infinities. These results are con­
sidered known and are not repeated here. Furthermore 
the notation of these papers is closely followed. 

2. GLOBAL ASYMPTOTIC SIMPLICITY 

AsymptotiC simplicity, as defined separately for nUll, 
spatial and timelike infinity, is a concept which guaran­
tees the possibility of imbedding the physical space­
time (~, g) into a space JI with a boundary and a C .. 
metric g on1 (including the boundary). In each case, 
i.e. for timelike, null and spatial infinity, a different 
tensor relation relates g and g. For timelike12 infinity 
this relation is 

jJ,"V_jJ,"AjJVPOI1.0IP=O-2g"'V _O-4g ",l.g VPO;l.n;p (1) 

for nu1l2 ,13 infinity 

(2) 

and for spatiaps infinity 

The first objective, in order to give a single formula­
tion appropriate for all three infinities, is to unify the 
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above formulas into a single formula. For this we ob­
serve that for Minkowski's space-time the component of 
the physical metric which diverges on the boundary too 
fast (in the appropriate coordinate system) is gll and 
Eqs. (1)-(3) serve exactly this purpose, i.e. they re­
place gll by gll so that its inverse g II does not diverge 
on the boundary. This is accomplished by the relations 
(gIW '" 0 -2g "") 

gll = 1 _ gll (timelike infinity) 

fIll =gll (null mfinity) 

gll = -1 _ gll (spatial infinity) 

(4) 

(5) 

(6) 

which are obtained from the tensor formulas (1)-(3) for 
jJ. = v = 1 in appropriate coordinates. Equations (4)- (6) 
are algebraic equations of first degree with respect to 
gll and gll [while (1)-(3) are quadratic]. The lowest de­
gree algebraic equation which contains (4)- (6) as spec­
ial cases is 

(7) 

or 

This equation should be obtained from a tensor relation 
in coordinates x" where 0 =Xl is the scalar field. From 
(8) we have the tensor relation 

.t;"V _ g"" - (gOTOlaOlr)g"~gVPOI~Olp - (garO;aO,r)g"~gVPOI~Olp 

+ (g0rOlaOlr)g"~g vPO,~ O,p + (jJarO,aO'T)g"~ go vPO;~ O;p = 0 . 

(9) 
This is an equation of the form f(g,~, 0) = O. It is the 
basic equation which determines ~ from g. It replaces 
all three equations (1)-(3) and it will be the essential 
condition in a global definition of asymptotic Simplicity. 

Definition: A space-time (JI, g) is (globally) asympto­
tically simple iff there exist 

(a) a space.,K with a nonempty boundary ~ (~-1), 
(b) a diffeomorphism f: U - f) - ~ from an open sub­

set U of JI to U - ~, where U is an open neighborhood 
of fl, 

(c) a set of disjoint submanifolds fli of ~ with U i~i 
=fl, such that on some open neighborhood OJ of each ~j 
a C~ metric g and a C~ sc~lar field 0 can be defined 
with 0 ~ 0 on ~p 0 >0 on U i - ~i and satisfying condition 
(9) on Uj" 

The concept of asymptotic simplicity can be general­
ized to include cosmological models. The only essen­
tial modification will be the replacement of Eq. (9) by 
some other equations, depending on the asymptotic be­
havior of space-times we want to consider. Since here 
we are interested in space-times which at large dis­
tances resemble Minkowski's space-time, we give the 
following definitions motivated from studies of asympt­
otic structure at the corresponding case: 

Timelike infinity .'T of an asymptotically simple 
space-time is the union of all flJ i 's for which 

(10) 

Null infinity JV of an asymptotically simple space­
time is the union of all flj 's for which 
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(11) 

Spatial infinity Y of an asymptotically simple space­
time is the union of all fli's for which 

(12) 

The question of existence of (globally) asymptotically 
simple space-times with one or more of .'T, A', Y (con­
nected or not) will not be raised here since we are in­
terested in space-times which have a particular com­
position of 3, A' and Y. It should be noted, however, 
that if 5', JV and/or Yexist, then they are respective ly 
space like , null and timelike hypersurfaces of.fi with 
respect to g. 

The usefulness of the relations (10)-{12) of the 
previous definitions lies in the fact that together with 
Eq. (9) determine uniquely g from g near .:I,fl andy. 
This is expressed by the following theorem. 
Theorem 1: Let.:l, jVandY be the timelike, null and 
spatial infinities of a (globally) asymptotically Simple 
space-time. Then in a coordinate system x" with 
H=Xl we have (i,j=0,2,3) 

(a) on an open neighborhood D T of :7 

gl1= 1_go11, 

gli =gli{_1+ l/g11), 

gil = giJ + gligIJ[1 _ 4g11+ 2(g1l )2] , 

(b) on an open neighborhood UN of ft 

gIJ. II =&UII , 

(c) on an open neighborhood D s of Y 

gli =gli(_l _1/g11), 

gil = gi j + gli gli (-1 _ 2g11) . 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Proof: In a coordinate system x" in which O==XI we 
have O;,,==HI"=o~ and Eq. (9) becomes 

(20) 

For j.L == v = 1 this equation reduces to (7) and gives three 
possible solutions expressed by Eqs. (4)-(6). On !/we 
have from Eqs. (10) glL~ 0 and gll~ 1 which are satisfied 
only if we accept (4) and reject (5) and (6). Thus Eq. 
(13) has been established. Using this equation and (9) 
we obtain (14) and (15) for Wd, v==i and !J.==i, v=j 
respectively. OnciVwe have from (11) gIl ~ 0 and gl1 ~ 0 
which are satisfied only if we accept (5). Then using 
(20) we have Eqs. (16). Finally, on Y'we have from (12) 
gll~ O,gll~ -1 which are satisfied only if we accept (6). 
Thus we have (17) and from (20) the remaining Eqs. 
(18) and (19). 

Equations (13)-(19) give explicitly the contravariant 
components of the unphysical metric tensor in coor­
dinates XU with 0 =Xl in an open neighborhood of the 
corresponding part of the boundary. Thus given (..iI.g) 
we can calculate g "V and g,," near:7, ft" and/or Y(if 
they exist) and examine whether they are C~ functions 
of x" (essentially of Xl) on the boundary. It should be 
emphasized, however, that the formulas (13)-(19) are 
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not identical to those given in the previous studies of 
asymptotic structure. Specifically, instead of (15) and 
(19) we have found respectively1Sol2 

g~J=ij+i1gJ1[(_1+ 1/g 11 )2_1] (21) 

and 

(22) 

the remaining of (13)-(19) being identical. Thus a 
qUestion is raised: It is possible to find that a space­
time is asymptotically simple (at Y. ft and/or Y) using 
the present unified formulation and not asymptotically 
simple using the separate formulation for :T. ft and/or 
.'I? In other words, are the two formulations equiva­
lent? Fortunately, the two formulations are equivalent, 
as it will be shown in the next section. 

3. GLOBAL ASYMPTOTIC FLATNESS 

The boundary r!lJ M of Minkowski's space-time consists 
of (a) the past Y;' and future yj, time like infinities, each 
one isometric to the spacelike hyperbolOid, (b) the 
pastfl~ and future.;V;' null infinities (or .f - and J+ in 
Penrose's notation) and (c) the spatial boundarY:/M, 
isometric to the time like hyperboloid. Thus the time­
like infinity is YM=Yit UYj"the null infinity ftM=/M 
Uftj, and the spatial infinity YM • The whole boundary 
f!lJ M =:TM UftM U .'1M is a three-dimensional well-known 
disconnected manifold which is the direct sum of five 
disjoint submanifolds with a three-metric on each. We 
relate now such a boundary with the concept of asym­
ptotic Simplicity. 

Theorem 2: For a (globally) asymptotically simple 
space-time the following conditions are equivalent: 

(a) The boundary f!lJ is isometric to r!lJM and on Y, fi 
and Y(r!lJ=:TUfiU:/) the conditions (10), (11) and (12) 
respectively hold. 

(b) The boundary r!lJ is direct sum of five diSjOint 
submanifolds Y-,:T + ,/-, AI+ and .'I. On some open 
neighborhood UT,uT,uN/h,u s of each of the above 
submanifolds there exists a coordinate system x" with 
U = w"'x 1 in which the following hold: 

(bl) On Or and OT we have gl1= w 2 + 0
3 

and (Xo=X, 
X2 =O,X3 =cp, -""<X<"" , 0, cp as usual) 

-1+°1 0!+01 °1 °1 

g".= 
O! + 01 13+ 01 1'+°1 6+°1 

°1 1'+°1 -sinh~ + 01 °1 

°1 0+°1 °1 -sinh~ sin20+ 01 

where Q!, I' ,Ii are arbitrary functions of X , 0, cp and 

(b2) On ON and lIN we have gil = _W2+ 0 3 and (X0 =u, 
X

2 =O,X3 =cp,_oo<u<+"",O,cp as usual) 
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(23) 

AW2+ 0 3 -1+°1 j.l.w+0 2 Vw+0 2 

g".= 
-1+°1 00 00 0 0 (25) 
jJ.w+0

1 00 -1+°1 °1 

Vw+0 1 0 0 °1 -sin2 O+01 

where j.I., v are arbitrary functions of u, e, cp and 

A=1-jJ.2- v2 s in-20. (26) 

(b3) On 0 s we have gll = _w2+ 0 3 and (xo= X ,x2= 0, 
x 3 = cp , _00 < X < +"" , 0 ,cp as usual) 

1+ 01 Q!+ °1 °1 °1 

g".= 
O!+ 01 13+ 01 1'+°1 0+°1 

°1 1'+°1 -cosh~ + 01 °1 

°1 0+°1 °1 -cosh~ sin20 + ° 1 

(27) 

where Q!, 1',0 are arbitrary functions of X, 0, cp and 

i3 = -1+ Q!2 _1'2 cosh-~ -0 cosh-~ sin-20. (28) 

Proof: Let (a) be true. Then Y- (or [+) has a neigh­
borhood Dr (or D;.) in which U= wand g ". is given by 
(23) in appropriate coordinates X, w, e, cp. From (10) we 
have gll = w2+ 0 3 and gll = I + 01' Comparison with gll 

obtained from (23) gives Eq. (24). Thus we have proved 
the case (bl). Similarly/- (or.;V+) has a neighborhood 
UN (or DN) in which U=w andg". is given by (25) but 
with goo = KW+ AW2+ 03' Calculating gll and setting it 
equal to -W2 +0 3 , as (11) suggest, we find K=O and;\, 
given by (26). Thus we have proved the case (b2). Si­
milarly we prove case (b3). The proof of (a) from (b) 
is simple. 

It should be noted that there are three more equiva­
lent expressions12ol5 of the conditions of the previous 
theorem similar to (b). These expreSSions involve re­
spectively g"., g ". and g".. Thus the tensor conditions 
of (a) can be expressed equivalently by the existence of 
coordinate systems where the unphysical or the con­
formal metric have specifiC forms. 

In a definition of asymptotic flatness the conditions on 
the boundary may involve the physical fields which 
have not been examined yet for spatial and time like 
infinity. At null infinity, however, the conditions ~~;". 

; 0 and C>"I1Pu ~ 0 have been included in the definition.13 
Thus it seems wise at this point to define a weaker concept 
and leave open the question of whether or not more condi­
tions are needed on Y and Y. Another reason justifying 
this attitude is the possibility that some ofthe space-times 
we want to call asymptotically flat may violate some 
of the conditions on some compact submanifold of Y. 
Thus we propose the following definition: 

Definition: A space-time is (globally) almost asym­
ptotically flat (or Minkowskian) iff it is globally asym­
ptotically simple, satisfies (a) or (b) of Theorem 2 and 
on !'fwe have 

(29) 
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(a) 

Ibl 

(e) 

FIG. 1. 

Using expressions (23), (25) and (27) we can obtain 
the general expressions of the physical metric near :/, 
v;lf or.'/. These expressions are identical with the gen­
eral expressions of the physical metric obtained in the 
separate formulations of timelike/2 nUll/ 3 and spatiaP5 
infinities. This is important since the formulas (15) 
and (19) of the present formulation are different from 
the formulas (21) and (22) and proves the equivalence 
of the two formulations. A more direct proof can be 
given by taking the difference (15) and (21) near .r and 
the difference of (19) and (22) near y. Using expres­
sions (23) and (27) we find after some calculations 
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that these differences are of higher order in wand con­
sequently do not affect asymptotic Simplicity. 

4. GENERAL REMARKS 

In this paper we have proposed a formulation for 
studying the asymptotic structure of a space-time si­
multaneously at timelike, null and spatial infinities. 
The space-times we considered resemble Minkowski's 
space-time and have been called almost asymptotically 
flat. Future work will show whether the word "almost" 
can be eliminated after adding some additional condi­
tions or should be simply omitted without any additional 
conditions. In any case we can draw a diagram for an 
almost asymptotically flat space-time. This diagram 
is similar to Penrose's diagram in the case of confor­
mal completion and shows the different parts of the 
boundary in a characteristic way. In the follow ing fig­
ures we have drawn the space-times generated by (a) 
a star, (b) three bodies of which one escapes eventually 
to infinite distance from the other two and (c) a collap­
sing and then exploding dust cloud. Note that Yis a 
single hypersurface. The same is true for ~;If+ and fi"­

separately. We can imagine as boundary the surface 
generated by rotation of each figure about an axis pass­
ing through the middle of.:r+ and .:r- (see Fig. 1). 
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fields with electric and magnetic charge distributions 
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In special or general relativity the electromagnetic energy tensor is usually taken to be e ab 
= (1!41T)(pacp bc - t,g"bPcdpcd). This expression may also be used in the generalized theory 
which allows magnetic as well as electric charge. Rund [J. Math. Phys.18, 84 and 1312 (1977)] has 
suggested a new approach to the generalized theory with an alternative form for the energy tensor. 
We show that in Rund's theory there are other possible definitions for the energy tensor. 
However, there is a strong indication that a particular energy tensor gives rise in a definite way to a 
corresponding Lorentz equation of motion. This equation is derived for each of the energy tensors 
and it is found that only e ab gives the Lorentz equation which is usually assumed in the 
generalized theory. Furthermore, the Lorentz equations arising from the other energy tensors will 
not give charge quantization. 

PACS numbers: 04.20.Me, 04.40. + c, 03.50. De 

1. ELECTROMAGNETIC FIELD TENSORS 

We use the notation I of general relativity. gab is the 
gravitational metric tensor with normal form diag ( - 1, 
+ 1, + 1, + 1). A semicolon denotes covariant differenti­

ation with respect to this metric. For a skew symmetric ten­
sor tab the dual2 tensor *tab is defined by *tab = ¥abcdtcd. It 
follows that **tab = - tab' 

Pab denotes the electromagnetic field tensor which sat­
isfies the generalized Maxwell equations: 

(1.1) 

where/, and sa are the electric and magnetic current 4-vec­
tors, respectively. In particular, for a fluid of dual-charged 
particles having 4-velocity field U a and electric and magnet­
ic charge densities €, y, respectively,ja = €U a and ~ = yU a

• 

In Rund's theory there are two underlying fields lab and 
Cab both skew-symmetric and with the following 
properties3

: 

l ab = 41T"j'" *fab = 0 ;b , ;b , 

Cab;b = 41TSa, *Cab;b = 0, 

Pab = lab + *Cab · 

(1.2) 

(1.3) 

(1.4) 

Equations (1.2)-( 1.4) together imply (1.1). Furthermore, 
(1.2) and (1.3) imply that electric and magnetic charge distri­
butions give rise independently to the fieldslab and Cab' re­
spectiVely. We regardlab and Cab as fundamental tensors 
describing the electromagnetic field rather than Pab . 

Equations (1.2) (ii) and (1.3) (ii) imply the existence of 
vector fields lPa, tPa such that 

(1.5) 

2. ELECTROMAGNETIC ENERGY TENSORS AND THE 
FIELD OF A DUAL·CHARGED MASS PARTICLE 

Let 

eab(p) = (l/41T)(pa.Fbe _ ~bp.P), 

where 

p.p = Pedped. (2.1) 

This has the same form as the classical electromagnetic ener­
gy tensor. Rund has suggested as an alternative4 

Tab(J,c) =:= (1/41T)((a.F be + cae *pbe _ ~bP.P). (2.2) 

pb has the following properties: (i) If Cab = 0, then Tab 
= eab(P) = eaV). (ii) Let L = R - p.p + 161T(tPJh - ehSh), 
where R is the curvative scalar. L may be expressed ex­
plicitly in terms of gab' first and second partial derivatives of 
gab' tPa, lPa, tPa;b' lPa;b' Ja, and sa, where Ja = ( - g)I/2 /' and 
sa = ( - g)I/2su. Let I = S '/ L dv, where!iJ is a 4-dimen­
sional region of space-time. 

Then: (a) Extremizing I with respect to variations in the 
gab subject to certain boundary conditions5 leads to field 
equations6 in the form Gab = 81TTab. (b) Extremizing I with 
respect to variations in tPa or lPu subject to certain boundary 
conditions leads to the generalized Maxwell equations (1.1).9 

There are other tensors which have similar properties to 
Tab. For example, let f = R - (/1 + fic·c) + 161T(tPJh 

+ /3lPhSh), where /3 is some constant. Extremizing sf dv 
with respect to variations in gab leads to a corresponding 
energy tensor 

(2.3) 

and extremizing sf dv with respect to variations in tPa and 
lPa again leads to the generalized Maxwell equations (1.1). 

For each of the energy tensors eab, Tab, and Eab one 
may determine a static spherically symmetric asymptotical­
ly flat solution of the coupled Maxwell-Einstein equations: 

(2.4) 

(2.5) 

where U ab stands for any of the above electromagnetic ener­
gy tensors. 

This has been done for e ab and Tab in Refs. 7 and 8, 
where it is shown that in a coordinate system (t, r, e, lP ) 

gab = diag(eV, - el, - ,-2, - ,-2 sin2 e), (2.6) 
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I' I' -2 A + V 
J 10 = - JOI = Er e --, other lab = 0, 

2 
(2.7) 

_0 A + V 
C IO = - COl = - yr -e --, other cab = 0, (2.8) 

2 

(E" + y2) E" - y2 
8lT(Jab = 4 ..1, 8lTTab = ..1, 

r r4 

where,j = diag (e", - e'" ?, ? sin2 
(J) and E and yare arbi­

trary constants which may be regarded as the electric and 
magnetic charges, respectively, of the mass particle. Equa­
tions (2.6)-(2.8) are obtained as a consequence of the as­
sumed symmetry and Eqs. (2.4) alone. Substitution into (2.5) 
now leads to 

A = - v, e" = 1 - 2m/r - k /? , (2.9) 

{ 

1 1 

h 
E- + y- for (Jab' 

were k = 1 0 

E- - y- for Tab' 

Turning to Eab , we observe that (2.6)-(2.8) still hold. Since 
Eab(f,c, /3) = (JabU) + /3(Jab(C) and 8lT(JabU) = E2,j /r4, we 
find that 8lTEab = [(E2 + /3f)lr

4],j and (2.9) holds with 
k = E2 + /3f. We see that for the field of a dual charged 
mass particle 

Eab = Tab if /3 = - 1, Eab = (Jab if /3 = + 1. 

3. THE LORENTZ EQUATION OF MOTION 

Chase I 0 has shown, using a method of Infeld and 
Schild, I I that in a certain sense, the Lorentz equation of 
motion 

(3.1) 

for a test particle of mass p, electric charge E, in a field F ab 

without magnetic sources is a consequence of the Maxwell­
Einstein equations (2.4) and (2.5). In his derivation Chase 

_1_ rfaJbe _ C a C be J 
4lT l ;b e;b 

Substituting (3.7), (3.8), and (3.9), respectively, into 
(3.6), using (1.1), (1.2) (i), (1.3) (i) and/, = EU

a, sa = yua we 
obtain the following equations of motion for the dual­
charged dust fluid: 

(3.10) 

(3.11) 

(3.12) 

Imagine that a small blob of dual charged dust is intro­
duced into an existing background gravitational cum elec­
tromagnetic field in a region which was previously devoid of 
matter. It seems reasonable to suppose that asp, E, y~ the 
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uses (Jab for the electromagnetic energy tensor and the Cou­
lomb potential for a point charge. It is quite possible that the 
method of Chase can be generalized to dual charged parti­
cles using any of the above mentioned energy tensors and the 
Coulomb potentials which correspond to (2.7) and (2.8). 
Each choice of energy tensor should yield a corresponding 
equation of motion. 

Smce the method of Chase is quite involved and the 
approximation procedure is difficult to justify, we present 
instead an elementary argument resting on different assump­
tions. Consider the classical theory of an isentropic perfect 
charged fluid. 12 It is assumed in this theory that mass density 
is conserved meaning 

(Pua);a = 0 

and that the energy tensor has the form 

S ab = (p + p)uaub + pg"b + (J ab, 

(3.2) 

(3.3) 

where p is mass densi ty, Jl is energy density, and p is pressure. 
Suppose that pressure is negligible so that we have a 

charged "dust" fluid. ThenJl = p and (3.3) becomes 

sab = puaub + uab, (3.4) 

where U ab = (J abo 
We will assume that, for a dual charged dust fluid, the 

energy tensor has the form (3.4), where U ab is one of the 
electromagnetic energy tensors (J ab, Tab, and E abo We also 
assume that (3.2) holds. The field equations imply that 

sab;b = O. (3.5) 

From (3.4) sab;b = (pUb );b Ua + pUb(Ua;b) + Uab;b' 
Using (3.2) and (3.5) we find 

pua + Uob;b = O. (3.6) 

Now the following expressions may be derived for Uab;b 
(see Appendix): 

(3.7) 

(3.8) 

(3.9) 

fields Fab and gab at events inside the blob will approach the 
background fields and that we obtain in the limit laws of 
motion for a test particle which have the same form as (3.10)­
(3.12) except that p, E, and yare interpreted as total mass, 
electric charge, and magnetic charge of the test particle'/ab' 
Cab' and Fob belong to the background field, and covariant 
differentiation is with respect to the background field. 

In the classical theory where r = 0 and F a
e = fa., 

(3.10)-(3.12) all reduce to the usual Lorentz equation ofmo­
tion which is thought to describe the motion of an electron in 
an external field provided the electron is not radiating sig­
nificantly. Hence there is some reason to believe that one of 
(3.10)-(3.12) may apply to dual charged elementary 
particles. 
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4. CHARGE QUANTIZATION 

In Sec. 2 we described the gravitational and electromag­
netic fields of a dual charged particle. Let us assume that r is 
sufficiently large so that we can replace (2.9) by eV = 1. Then 
(2.6) is the metric of fiat Minkowski space in spherical polars. 
We make the usual spherical polar transformation from (t, r, 
0, <p) to an inertial frame (t, Xl, x 2

, x 3
). Applying the tensor 

transformation laws we find from (2.7) and (2.8) that in this 
inertial frame, 

From (1.4) and (4.1) we then find 

Fab = [ _OEI ~I !: 
- E2 -B3 0 

-E3 B2 -B, 

(4.2) 

where E = Er!r\ B = yr/~. 
Suppose we have a test particle of mass m, electric 

charge e, and magnetic charge g moving in the above field. If 
the equations of motion (3.10)-(3.12) with a = 1,2,3 are ex­
pressed in terms ofE and B they become, respectively, 

d( mv ) {e(E+VXB)+g(B-VXE) (4.3) 
- 2 1/2 = eE + gB . (4.4) 
dt (1 - v ) eE _ 13gB; (4.5) 

(4.3) is the equation of motion which is usually assumed in 
the generalized theory. 

Schwinger '3 has given an account of the Dirac quanti­
zation procedure which uses (4.2) and (4.3). His method rest 
on the fact that, according to (4.3), the Lorentz force on a 
dual charged test particle moving in the field of a fixed dual 
charged particle is not along the line of the join of these two 
particles. If (4.4) or (4.5) were used instead of(4.3) the Lo­
rentz force would be along the line of the join and the argu­
ment would break down. Thus if the quantization procedure 
is regarded as a necessary part of the theory (4.4) and (4.5) 
must be rejected together with their corresponding energy 
tensors (2.2) and (2.3). 

APPENDIX 

Proofof(3.7): 

41T'Ou b;b = FueFbe;b + Fue;bFbe - !(F·F);a, (AI) 

*Fae *Fbe;b = ¥aepqFpq(!ebemnFmn);b 

= - VpqFpq;a + FpqFaq;p 

(using the skew symmetry of F) 

= - !(P.F);a + PpqFaq;p, (A2) 
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(AI) and (A2) give (3.7). 

Proof of(3.8): 

(F.F);a = 2FpqFpq;a 

= 2F pq Fpq;a + 2F pq*C pq;a 

= 2FP'1pq;a + 2*F
pq

Cpq;a 

= 4(FpqtPq;pa + *Fpq<Pq;pa)' (A4) 

Substituting (A4) in (A3) we find 

41T'Ta bob = fae;bFbe - CaeCbe;b + Fbe(fae:b - tPe:ba) 

+ *Fbe(Cae:b - <Pe:ba)' (AS) 

F bel fae:b - tP e;ba) = F bel tP e;ab - tP a;eb - tP e;ba ) 

= !Fbel (tPe;ab - tPe:ba) + (tPa:be - tPa;eb) 

+ (tPb:ea - tPb:ae)J; 

using the skew symmetry of Fub 

= !FbetP'(Recab + Racbe + Rbcea 

=0. 

Similarly * Fbe(cae;b - <Pe;ba) = O. 
Equation (AS) now gives the required result. Equation 

(3.9) follows directly from (2.3), (3.7), (1.2) (ii), (1.3) (ii), and 
skew symmetry offab, cab. 

'S. w. Hawking and G. F. R. Ellis, The large scale structure of space·time 
(Cambridge University, Cambridge, England, 1973). 

2R. Adler, M. Bazin, and M. Schiffer, Introduction to general relativity 
(McGraw-Hili, New York, 1975), pp. 92-93. 

'Equations (1.2)-( 1.4) are equivalent to Eqs. (2.33), (2.36), (2.38), (2.35), and 
(2.4) of Ref. 7. We have Cuh instead of - i·buh,alsoJu = (_g)1I2J'. Equa· 

tions (\.5) are equivalent to (2.31) and (2.32). 
·Reference 7, Eq. (3.10). 
~Reference I, p. 75. 
"The general theory leads to Tuh in the form 

81TTuh =-( 1)112 aa \(-g)'12(F.F-16rrjI/J,J"-¢>,,s"ll 
-g guh 

_ I a ( 112 
- -( -)'-12 -a ( - g) F·F). 

-g guh 

This can then be put in the form (2.2) as indicated in Ref. 7. 
7H. Rund, J. Math. Phys. 18, 84 (1977). 
xH. Rund, J. Math. Phys. 18, 1312 (1977). 
"These equations are easily obtained by applying (3.4), p. 65 of Ref. I, and 
using the fact that (·F.·F) = - F.F. 

"'D. M. Chase, Phys. Rev. 95, 243 (1954). 
ilL. Infeld and A. Schild, Phys. Rev. 21, 408 (1949). 
'2Reference I, p. 69-7\' 
"J. Schwinger, Science 165, 757 (1969). 
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The equations for coupled translational and rotational diffusion of asymmetric molecules 
immersed in a fluid are obtained. The method used begins with the Kramers-Liouville equation 
and leads to the generalized Smoluchowski equation for diffusion in the presence of potentials. 
Both external potentials and intermolecular potentials are considered. The contraction of the 
description from the Kramers-Liouville equation to the Smoluchowski equation is achieved by 
using a combination of operator calculus and cumulants. Explicit solutions to these equations are 
obtained for the two-dimensional case. Comparison of our results with earlier literature is also 
presented. 

PACS numbers: 05.40. + j, 51.90. + r 

I. INTRODUCTION 

In this paper we study the translational and rotational 
motion of molecules immersed in a fluid. The molecules ex­
perience translational and rotational Brownian motion as a 
result of the bombardment by fluid molecules. The descrip­
tion of this essentially stochastic process in terms of the 
probability-distribution function P(t,x) leads to a diffusion 
equation 

a a2 a 
-P(t,x) = Ialj(x)--P(t,x) + Ib;(x)-P(t,x) 
at ;J ax;axj ; ax; 

AP(t,x) (1) 

for all times t~O and all points x, x = (Q"q2,q3,cp,e,t/J). 
Q = (Q"Q2,Q3) describe the position and the Euler angles 
a = (cp,e,t/J) fix the orientation. The differential operator A is 
a diffusion operator. All eigenvalues of the symmetric ma­
trix [alj(x)] are non-negative. For translational diffusion AT 
is simply a diffusion constant multiplied by the Laplace op­
erator. Favro 1 derived the diffusion equation for rotational 
Brownian motion and was able to solve it for axial symmet­
ric molecules using the fact that the diffusion operator AR 
has the same form as the quantum mechanical Hamilton 
operator for a rigid body,2 the properties of which are well 
known. In general the translational and rotational motions 
are coupled in a complicated way. 

Already 50 years ago, Kolmogorov showed that under 
very general conditions a Markov process defined in terms of 
the transition probability F(t,x,x')dx' of finding a particle 
initially at point x in the infinitesimal small set dx' after a 
lapse of time t, leads to a diffusion equation. The probability 
density 

P(t,x) 1 F(t,x',x)P(O,x') dx' 
s, 

(2) 

satisfies Eq. (1). Sx is the space containing all points x. P (O,x) 
is the initial distribution at time t = O. 

The concept of a Markov process is an idealization of 
the underlying physical reality. For a complete dynamical 
description, it is necessary to consider the distribution func­
tionfc(t,xc> Yc) defined on the phase space Sx, XSy , consist­
ing of all points (xc, Yc) with Xc = (Q"Q2,Q3,cp,e,t/J) and the 
canonically conjugate momentayc = (p" P2' Po' Pd>' Pe, Pv,). 

The distribution function Ic (t ,xc, y c) satisfies the Kramers­
Liouville equation3

,4 

(3) 

L is Liouville's operator and K denotes Kramers operator, 
which describes the effect of all random forces acting on the 
Brownian particle. IfEq. (3) can be solved for some initial 
distributionfc (O,xc' y c) then it is possible to find an operator 
G (t,xc ) such that the averaged distribution P (t,xc) defined by 

P (t,xc)== f dyc Ic (t,xc> Yc) (4) Js 
" 

fulfills the first order differential equation in time: 

a 
-P(t,xc) = G(t,xc)P(t,xc)' 
at 

(5) 

In general nothing is gained, since G (t,x,) might be a very 
complicated operator. We will use the cumulant expan­
sion5,6 to approximate the operator G (t,xc)' 

G (t,xc) = I G Inl(t,X,). (6) 
n=1 

It turns out, that the diffusion operator A is the first 
nonvanishing term in the expansion (6). Equation (I), where 
A is now replaced by the second cumulant G 121(t,xc) 
[G l'l(t,xc) = 0], is a very good approximation of (5). K de­
scribes the time evolution of the distribution of the momenta 
due to random forces. The momentayc(t) can be considered 
as random variables, which very quickly become indepen­
dent. Yc (t ) is independent ofYc(t +..1t) if the lapse of time ..1t 
is large compared with the correlation time 1'k' It can be 
shown,7 that the nth cumulant is proportional to 

(7) 

fis a dimensionless quantity. f=1'kI1'. 1'is some typical mac­
roscopic time unit. 

Intuitively, it is clear that we obtain a Markov process 
on Sx described by (I) if the correlation time l' k of the mo­
mentaY,(t) becomes very small. It is the short correlation 
time which makes the higher order contributions small. 

The idea of deriving the diffusion operator A as the low­
est order of a cumulant expansion (6) is not new. The actual 
calculation of the operators A ,G 1.11, ... , is complicated by the 
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nonlinearity of the equation of motion for a rigid body. The 
time derivatives of the angular momentum L ' and transla­
tional momentum p' expressed in an orthogonal coordinate 
frame attached to the moving particle are 

£' =L'XI-IL' +N', 

(8) 

jJ' = p'XI-IL' + F'. 

N' and F' are the torques and the forces acting on the parti­
cle. The prime denotes vectors in the body fixed coordinate 
frame. I is the tensor of inertia. It is necessary to choose body 
fixed coordinates for both L ' and p' since otherwise the fric­
tion tensor C depends on the orientation [see (70)].8 

The purpose of this work is to analyze the rotational 
and translational diffusion in the most general case using a 
mathematically transparent method. We will show that 

(i) The generalized Smoluchowski equation is the lowest 
order contribution of G (t,x c ). Starting off with a Maxwell 
distribution at time t = 0 the diffusion tensor is time depen­
dent. For t < 1'k the diffusion tensor depends on the mass and 
the moments of inertia, and becomes stationary for t).1'k' 

(ii) The diffusion equation couples the translational and 
rotational degrees of freedom even in the simplest case. 8 As 
an illustration, the two dimensional diffusion equation is 
solved. The solutions are obtained in terms of exponential 
and Mathieu functions. (Sec. V). 

(iii) A suspension of N interacting Brownian particles 
leads to a diffusion equation for the N particle density 
P(t,x~I),X~2), ... ,X~N)). (Sec. IV). 

In Sec. II the operator calculus used later is introduced 
and applied to the translational motion. Section III treats 
coupled translational and rotational diffusion. 

II. OPERATOR CALCULUS, TRANSLATIONAL 
DIFFUSION 

The starting point of the theory is the Kramers-Liou-
ville equation.3

•
4 

a 
- f(t,q, p) = B f(t,q, p) = (L + K )f(t,q, pl. (9) 
at 

q are the coordinates describing the position, q = (ql,q2,q3) 
and p are the conjugate momenta. Liouville's operator is 

Lf= -m-Ip'~f+ au '~f 
aq aq ap 

u denotes the potential. Kramers operator is 

Kf=a~.(m-Ip + kT~)f 
ap ap 

It is convenient3 to work in the "interaction picture" 

f-e'K] 

(10) 

(11 ) 

(12) 

The exponential e'K is defined by a formal power series in tK 
and acts on the new functionj which is assumed to be smooth 
enough, such that the series e'K j=~: ~ 0 [(tK)n In!] j con­
verges. The smoother jthe smaller the contribution of (tK)n 
which is a differential operator of order 2n in the variable p. 
The time evolution for j is governed by the Kramers-Liou­
ville equation in the "interaction picture". 
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a - - - --f= e-IKL e'Kf L (t)f 
at 

(13) 

The operator L (t ) can be expressed in terms of the differential 
operators alaq and alap using the identity 

(14) 

The proof of this equation is found in Ref. 5. The operator on 
the right hand side is by definition 

e- [K.·IIL =L + f [K,·j"L [( - t)"lnfJ. (15) 
n~1 

The commutators [K,· j"L can be defined by recursion, 

[K,.j1L =[K,L ], 

[K,·fL =[K,[K,L]], 

[K,.]nL =[K,.]([K,.]n -IL). 

(16) 

We can calculate all terms in the infinite sum (15). Applying 
the commutator algebra discussed in Ref. 3 leads to 

L(t) = - e-la/m)I~. (L + kT~) 
aq m ap 

+ ela/mll ~ • (aU + ~). 
ap aq aq 

(17) 

In Sec. III the corresponding expression for translational 
and rotational motion is derived in great detail. 

Formally, the solution of(13) can be written 

j(t) = E(t 1l0=T exp ('ds L(sllo, (18) 
~ Jo 

in which T exp is the time ordered exponentiaLS jo is the 
.~-

initial distribution. The time ordered exponential must be 
used becauseL(t l) does not commute with L (t2 ) iftl #t2• We 
would like to derive the time evolution for the averaged dis­
tribution P (t,q), 

P (t,q)= J d 'p f(t,q, p) = J d'p e'Kj(t,q, p) 

= J d 3pj(t,q,p)=<i(t,q). (19) 

The third equality can be proved by expanding the exponen­
tial e'K. After integrating by parts, all but the lowest order 
term, which is], vanish. We can assume that 
j(t,q,p)lp,~ oc = O. 

We write the initial condition 
j(O,q, p) Jo(q, p) = fo(q, p) in the form 

fo(q, p) = g(q, p)Po(q), 

Po(q) = <fo(q)· 

With Eqs. (18)-(20) one obtains 

P (t,q) = f d 3p j(t,q, p) 

= J d 3p E (t )g(q, p)Po(q) 

_<E(t )gPo(q). 
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The operator (E (t) g is obtained by multiplyingg(q, p) from 
the left with E (t ) and integrating over the momentap. Differ­
entiating Eq. (21) with respect to t gives the time evolution 
equation 

:r P(t,q) = ( :r (E (t) Ii )(E (t); Ip (t,q). (22) 

We expect that the inverse (E (t ) g- 1 exists at least for small 
times. It may be obtained by the Neumann series9 

A -I = 1::;"=0(1 -A r. The operator 

G(t,q)=(:r (E(t)g )(E(t)g-" 

!... P (t,q) = G (t,q)P (t,q), 
at 

(23) 

depends onq sinceg(q, p) is a function on q andp. But in most 
physical applications the initial distribution of the momenta 
does not depend on the position q. In this case the operator G 
depends only on t. 

In order to calculate G (t 1 we use the cumulant expan­
sion,5-7 which is obtained by reordering the expression 

G(t) = n~o{[(t)!, exp Sa' [(S)dS)g \1- ~ exp Sa' [(S)dS):, 

(24) 
G(t) = :i GIl). 

1= 1 

Compare (18), (22), (23). G (I) contains all terms of the sum in 
(24) which are of order I in the operator [(s). The two lowest 
order terms are 

G(I)(t) = ([(t)g = Jd 3p [(t)g(P), 

G(2)(t) = fdS([(t)[(S)g - f ds([(t)g ([(s)g 

(25) 

= L ds fd3p [(t)[(S)g(P) 

-f ds f d 3p[(t)g(p) f d 3p'[(s)g(p'). 

The higher order terms are given in Sec. VI. 
We assume that the distribution in the momenta is ini­

tially a Maxwell distribution 

g(p) = (21TmkT)-3/2 exp( - p 2/2mkT). (26) 

In this case, it is easy to verify that the first cumulant G I I1(t ) 
vanishes for all times t~O. The second cumulant is 

G(2)(t) = kT ..!!..... (_1_ au + ~)(1 _ e-I(l/m)t). (27) 
a aq kT aq aq 

The time evolution equation (23) is, to second order in [, the 
Smoluchowski equation with time-dependent diffusion 
"constant", 
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A (t) = kT (1 _ e - (a/m)t), 

a 

-P(t,q) = -.A(t) -- + - P(t,q). a a ( 1 au a ) 
at aq kT aq aq 

J. Math. Phys., Vol. 23, No.2, February 1982 

(28) 

At t = 0 the diffusion constant vanishes since by assumption 
the distribution inp was given by a symmetric function, the 
Maxwell distribution. After a short time of order ml a the 
particles start moving until finally the Boltzmann distribu­
tion is reached. In order to illustrate the meaning of the time­
dependent diffusion constant A (t) we calculate the first and 
second cumulant with the initial distribution 
g( p) = o( P - Po). All particles have the same momentum Po 
at t = O. In this case the first cumulant does not vanish: 

G I1)- _el-a/m)tp m- I ~ 
{) - o· aq' (29) 

G~) = J... (e - la/m)t _ e - 2(a/m)t ) 

a 

+ J...(1 _ e--1a/m)t) ~. (aU + kT ~).(30) 
a aq aq aq 

In the limit t-+oo both expressions (27), and (29) and (30) 
agree, as they should. The operator G (t ) is independent of the 
initial condition for large times. The larger aim, the faster 
G (t) approaches the constant expression. For very large val­
ues of aim the dynamics governed by (23) approaches a 
Markov process. Formally the Markovian limit is obtained 
by first rescaling the time 7 = a - I t and taking the limi t 
a--+ 00. In this limit all higher cumulants vanish since they 
are proportional to higher powers of lIa. 

III. COUPLED TRANSLATIONAL AND ROTATIONAL 
DIFFUSION 

We consider particles of arbitrary shape in a fluid. The 
friction forces depend on the orientation. We will describe a 
proper choice for the variables. In Refs. 10 and 11 inconsis­
tent definitions which lead to wrong results are used. 

The position and orientation of each particle is deter­
mined by the six variables comprised in the sextuple x, 

(3 I) 

o is an arbitrary origin and C the center of mass. q I,Q2,q3 are 
the coordinates of the vector OC in the laboratory frame 
where el ,e2,e3 are three arbitrary orthogonal vectors of 
length one such that el Xe2 = e3, et cyclic. It is convenient, 
to choose the Euler angles a = (f/J,O,I/J) to describe the orien­
tation. 12 We will also use the body fixed coordinate frame 
e; ,e2.e; such that the tensor of inertia I becomes diagonal. 
The components of the vector e; expressed in the laboratory 
fixed frame el ,e2,e, are 

R (f/J,O,I/J)= [R/i(f/J,f),I/J)]. (32) 

The Euler angles are defined by 

R (f/J,O,I/J)=:=Rz(f/J )Rx(O )Rz(I/J)· (33) 

Rz (f/J ) and Rz (I/J) are counterclockwise rotations of a vector 
about the e3 axis. Rx (0) is a rotation about the el axis. 
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Rz(,p) = e"'T" 

R x (0 ) = eOT" 

Rz(tP) = e"'T,. 

The 3 X 3 matrices T I, T2, T3 are defined 

(34) 

(Tj)/rn = E ilm · (3S) 

Eilrn is the completely antisymmetric Levi-Civita tensor. Be­
sides the position x (31) we need the momentay, 

y = (p; ,P2,p;,L; ,L 2,L ;). (36) 

Both the translational momenta P' and the angular mo­
menta L ' are expressed in the body fixed coordinate frame. 
The tensor of inertia and the friction tensor depend only on 
the mass distribution and shape of the particle. They are 
independent of the orientation ifbody fixed coordinates are 
used. According to (32) the vector p' and p=mq, where m is 
the mass and the dot denotes the time derivative, are related 
in the following way: 

p' = R t(,p,O,tP)p 

= R -1(4),O,tP)P. (37) 

The angular momentum L ' is the product of the angular 
velocity w' and the tensor of inertia I, 

L' = Iw'. (38) 

With Eq. (37) the skewsymmetric angular velocity matrix 
n 13 expressed in the body fixed frame is 

n = R -lit (39) 

The matrix n and the pseudovector w' are related: 
3 

n= LW;Tj. (40) 
;= 1 

In order to obtain n in terms of the Euler angles a = (,p,O,tP) 
and their time derivatives we substitute in (39) for the rota­
tion R the expressions (33) and (34). Evaluating the time de­
rivative in (39) and multiplying R from the left with R -I 
leads to 

n = ¢ e - "'T'e - OT, T3eOT'e"'T, 

(41) 

We compare this expression with (40). Equation (41) can be 
simplified using the commutator algebra [Ti'~] 
= Eijk Tk • 2.12 One obtains for the angular velocity w' 

W2 = ¢ sin 0 cos tP - fJ sin tP, (42) 

w; = Ip + ¢ cos O. 

Now we are able to describe the motion of the particle com­
pletely. The phase spaceS" XSy consistsofallpairsz = (x,y) 
defined by (31), (36), (37), (38), and (42). 

A. Liouville's equation 

The motion of the rigid body is a solution of the canoni­
cal equations8 
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. aH 
x =-, 

c aYe 
. aH 

Yc = - -a ' 
Xc 

H(xc'yc) = 2~ IlpW + ~ '·I-IL' + U(xc)' 

(43) 

The canonical conjugate variables Xc and y c are Xc = X and 
Yc = (PI,P2,P3'P""PO'p",), The canonical conjugate mo­
menta for the angle variables a = (y,O,tP) are given by 
Pa = aT faa with T=!L '·1 -IL'. 

p", = L; sin 0 sin tP + L 2 sin 0 cos tP + L ; cos 0, 

Po = L; cos tP - L 2 sin tP, (44) 

p"'=L;. 

For every solution zc(t )=(xe (t), Ye(t)) ofEq. (43) Liouville's 
theorem holds, 

~ !c(t,zc) + Zc . ~ !c(t,zc) = O. (4S) 
at azc 

It would be more convenient to express the particle density 
distribution!c as a function of the variables z = (x, y) defined 
earlier, instead of as a function ofzc = (xc,Yc)' We define a 
new density 

f(t,z)=!c (t,zc (z)). (46) 

With the following identities, one obtains the Liouville equa­
tion (48) for the new density f(t,z). 

a az a 
-=--, 
azc azc az 

Z= ~z(t)=~z(zc(t))= ~zco 
dt dt azc 

az azc -- = 112 
azc az 

112 is the 12 dimensional identity matrix. We get 

~ f(t,z) + z ~f(t,z) = o. 
at az 

(47) 

(48) 

The transformation Zc = zc(z) is given by Eqs. (37) and (44). 
The Jacobian determinant is - sinO. For any observable 
0= 0 (ze) the expectation value EO =SdzeO (zc)!c(t,zc) can 
also be expressed in the new variables z = (q,a, P' ,L '), 

EO= fdzj Det(~;)jo(ze(Z))f(t,z) 

= f d 3qd,pdO sin OdtPd3 p'd 3L' 

XO(q,,p,O,tP,p',L ')f(t,q,,p,O,tP,p',L '). 

(49) 

Equations (4S) and (48) are formally the same but the mean­
ing of the differential operators a/azc and a/az are very 
different. 

(SO) 

The gradient a/axe is evaluated with the canonical conju­
gate momentaYe = (PI,P2,P3'P""P",) fixed. When a/ax op­
erates, the momenta y = (pi, P2' pi ,L 2,L i) are fixed. 
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(51) 

Rather than using (47) to calculate:i we got back to Euler's 
equation. 

a d a 
-.L - --.L=O. 
aXe dt a:( 

(52) 

The Lagrange function .L is.L = ~tM-'y - U(xe)' Mis 
the generalized inertia matrix 

M = (mol3 ~). (53) 

M is a symmetric 6 X 6 matrix. Keeping in mind that 
y = y(xcoxe) Eq. (52) can be written 

The derivatives ay/axe and ay/axe are 6X 6 matrices. Eval­
uating the time derivative gives J 

R (¢J,O,,,,) o 

A- ' = 
1 . .1. 

--S1O'I' 
sin 0 

o cos '" 
- cot 0 sin '" 

We can write the matrix A and B in block form, 

A= (
R -\ 

o 
0) B= fBI 

A' , \0
3 

BA -\ = (B\R BzA '-') 
\o3R B4A ,-I . 

Comparison of (37) and (44) with (58) gives 

y = MA (xc)xc' 

1 
--cos'" 
sin 0 

- sin '" 
- cot 0 cos '" 

(60) 

(61 

With (61) the matrix B can be expressed in terms of A. 
B = (d / dt)A - (a/ axc )Axc' The matrix B \R is therefore 
equalto((dldt)R -')R = -n.Bydirectcalculationwefind 
that also B4A ,- \ is equal to - n. The matrix B3 vanishes. 
This leads to 

Br'~ - ~ ( a "R - \ . A' - I)] -£.. il.: ql.: il aaj i,k • 

n 
We define the differential operator D x , 

Dx=A -\t~. 
ax 

According to (57)y is 

. (P'XOJ') 
y = - Dx U(x) + \L 'xOJ' . 

300 J. Math. Phys .• Vol. 23. No.2. February 1982 

(62) 

(63) 

(64) 

ytM- ' ay +yt(M- 1 !!.. ay -M- ' ay ) 
aXe dt aXe aXe 
au + -(Xc)=O. 
aXe 

The following definitions are useful: 

Alk= ~ M-1 ay", 
£.. 1m -a' , 

m ~ I Xck 

B lk = ± M ,-;;, I(!!... ay", _ ay",). 
m ~ I dt aXek aXek 

Equation (54) can be solved for y. The result is 

(55) 

(56) 

yt = _ aU(xJ A -I _ ytBA -I. (57) 
ax 

au / ax = au / aXe in agreemen t with (51) since the poten tial 
U does not depend on the momenta. From the transforma­
tiony = y(xc'xe ) given by (37) and (44) one obtains for the 
matrix A 

A~C-':MI 
0 

sinO sin", cos'" 0) (58) 
sinO cos'" - sin", o . 

cosO 0 1 
The inverses of this matrix is 

(59) 

We used the fact that the following contribution vanishes: 

" ,. B(R ") £..R ii ql -a ike ql.: 
I,k aj 

I" a (R-1'R- 1') = - £.. - i/ q/ il.: qk 
2 I,k aaj 

=..!.~ IIR -lq112 = ..!.~ IIql12 = O. 
2 Baj 2 aaj 

Equation (64) is Euler's equation of motion for a rigid 
body. The differential operator Dx is explicitly given by Eqs. 
(111) and (112).In the following it is more convenient to write 
the last term in Eq. (64) as a quadratic form iny, 

(Y)n = - (Dx U(x))n + 2:a/mnYIYm, 
I,m 

= I(Cln)M-1 +M-1c(n)t) almn ~ 1m' 
(65) 

C ln
) = (~ Tn) 

o ' 

Cln+ 3) = (~ ~J, n = 1,2,3. 
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The tensor almn is defined such that almn = amln . With these 
definitions we obtain Liouville's equation (48) in the form we 
will use it in the following. 

a {_ - f(t,x, y) = - yM '·Dx + (Dx U(x))·V 
at 

(66) 

The operator i·a/ax in (48) and (51) is equal toyM-'·Dx 
sincey = MA (x)i [(61),(63)]. V denotes the gradient with re­
spect to y with components V n ==.a/ay". 

B. Kramers-Liouville equation 

The motion of the particle is influenced by an external 
potential U and a "Brownian fluid," which is composed of 
molecules which exert fluctuating forces and torques, 

Ii (t) = (F(t ),N (t)). (67) 

In the absence of an external potential the equation of mo­
tion is 

y = - r '" ds r(t - s)y(s) + Ii (t). (68) 

For a derivation of the generalized Langevin equation (68) 
see Ref. 14. The friction tensor r (t ) is proportional to the 
correlation of the fluctuating forces Ii (t), 

r(t) = _1 (Ii(O),Ii(t). 
kT 

(69) 

The symmetric tensor r (t ) is independent of the momenta y 
for heavy solute molecules. In the following we will use the 
"Markovian limit". 

y = - Cy + Ii (t ), C = LX> r (s)ds. (70) 

The following discussion can be generalized simply by re­
placing the 6 X 6 matrix C with the corresponding expression 
in (68) in all equations. 

In Ref. 14, Eq. (68) was derived from a linearized set of 
the equation of motion. Therefore one does not have to dis­
tinguish between the laboratory and the body fixed coordi­
nate frames. The difference consists of quadratic terms 
L ' X u/ and p' Xu>'. The idea is that over a short time of the 
order of the relaxation time both frames do not differ very 
much. After combining the stochastic equation (70) with 
Newton's equation, we can follow the orbit over an arbitrary 
long time and must therefore distinguish between both co­
ordinate frames. The equation of motion containing the 
forces due to the fluid and the external forces is 

(71) 

In Refs. 10 and 11 the term p' X u>' is omitted. The general­
ization of Liouville's equation including stochastic forces 
can be obtained from (71).5 The result is the Kramers-Liou­
ville equation 
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~f= (L +K)J, 
at 

Lf= -yM-'.Dxf+(DxU).Vf- 'Ialm"YIYmVnJ, (72) 
I,m,n 

K/= V·C(M -'y + kTV)f 

The operator K is known as Kramers operator. 

c. The operator [ 

In the translational case it proved very useful to go to 
the "interaction picture". 

f= e'K j, 

L(t)=e-IKLe,K=L+ n~,[K,.]nLC~;)"). (73) 

The operator L consists of three terms. 

L = Lo + Lf + Lq, 

Lo = - y.M-'Dx ' 

Lq = - 'IalmnYIYmV", 
Imn 

(74) 

The calculation of the ope~tors Lo and LI does not pose any 
difficulties. However, for Lq the situation is different since 
Lq contains quadratic terms in q. The commutators with K 
become more complicated. 

All operators needed in (74) are contained in the algebra 
generated by XI' Ym,v",a/ax i • The position and momenta 
are independent. From the definition (51) we obtain 
[V",XI] = 0 and [a/ax"Ym] = O. The partial derivative 
a/ax i is evaluated with the momentay = (p',L ') held con­
stant. The differential operator (Dx), (63) also commutes 
withYm and V n for all components i,m,n. The only nonvan­
ishing commutator needed for the calculation of Lis 

(75) 

The operator Lo(l) is given by the infinite sum 
Lo(l) = Lo + 'I.:;' ~, [K,. rLo(( - t )"/n!). In order to sim­
plify the notation we introduce the matrices C and C and the 
operator i5., 

C-CM-', C-CkT, Dx--M-'Dx. (76) 

Kramers operator becomes 

K = V.Cy + V.ev. (77) 

The operator Lo is Lo = y.Dx . The first time-dependent term 
in the expression for Lo(t) is equal to - t [K,Lo]' This com­
mutator is 

[K,Lo] = [V.Cy,y.i5.] + [V.ev,y.Dx ] 

= 'I C"/(Dx)m [Vn YoYm] 
n,l,m 

+ ICn/(Dx)m[VnV1,Ym}' 
n.I,m 

(78) 

The following identities hold for arbitrary operators A,B,C: 

[A,BC] = [A,B]C + B [A,C], 

[AB,C] = A [B,C] + [A,C]B. (79) 
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With (79), (78) becomes 

[K,Lo] = Ien,(Dx)rn{Vn[y"Ym) + [Vn,Yrn)yJ 
n,/,m 

+ I Cn,(Dx)m {Vn [V"Ym) + [Vn,Ym )vJ. 
n.l.m 

With (75) and using the fact that the matrix C = CkTis sym­
metric, 14 leads to 

[K,Lo] = Dx'Cy + 2Dx·Cv. (80) 

For the higher order commutators one obtains 

[K,.JnLo = Dx·Cny + 2 I Dx·CrnC(-ct)'v. 
rn+'~n-I 

(81) 

This equation can be proved by induction on n. The calcula­
tion is similar to the calculation of [K,LoJ. We observe that 
the matrix CrnC is symmetric for all m>O since 

CrnC =CM-ICM-I .. ·CM-ICkT 

= (CmC)t = CCtm. 

C and M are symmetric. Using this property the last term in 
(81)becomes2~m+'~ n- I Dx·Cm(C)'Cv. The sum vanished 
for even n. For odd n it is equal to 2Dx·Cn- ICv. 

{ 
Dx·Cny, n even 

[K,. JnLo = D .Cn + 2D .en - ICv n odd. 
x y x , 

The final result for the operator Lo(t ) is 

Lo(t) = f [K,.]"Lo[(-ttln!] 
n~O 

(82) 

= Dx.e- ICy + Dx.(etC - e- tC) C-ICv, (83) 

and with the definitions of C, C, and Dx [(76)] one obtains 

Lo(t) = - y.M-IE( - t)Dx 

+kTV.[E(t)-E(-t)]Dx. (84) 

The matrix E (t) is the exponential 

E (t )==etCM 
'. (85) 

The corresponding expression used earlier for the transla­
tional motion 

- P . ~e-Ia/m)t + 2kTsinh(!!.... t) ~. ~ 
m aq m ap aq 

is a special case of (84). It is remarkable that no higher than 
second order derivatives appear in Lo(t )! 

The calculation of the operator Lf is similar. One 
obtains 

Lf(t) = V.E(t)[DxU(x)). (86) 

In the final step we calculate the operator Lq which is qua­
dratic in the momentay. This leads to major complications, 
but it turns out that the operator Lq(t) contains no higher 
order derivatives than a third order derivative in the mo­
mentaq. 

We will write Lq as the scalar product of two vectors 
with 63 = 216 components [(74)]: 

Lq= - a·(y® y® V). (87) 
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In order to find the commutators [K,. ]"Lq we make the an­
satz that there exist some vectors Win), Xln), yin), Zln) such 
that 

[K,. rLq = Wln).( y ® y ® V) + Xln)*·v 

+ yln)(y® V ® V) + Zln)·(v ® V ® V). (88) 

The vector X In)*ER6 is defined X rlo"==~,x 17k. The definition 
of the nth commutator [(16)] [K,.]nLq = [K,.]([K .. r-ILq) 
allows us to derive recursion relations for the vectors Win), 
Xln), yin), zln). 

Lemma: WIO) = - a, X (0) = 0, y(O) = 0, Z (0) = 0, 

Win + II = Wlnl..!' 

xln+ I) =Xlnlfl + wlnlE 

yin + II = ylnly + Wlnll/l 

Z In + I) = Z In)cp + WlnlE 

The 216 X 216 matrices y, Cp, E, I/I,..!' are defined 

..!' = C ® 1 ® 1 + 1 ® C ® 1 - 1 ® 1 ® ct, 
y= C® 1 ® 1 - 1 ® ct ® 1 - 1 ® 1 ® Ct, 

cp = - C t ® 1 ® 1 - 1 ® ct ® 1 - 1 ® 1 ® Ct, 

E=2C®1®1, 

1/1 = 41 ® C ® 1, 

fl= -1®I®Ct . 

(89) 

(90) 

1 is the 6 X 6 identity matrix. Wrlrn is symmetric in the first 
two indices Wrlrn = Wlz~ for all n = 0,1,2, .... 

Proof All these relations follow directly from the defi­
nition of xlnl, yin), Win), Zln) [(88)] and the definition. of the 
commutator [K,.]"[(16)]. 

The following equations are true for arbitrary vectors 
Xlnl, yin), Wlnl, zlnl with the only restriction that Wlnl is 
symmetric in the first two indices. 

W~1m = WIZ~· 
(1) [v.cy,xln)*.v] = (Xln)fl )*.V, 

(2) [V.Cy,Wln).(y® y® V)] = Wln)..!'.(y® y® V), 

(3) [v.cy,ylnl.(y®V® V)] = ylnly.(y®V®V), 

(91) 

(4) [V.Cy,Zln).(v EB V EB V)] = Zln)cp·(v ® V EB V), (92) 

(5) 
[v.CV,Wlnl.(y® y® V)] = (Wln)E)*.V + Wln)I/I.(y® V ® V), 

(6) [v·Cv,yln).(y® V ® V)] = yln)E.(V EB V ® V), 

(7) [v·Cv,Zlnl.(V ® V ® V)] = O. 

The proof of these equations is mostly straightforward. For 
instance, the first equation is 

[v.Cy,xlnl*.V] = I CapX~)· [Va yp,Vy ] 

a,p.l' 

= " C Xln)·v (- 0 ) = Xln)*( - et).v 
~aPl' a ap 

a,/3,l' 

= (Xlnl)*.V. 

The fifth equation is different since there are two different 
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types of terms: 

[v.Cv,Wln).(y@ y@ V)] 

= I CapW~l.{(Va[Vp,yy] + Y6 V.) 
u,{3,y,6,. 

+ (Vu,Yy]VpY6V. + YyVu [Vp 'Y6]V. 

+ Yy [Vu'Y6]VpV.}. 

By assumption W~2. = W~~. and [Ya,V{3] = -8ap , This 
gives the result 
[v.Cv,Wln).(y@ y@V)] = (Wln)E)*·V + Wln)I[I.(y@V@V), 

The proof of the other equations is similar. 
We define the vector valued function Wit ):R---+R216

, 

Wit )= I (( - t )nln!) WIn) (93) 
n=O 

and similarly X *(t), Y (t), and Z (t ). The recursion relations 
(89) for Win), X*ln), yIn), and zln) lead to the differential 
equations 

W(O) = - a, X(O) = 0, Y(O) = 0, Z(O) = 0, 

W(t)=-W(tj..!', 

X(t)= -X(t)D- W(t)E, 

Y(t) = - Y(t)r - Wit )1[1, 

Z(t)= -Z(t)</>-Y(t)E. 

(94) 

These differential equations can be integrated and the results 
are 

Wit) = - a exp( - t~), 

X(t) = a So' ds exp( - s~ )Eexp((s - t]D), 

Y(t) = a So' ds exp( - s~)1[1 exp([s - t] r), 

Z (t) = - So' dsY(s)E exp([s - t]<1». 

(95) 

With these expressions the final result for the operator L (t ) is 
with (84), (86), (88), (95): 

L(t) = - y·M -IE(t)Dx 

+ kTV.[E(t) - E( - t )]Dx 

+ V·E(t)[DxU(x)] (96) 

+ W(t).(y@y@V)+X*(t).V 

+ Y(t ).(y@V@V) + Zit )·(V@ V @V). 

This is the Liouville operator in the interaction picture. The 
quadratic term Lq caused all the additional terms. Even if 
they are not explicitly known, we will be able to show that 
they do not contribute to the first and second cumulants. 

D. First cumulant 

We calculate the cumulants under the assumption that 
initially the distribution in the momenta y is a Maxwell 
distribution, 

g( y) = 1 e - y,M - 'y/2kT. (97) 
(21TkT)3(det M)J/2 
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The first cumulant is according to (25) 

GII)(t) = f d 6yL(t)g(y). (98) 

We use expression (96) of L (t) and integrate by parts. The 
contribution at the boundaries vanish. The remaining terms 
are integrals over odd functions in y m' which vanish. The 
first cumulant is identically zero for all times t;;;'O, 

G(I)(t)P(t,x) = o. (99) 

E. Second cumulant 

The second cumulant gives the first nonvanishing 
contribution, 

G (2 )(t) = L ds J d 6yL(t)L(s)g(y) 

with [(96)] 

G(2)(t) = - fdS f d 6yy.M- IE(-t)Dx 

X [- y.M-IE( -s)Dx 

+ kTV.{E(s) - E( -s)}Dx 

+ V.E(s)[DxU(x)] + W(s).(y@ y@V) 

+ X*(s)·V + y(s)·(y@ V@ V)]g(y). 

(100) 

(101) 

The remaining terms of the productL (t)i (s)vanishafterinte­
grating by parts. The only term left from the operator L (t ) is 
- y·M -I E ( - t )Dx • Also the term Z (s)·(V @ V @ V) van­
ished after integrating by parts three times. 

At first we can show that the contribution due to the 
terms W (sH y ® y ® V), X *(s). V, and Y (s).( y ® V ® V) cancel 
each other. We will show that the following integral vanishes 
for k = 1,2, ... ,6 and all times s;;;.O: 

(102) 

+ Y(s).(y® V ® V)]g(y). 

We recall thatSd 6y Yi Yj g(y) = MijkT. Again integrating 
by parts (102) becomes 

Jds) = - I(kTWnmk(S)Mnm + Xnnds) - Ynnds)). 
n,m 

(103) 

The function Jds) may be written as 
Jk (s) = 'I.;; ~ oJ~n)( - sl" In!. For the constants J~n) one ob­
tains, according to (93), 

J~) = - L (kTW~~kMnm + X~~k - Y~~k)' (104) 
n,m 

The recursion relations (89) allow us to define J ~ ) in terms of 
J (I-I) 

k , 

J~) = I (kTW~1,:;',Mk'I,C;"'k +x~;;;,I,;"Cm'k 
I',k',m' 

YII-I) c-t ) + k'k'm' m'k' 

Comparing this expression with (103) shows 
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J (/I- - "J(/-IIC-t - (J(!-IIC-t) 
k - £.. k' k'k - k' 

k' 

The vector J ~I vanishes because X (01 = ylOI = 0 and 

l:k'!' W~)!'mMk'!' = - l:k,!,ak'!'mMk'l' 

(106) 

= -! Tr(Clml +M-Ic(mltM) = 0 [(65), (89)]. This 
shows that J~I = 0 for alll and k. Therefore 

Jds) = 0, s>O. (107) 

The integration of the remaining four terms in (101) is 
straightforward. One has to keep in mind that the matrix 
M -IE (t) is symmetric. 

The final result is 

!!.... P (t,x) ge G 121(t)P (t,x) 
dt 

= Dx·A (t)(Dx + kIT (Dx U(X)))P(t,X). (108) 

The time-dependent diffusion matrix is 

A(t)=kTC-I(I-e- tCM
'), t>O. (109) 

Equation (108) is the generalized Smoluchowski equation for 
coupled translational and rotational diffusion. Since we 
started with a Maxwell distribution at t = 0, the diffusion 
matrix A (t) is time dependent. Equation (108) includes as a 
special case the translational diffusion and the rotational dif­
fusion discussed in Ref. 1. The operator D x depends on the 
orientation a = (f/J,e,¢). 

(110) 

(Ill) 

.1. J '.1. I J e' J cos 'I' - + sm 'I' -- -- - cot sm ¢-
Je sin e Jf/J J¢ 

D = a . J I J J 
-sm ¢- + cos ¢---- -cot ecos¢-

Je sin e Jf/J J¢ 
J 
J¢ (112) 

The rotation R (f/J,e,¢) is defined in (33) and (34). The expres­
sion for Da follows from (59) and (63). Usually the friction 
tensor C is split into four 3 X 3 matrices. 

_ (CTT CTR ) C- . 
CRT CRR 

For axialsymmetric molecules it is easy to show that 
CTR = CRT = 0.8 In this case the diffusion equation is 

!..-P(t,q,a) = {Dq,.AT(Dq, + _I_[Dq, U(q,a)]) 
& kT 

( 113) 

(114) 

+ Da.Ar(Da + kIT [Da U(q,a)]) }p(t,q.a), 

with . 
At = kTC TTl (1 - e - tCrm ), 

AR = kTC RRI (1 - e - tCRRI '), t>O, 

The diffusion of translational and rotational degrees of free-
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dom is still coupled even if the potential U vanishes, since 
D q" dependsona. In Sec. V we will solve (114) in two dimen­
sions for U (q,a) = O. 

In Refs. 10 and II, different expressions for the opera­
tors corresponding to Dq , and Da , which are wrong in our 
opinion, are used. Instead of D a the operator 
J = - iqx(J/Jq) was used. J is, up to a constant factor, the 
quantum mechanical angular momentum operator for a ro­
tatingpoint particle. Both operators Do and Jhave the same 
commutator algebra since they are both infinitesimal gener­
ators of a representation ofSO(3). Do and J correspond to 
two different representations; see (136). A connection be­
tween J = - iqx(J/Jq) and the three Euler angles (f/J,e,¢) 
also used in Refs. 10 and II is not obvious. 

For axially symmetric particles one can factorize the 
angular dependence of P (t,q,f/J,e,¢) in ¢. The operator D;; is 
in general not equal to..:1 I r ~ I , the Laplace operator in 
spherical coordinates on the unit sphere. This is only true if 
we set J /J¢ = O. Ifwe consider only axial symmetric mole­
cules and do not distinguish between two orientations which 
differ only by a rotation about the axis of symmetry, then we 
may use D;; I ¢ =..:1 I r ~ I ; see (136). Reference 10 obtained 
wrong results by setting J 2 = ..:1. 

It is important to keep in mind that the operator D q' 

depends on the orientation. Dq , is the gradient along the 
body fixed coordinate axis. If Dq, is replaced by Dq = J/Jq 
one obtains wrong results. 10,11 The coupling of translational 
and rotational diffusion of the two dimensional model dis­
cussed in Sec. V is a consequence of the a dependence of D q' , 

only. 
These claims will be justified in detail in Sec, V. 

IV. N PARTICLE DIFFUSION 

We consider N particles moving in a fluid interacting 
via arbitrary forces. In general the N particle density 
P (t,x(\),x(2i, ... ,x(NI) is not the product of the distributions 
P (t,xlil), where xiii denotes the six coordinates of the ith parti­
cle Xiii = (qlI),alil), The N particles are correlated. The inter­
action energy is 

U (Xi I),x(2), ... ,xIN I), 

For an arbitrary observable 0 (xiI),Xi21, ... ,xINI) depending on 
the position and orientation of the particles 1 ",.,N the expec­
tation value is defined 

EO (t)== f dllxP(t,X)O (x) ( 115) 

with X=(XiI),xI21, ... ,XINI), The volume element dll
x 

is the 
product measure 

N 

dll x = II dqVldq~ldq~ldf/J Iii sin e lilde lild¢lil. (116) 
i= 1 

The objectives of this section is to derive the evolution 
equation for the N particle density P (t,x) based on the 
Kramers-Liouville equation for the N particle motion. For 
the complete description of the N particle dynamics all posi­
tions xiii and all momenta ylil are required, 
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(117) 

z(t )=(ZOI(t ),z<21(t ), ... ,z<NI(t )). 

These variables are connected with the canonical variables 
zc(t) through the transformation (37) and (44) applied on 
every single coordinate zll" i = 1, ... ,N, 

(118) 

Liouville's equation holds for the density fc (t,zc) since the 
determinant of the Jacobian matrix of the flux zc(t) is equal 
to 1 as a consequence of Hamilton's equation. 

('1/') _ aH ('Iil) _ aH (119) 
Xc k - a-( Iii) , Yc k - - --;;--( II') 

Yc k Xc k 

for k = 1,2, ... ,6 and i = 1,2, ... ,N. The Hamiltonian function 
is 

H(x, y) = ~ f ylil.Mlil-1 yI" + U(xllI , ... ,xINI). 
2 i~ I 

The matrix MIt) is the generalized inertia matrix (53) of the 
ith particle. Liouville's equation is 

~ fc(t,zc) + Zc . ~ fc(t,zc) = O. (120) at azc 

Zc is determined by (119). The expectation value of an ob­
servable 0 (zc) is obtained by 

(121) 

dlLc is the volume element in the phase space (Sx< XSyXN. 

(122) 

Instead of the canonical variables Zc we use again z. The 
transformation of the density Ic, the observable 0, and the 
measure dlLc are 

f(t,z)= fc (t,zc (z)), 

\ 
azc \ dlL= Det a; dz 

N 12 

= II sinO Iii II dz~l. 
i~ I k~ I 

The expectation value of the function 0 (z), 

EO (t ) = f dlL f(t,z)O (z), 

agrees with the definition (121). 

(123) 

(124) 

The Kramers-Liouville equation for the N particle 
problem has the form 

(125) 
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K II' is the Kramers operator acting on the ith particle, 

KII'==VII'·CII'[MII,-lyll' + k1VII,], 

VII'=~. 
ayl" 

(126) 

The Kramers operator is the direct sum of the individual 
operators K II' acting on the ith particle. The forces due to the 
fluid are completely random and not correlated at different 
positions. 14 The correlation matrix of all components of all 
random forces and random torques, which is a 6N X 6N ma­
trix, is the direct sum of the correlation matrices ell'. There­
fore Eq. (126) is justified. With L II" the Liouville operator 
acting on the ith particle, the Kramers-Liouville equation 
(125) is the sum of Nformally identical operators, 

~ f(t,z) = .f (L II' + K (I')f(t,z), 
at i~ I 

L Iii = - yI".MII,-IDxlil + Dxll, U(x).VI I
' 

_ all'.( ylil 6) yI" ® Viii). (127) 

All operators L Iii are connected through the potential U (x). 
Equation (127) contains the complete N body dynamics. 

Since [K II"L II'] = 0 for i:# j we have 

N 
= L e - IK")L II' e,K") 

i~ I 

(128) 

The operator D"(t ) are given in Eq. (96) after replacing z by 
zlil, and Mby Mlil. The evolution equation for the density J 
defined by f =e,K J is therefore 

a - N _ _ 

- f(t,z) = L L lil(t )f(t,z). (129) at i~ I 

Suppose the momentum distribution is Gaussian 
initially, 

N 

g( y) = II g( ylil), 
;= 1 

As in the one particle case the first cumulant vanishes. 

= jtl f d 6 
ylJ'j;IJ'(t)g(ylJ')P(t,x) = O. 

The second cumulant is 
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G(2)(t)P(t,x) = LdS f l( d 6
y(i1 It I mtl L(ll(t)[iml(s) jU, g(yVl)P(t,X) 

= L ds It, f iU, d 6yliIL(lI(t)L(lI(S) jU, g(ylll)P(t,X) 

+ L ds Itm f iU, d 6ylilL(ll(t )[iml(S) jU, g(yUI)P(t,X) 

= {It,GIZI(lI(t) + I~m L ds G(lI(lI(t) G llIl
m

l(s)}p(t,X). (132) 

The second term vanishes because all first cumulants 
G 1111/1 I = 1, ... ,N are zero. The remaining term is the sum of 
the cumulants calculated for the one particle dynamics. The 
N particle diffusion equation is 

a P( (II INI) ~ D A lil( ) - t,x , ... ,x = £... xli)'/1 t 
at i=' 

X (DXI/l + kIT Dx1i) U(XIIl, ... ,xINI)) 

X P (t,XIIl, ... ,xINI), 

A Ii)(t) = kTCIi) -, (1 - e - te",M'i) '). (133) 

This is the generalization of the Smoluchowski equation for 
N interacting translating and rotating particles. 

V. CORRELATIONS BETWEEN THE VARIABLES q AND a 

We consider the one particle diffusion equation (114). 
In general the positions and orientations are correlated. The 
correlations are not only caused by the potential U = U (x), 
x = (q,a) or by non vanishing elements of the matrix 
CTR = CkT' We will show that, if the positions q and the 
orientations a are uncorrelated at t = to there are in general 
correlations for t> to even if the potential vanishes and also 
CTR = O. 

A. Axially symmetric particles 
As an illustration we consider axially symmetric parti­

cles. In this case one can show that CTR = O. '5 Ifwe identify 
the axis of symmetry with the e; axis the matrices C TT' and 
C RR' are diagonal. 

o 
a 

o 

o 
b 

o 
(134) 

We assume that we know the distribution at time t = to, 
where to is large compared with the translational and rota­
tional relaxation time of the momenta. 

to>mllC iTlll and to>IIC RRI] II, 

~ P(t,q,a) = kT [aD~. + (a3 - a)(Dq')~ 
at 

+ bD; + (b3 - b )(Da)~ ]P(t,q,a) 

for t> to. (135) 

This equation is a special case oft 114) where we used expres­
sion ( 134) for the friction tensor. We also used A (t ) ~ k TC - I 

for f>to. 
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The differential operators (Dq. )Z, (Dq')~' D;, and (Da)~ 
are given by Eqs. (Ill) and (112). 

(Dq• f = Ll q , 

(Dq.); = aa . B (a) ~; Bij(a)=R3i(a)R3j(a), 
q aq 

Z a
z 

1 (a Z a Z ) 

(Da) = aze + sinze azq) + aZI/; (136) 

-2 cose ~~ cote~ 
sinze a¢; al/; + ae ' 

2 a2 

(Dab = aZI/;' 

Llq is the Laplace operator in Cartesian coordinates. 
We define the new density P (t,q,¢;,e), 

P(t,q,¢;,e) = f dl/; P(t,q,¢;,e,I/;). (137) 

Integrating Eq. (135) on both sides with respect to I/; leads to 

a [ a a - P (t,q,¢;,e) = kT aLlq + (a3 - a) - . B (¢;,e)-
~ ~ ~ 

+ bL1 I r= I k(t,q,¢;,e). (138) 

The matrix B (a) defined in Eq. (136) does not depend on 1/;. 

B (¢;,e) = (:~:: ~:::) ® (:~:: ~:::). 
cos e cos e 

(139) 

The contributions of Eq. (135) which contain a deriva.tive 
with respect to I/; vanish after integrating by parts. Therefore 
the operator D; reduces to Ll I r = , , the Laplace operator in 
spherical coordinates on the unit sphere. 

(140) 

We assume that the initial condition factorizes. For t > to the 
solution of (138) has the form 

P(to,q,¢;,e) = POt (q)POR (¢;,e), 

P(t,q,¢;,8)=PT(t,[PR])PR(t,¢;,8), t>to' (141) 

The function PT(t) is also a functional of the distribution 
P R (t ). P T(t ) and P R (t ) are probability densities, 
Sd 3q P(t,q, [PR ]) = 1 and Sd¢;d8 sin 8PR (t,¢;,e) = 1 for all 
times t> to' The boundary conditions are: P T(t,q, [P R ]) = 0 
ifqi = 00 for some i = 1,2,3. Substituting(141)intoEq. (138) 
and integrating with respect to ¢; and e (using the weight 
sin 8) leads to Eq. (142). Similarly one obtains (143) by inte-
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grating with respect to q. 

~PT(t,q,[PR]) = kT{aLl q + (a 3 - a) 
at 

xL fd,p sin edeBij(,p,e)p R (t,,p,e) ~~} 
iJ aqi aqj 

xPT(t,q,[PR ]), (142) 

~ P R (t,,p,e ) = kTM I P R (t,,p,e ) for t'~to· 
at r~ I 

(143) 

The second equation describes the "Brownian motion on the 
unit sphere." The eigenfunction of Ll I r ~ I are the spherical 
harmonics Ylm (e,,p ). Substituting a solution P R (t,,p,e ) of 
(143) into Eq. (142) one obtains an expression which is for­
mally a diffusion equation with time-dependent diffusion co­
efficients. The off diagonal elements of the diffusion matrix 
vanish if the distribution P R (t,,p,e ) is uniform. 

Similarly, one can show that for arbitrary molecules 
with CTR = o a solution of the form (141) (including tP) exists, 
if the positions and orientations are uncorrelated at time 
t = to and if U = o. 

B. Diffusion in two dimensions 

In two dimensions the diffusion equation without exter­
nal potential can be solved for arbitrary initial conditions. 
Equation (108) reduces to 

a 
- P(t,ql,q2',p) = AP(t,ql,q2',p), 
at 

A = (~')'A (,p) (ai') + kTy ~:, 
aq2 aq2 

(144) 

A (,p) = kT (a cos
2

,p + f3 sin
2

,p 
( f3 - a) sin ,p cos ,p 

( f3 - a) sin ,p cos ,p ) 
a sin2 ,p + f3 cos2 ,p . 

(145) 

kTa, kTf3, and kTy are the diffusion constants correspond­
ing to the degrees of freedom ql' q2, and,p. We assume that 
a> f3. We use the following identities to simplify the matrix 
A (,p): 

a cos2 ,p + f3 sin2 ,p = a + f3 + a - f3 cos 2,p, 
2 2 

a sin2 ,p + f3 cos2,p = a + f3 _ a - f3 cos 2¢>, (146) 
2 2 

2 sin ,p cos,p = sin 2,p, 

0) + kT€ ( co~ 2,p 
1 - sm 2,p 

- sin 2,p) . 
- cos 2,p 

(147) 

8 is the average translational diffusion constant and € is a 
measure for the asymmetry of the particle. 

8==. a + f3, €= a - f3 . 
2 2 

(148) 
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Without solving (144) explicitly it is already possible to make 
some statements about the lowest moments of ql' q2, and,p. 
One obtains the following differential equations for the ex­
pectation values ( ... ), = fdq, dq2 d,p ... P(t,ql,q2',p): 

d 
dt (ql), = 0, 

!!. (q~), = 2kT8 + 2kT€(cos 2,p )" 
dt 

!!. (q Iq2), = - 2kT€(sin 2,p )" 
dt 

!!.(cos2,p), = -4ykT(cos2,p)" 
dt 

!!. (sin 2,p ), = - 4ykT (sin 2,p ) I' 
dt 

This leads to 

(cos 2,p ) I = e - 4yk Tt (cos 2,p ) 10 ' 

(149) 

(qi>, = 2kT8t + ;y (1 - e- 4ykTt)(cos 2,p )'0 + (qi>,o' 

(150) 

(qlq2), = ~y€ (1 - e- 4ykTt )(sin 2¢> )'0 + (qlq2),o' 

The calculation of arbitrary expectation values (0) I' 
0= 0(ql,q2',p) can be reduced to the problem of finding the 
eigenvectors and eigenvalues of the diffusion operator A in 
Eq. (144). 

(151) 

For the symmetric case a = f3 the solutions of (151) are 

./,' (q q A.) = _1_..!.. eik,q, eik,q, sin(lrl- ) 'f'k,k,t I' 2,'f' 1TI/2 L 'f' , 

(152) 

~ ( A.) 1 1 ~ ~ 'f'k,k,/ ql,q2,'f' = ----u2 - e ,q, e ,q, cos(l,p ). 
1T L 

We choose a box oflength L and assume periodic boundary 
conditions, 

(153) 

The possible values for k
" 

k 2, and I are 

2n1T 2m1T 
k, = ± T' k2= ± T' n,mEN 

(154) 

/=0,1,2, .... 

In the general case a > f3 we make the ansatz that the eigen­
functions can be written 

tPk,k,/(ql,q2',p) = )12 ~ eik,q, eik,q'gk,k,/(,p ). (155) 

One obtains the following differential equation for the un­
known functiongk,k,M) [(144), (147), (151)]: 
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[ - o(k i + k ~) - E(k i - k ~) cos 2cp 

+ 2Eklk2 sin2cp + r a~2 2 - AZ';I ] gk,k,M ) = O. 

(156) 

We define the complex wavenumber k', 

k '=:=k , + ik2' 
(157) 

The exponentials can be combined to cos(2[cp + tP)). Equa­
tion (158) is equivalent to Mathieu's equation. 16 

d 
- Y/(Z) + (al(r) - 2r COS2zlY/(Z) = 0, 
dz 

(k~ + k~)(a -p) 
r= -------

4r 

(159) 

(160) 

The eigenvalues al(r) of Mathieu's equation are negative for 
certain values of r and 1,16 but the eigenvalues Ak k I are al-
ways less or equal to zero for all klk2' and I. ' , 

Equation (159) has a complete set of orthogonal solu­
tions cel(r,z) and sel(r,z) with the corresponding eigenvalues 
denoted by al(r) and bl(r).16 The eigenfunctions of (151) are 

1 1 'k 'k 
tPk,k,/(ql,q2'CP) = 1T1/2 Le' ,q'e' ,q'sel (r,cp+arctan(k2Iktl) 

1 1 'k 'k 
tPk,k,/(ql,q2'CP) = 1T1/2 Le' ,q'e' ,q'cel (r,cp + arctan(k2Iktl)· 

(161) 

since {tPk,k,l,tPk,k,/} is a complete set of orthogonal eigen­
functions of the diffusion operator (151), the expectation val­
ue (0), can be found by 

(0), = J dq 1 dq2dcpP(t,q\,q2,CP)0(q\,q2'CP) 

'" ,t"" P 0 = L e ,. k,k,1 k,k,1 (162) 
k,k,! 

,t' + I e ',kI P k,k,1 0 k,k,[' 
k,k,1 

The coefficients Ok,k,I' 0 k,k,I' Pk,k,I' P k,k,1 are obtained from 
o (ql,q2'CP) and the initial distribution P (to,ql,q2'CP ). 
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Ok,k,1 = J dq l dq2 dCPtPt,k,dQI,q2,CP)0(ql,q2'CP) 

=(tPk,k,!'O), 

o k,k,1 = (tPk,k,/'O), 

Pk,k,1 = (P (to),tPk,k,l)' 

P k,k,1 = (P (to),tPk,k,I)' 

(163) 

As an illustration we consider the following two observables: 

OS(q\,cp )=sin(k,q\)se\(r,cp), 
(164) 

OC(ql'cp )=sin(k,qtlcedr,cp), 

withk , = 21TILandr = ~(a - P )/rL 2. Weassumethatthe 
asymmetry is small. In this case r( 1 and the Mathieu func­
tions se I and ce I are approximately 

r 
cedr,cp )~cos(cp) - - cos(3cp), 

8 

se\(r,cp )~sin(cp) - ~ sin(3cp). 
8 

The corresponding eigenvalues are 

al(r)~ 1 + r, 

b,(r)~ 1 - r. 

The eigenvalues A ± k,OI and A '± k,O\ are 

A±k,O\ ~ - kT(r+ t2 (3a +P)). 

A '±k,OI ~ - kT(r + t2 (a + 3P)). 

( 165) 

(166) 

(167) 

and for the expectation values of 0 sand 0' one obtains 

(0'), ~ce- kTll'+ (rr'IL'il3a +{3))', 

(168) 

(0 "), ~c'e - kTll' + (rr'IL 'lia + WII'. 

The constants c and c' can be written c = (0 c,P (to)) and 
c' = (0 ",P (to)). 

The state 0 C decays faster since we assumed a > p. a corre­
sponds to the diffusion along the e; axis of the molecule. In 
the state 0 C the molecule axis e; is mainly parallel to the e I 
direction of the laboratory frame; in the state 0 se; is mainly 
parallel to the e2 axis. The average speed of the molecules in 
state 0 C is bigger in the direction e I; e I is also the direction of 
the spatial inhomogenity. Therefore 0 C decays faster than 
0". This example is typical for the type of coupling of q \,q2' 
and cp, which occurs in the translational and rotational diffu­
sion if the otential Uvanishes and also CTR = O. 

VI. CONCLUDING REMARKS 

We have shown that a "contraction of the description" 
is achieved when a Kramers-Liouville process is averaged 
with respect to its momenta variables. The second cumulant 
of an ordered time evolution cumulant expansion yields the 
generalized Smoluchowski equation as the contracted de-
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scription. We have examined the details of the dynamical 
operator algera generated by the contraction procedure for 
translational and rotational degrees of freedom, and for as 
many as N distinct particles. 

A more thorough description of the higher order cumu­
lants, shown to be small here, will appear in a forthcoming 
paper. 
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Three bases in the Hilbert space of tensor fields on the unit spheres associated with two 
independent vectors are discussed: the tensor spherical harmonics and the symmetric and 
unsymmetric tensor helicity harmonics. Under the conditions which we specify they form 
complete sets of independent Lorentz co variants which may serve the purpose of the analysis of 
reactions with several particles in the final state. 

PACS numbers: lUO.Cp, 03.65.Fd 

1. INTRODUCTION 

The Lorentz co variants written in the Cartesian basis 
have been the traditional theoretical tool to analyze the lep­
ton- and meson-induced processes on nucleons and nuclei. 
Though manifestly covariant, the technique frequently does 
not fit the purposes of the physical investigations, e.g., al­
ready the basic problem of selecting the independent covar­
iants may prove to be practically insoluble in many cases. 

It is our experience that the tensor harmonics in the 
spherical and helicity bases constitute a convenient, highly 
flexible framework for the construction of the Lorentz co­
variants: The most important mathematical properties of the 
tensor harmonics follow directly from the well-known for­
mulas of the angular-momentum algebra. The construction 
of the independent sets of covariants is straightforward. 
Orthogonality properties ofthe tensor bases make the calcu­
lations of rates and other physical quantities much easier 
that with the cumbersome Cartesian techniques. Besides 
these technical advantages two gratifying properties of the 
new formalism constitute its main merit and should be men­
tioned. First, the relativistic tensor harmonics allow a natu­
ral unification of the theoretical treatment of a big class of 
different physical processes. Second, the formalism, though 
fully equivalent to the covariant Cartesian expressions is ac­
tually very much similar to the familiar nonrelativistic mul­
tipole-expansion formulas. Therefore, the physical results 
may always be easily interpreted by a direct extrapolation to 
the domain of classical nuclear physics. Using the tensor 
harmonics, we need not perform any "nonrelativistic reduc­
tion" which is normally done, e.g., via the Foldy-Wouthuy­
sen transformation. Namely this is the step which frequently 
makes the treatment of physical processes unwieldy and 
brings in the approximations which are usually difficult to 
control. The trick here is indeed in choosing the appropriate 
reference frame. It is the Breit frame which being fully ap­
propriate physically, gives simultaneously an enormous sim­
plification of the formulas. 

The formalism of the relativistic sth order tensor spheri­
cal harmonics has been presented recently by Daumens and 
Minnaert. I For the corresponding analysis performed in the 
helicity basis we refer the reader to the paper by Akyeam-

pong. 2 As a matter of fact the method was first introduced by 
Stech and Schtilke3 who have considered, however, only the 
specific case of nuclear beta-decay. Recently, Delorme4 pre­
sented the application of the relativistic spherical tensor har­
monics in the context of the so-called elementary-particle 
theory of nuclear currents. The treatment in Refs. 1-4 is 
always limited to the one-variable harmonics which corre­
spond to the case of binary reactions. 

Here we shall present our results concerning the two­
variable Lorentz-covariant tensor harmonics in the spheri­
cal and helicity bases. It will be shown that they provide 
actually the most general description of the multivariable 
tensor fields, which may be needed in the analysis of any 
reaction of the type a + b-+l + 2 + .. , + n. 

In Sec. 2 we define the spherical tetrads and build I,lP the 
second-order tensor spherical basis. Section 3 is devoted to 
the (scalar) spherical harmonics in two variables. There we 
display the reduction formula which permits an easy elimi­
nation of those harmonics which can be expressed as linear 
combinations (with scalar coefficients) of the harmonics 
which form the basic set. In Sec. 4 the second order tensor 
spherical harmonics in two variables are introduced and 
their most important properties are listed. In Sec. 5 two dif­
ferent forms of tensor harmonics in the helicity bases are 
deduced from the two-variable tensor spherical harmonics 
constructed in the preceding section. Finally, in Sec. 6, we 
indicate, using a particular example of the reaction with 
three particles in the final state, how the formalism of the 
present paper may be applied and indicate some of its merits 
in comparison with the Cartesian expressions. 

2. TENSOR SPHERICAL BASIS 

First we have to introduce a set of orthogonal4-vectors 
on which to define the projections of the tensor fields. Fol­
lowing Daumens and Minnaert I we choose three spacelike 
vectors e~" (n = ± 1,0) on the unit sphere S 2(e) embedded in 
the subspace E 3(e) orthogonal to the timelike vector eC:=el" 
The complex vectors <" satisfy the following conditions: 

«")* = ( _ 1)'+" + le~-", 

<"«"')* = 8",8"",. 

(1 ) 

(2) 

We use the Pauli metrics (i.e., al'bl' = a·b = a·b - aobo) and 
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the usual summation convention for repeated Greek indices 
!It = 0, 1,2,3). Note that three vectors e!"(n = ± 1,0) form 
the ususal three dimensional spherical basis. 

The spherical components of an arbitrary vector al-' in 
the basis just introduced are given from the decomposition 

(3) 
m 

This means 

aOO a eoo aIm = a"e},m. = I-' 1-" r r 
(4) 

The construction of the tensor spherical bases of an ar­
bitrary order has been discussed in detail by Daumens and 
Minnaert. I We shall deal with the second-order tensor basis 

(5) 

only, where the symbol [: : :] denotes the Clebsch-Gordan 

coefficient. The parity and orthogonality properties of basis 
(5) read as follows 

p.t (r,r,jrn = ( _ l)r,r,t (r,r,jm 
• I-'A I-'A , 

t (r,r,jm.t (r,rVn'j = D D D D ,( _ l)r + n 
f.lA J.lA r,rj r::r2 rr' - N" • 

3. SPHERICAL HARMONICS IN TWO VARIABLES 

(6) 

(7) 

The relativistic spherical harmonics may be introduced 
by taking the projections of an arbitrary unit 4-vector ul-' on 
the basis e~n. The construction as performed, e.g., in Ref. 1, 

1 1[(21+1)"JI/2 Ym(u) =(-1) .. (u ®u ®"·®u ) 411"/! 1-'. 1-', 1-'1 

1 

x [I - 1 I ] eln""eln, (8) 
m l _

1 
n

l 
m 1-', 1-'1 

holds for the purely spacelike vectors (i.e., uoe = 0) only. 
This condition, however, is not restrictive, since we shall 
work in a reference system defined by a timelike vector 
QI-' = (O,Qo)' Then, choosing the spherical basis in such a 
way that eC: = QI-'/( - Q 2)112, we may always instead of an 
arbitrary vector al-' consider the vector 

iiI-' = ar - (QaIQ 2)QI-" 

whieh is orthogonal to el-': 

iiI-' .eC: = 0, 

(9) 

(10) 

and then define the unit 4-vector ul-' = iil-'/(ii2)112. In this 
way, since the time components of ul-' vanish, the spherical 
harmonics Y~ (u) defined in (8) on S2(e) become identical 
with the usual spherical harmonics as defined, e.g., in Ref. 5. 
In the simplest case I = 1 we have 

~ 411" 
U" = -I"y~(u)e~n •. 

3 m 
(11) 

Proceeding to the case of two variables u and v, we con­
struct as usual the objects, which transform according to the 
irreducible representations of the rotation group: 
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((/J2)/m) = ! Ydu)Yt,(v) Lm 
= L [II 12 I] Y~, (u)Y~. (v). (12) 

m,m, m l m2 m -

The bipolar harmonics5
•
6 (12) form a complete orthonormal 

basis on the unit sphere embedded in E 3: 

J dfludfly! Yt,lu)Yt,(v)li':" I Yt,(u)Yt,(v))/'m' 

= D/ I' Dtt , D/I' Dmm, . 
t I :;> 2 

The product in the Hilbert space is 

! (/1/2)lm II (I; I ;)/'m') 

1 •• ,.":,,,[/1 I; L] [/2 I; L'] 
= - L IJllzl211 

411" LL :; MOO 0 0 0 ° 

(12a) 

{
II 12 I} 

x[~ ~, ~] ~ ~;, ~ ((LL').YMI, (12b) 

w;,h 'h' usual' nota';on t :} for 'h, 9j symbol. Th' 

parity operator acts on the bipolar harmonics as follows 

for! (l1/2)lm I = ( - lr' + t'{(/1/2)lm). (12c) 

For each given value of I we would like to keep only 
independent terms of the infinite-dimensional basis (12). By 
independent we mean such terms which cannot be expressed 
through the remaining ones as their linear combination with 
scalar (i.e., depending only on u\ v2

, and U'V, and their pow­
ers) coefficients. The basic identity which will be needed for 
the separation of the independent bipolar harmonics is easily 
obtained as the relation between the two coupling schemes 
((st )/1(st ')/2;lm) and ((ss)O(tt ')/;lm) of the four momentas, t, s, 
and t': 

! Ys(u)Y.(v))oo! Y,(u)Y,,(v))tm 

s 

;la(stl, )a(st' I,ll Yo, (u, I Yo, (vii 'm ' t I 

( 13) 

In deriving (13) we have used the expansion 

Y;-",(u)Y:",(u) = 2:a (stld[m
s 

II ]Y~ (u), (14) 
1

1
m, s m t m 1 I 

a(st/
l

) = it [s II], 
fl~411" ° ° 0 

where a = (2a + 1)112. 
In order to construct a set of independent bipolar har­

monics one should express (where possible) the given har­
monies ((1/2)lm) with "large" value of ~ + 7; through ones 
with I( + 12 < ~ + 7;. Using (13), hcan be done in the follow­
ing manner. Take s > 0 and define t = ~ - s>O, 
t' = 7; - s>O. Now Eq. (13) can be rewritten in the form 

~~i{~; s 7;; s ~}a(s~ - s~)a(s7; - s7;) 
II 12 I 

x! Yr.(u)Yr,(v) 11m 
= (Ys(u)Ys(V)}oo! Yr, -s(u)Yr, _s(v)!tm (13') 
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where the prime on the summation symbol reminds us that 
the term with II = ~, 12 = l; (i.e., maximal value of II + 12) 
has been extracted and written explicitly on the lhs. Now it is 
easy to see that if there exists such value of s > 0 (certainly it is 
more suitable to choose s as large as possible) that 
T. + l; - 2s;;. 1, then the harmonics [T.l;)lm 1 can be ex­
pressed as requested above, with [ (ss)oo 1 playing the role of 
scalar coefficient. Simulataneously one sees that Eq. (13') 
breaks down in the other cases and there exist 

I harmonics with T. + l; = I + 1, and 

I + 1 harmonics with T. + l; = I, ( 15) 

which can not be further decomposed. We have shown that 
the infinite-dimensional set (12) always contains just 21 + 1 
terms which are independent in the above sense. 

Concerning the case of the spherical harmonics in n 
variables it should be noted, that further generalization of 
(12) is actually not needed. In physical applications which we 
have in mind we always deal with the four-dimensional Min­
kowski space. In this space there are only four independent 
vectors, that is the timelike vector Q/1 = (O,iQo) and three 
spacelike vectors, e.g., u/1 ,v/1' and €/1af3yQa uf3vy , Any other 
vector can be obtained as their linear combination with sca­
lar coefficients. Therefore, the prescriptions (12) and (15) are 
sufficient to obtain the multivariable spherical harmonics as 
well. 
4. TENSOR SPHERICAL HARMONICS 

The second-order tensor spherical harmonics in two 
variables are defined as 

(I,t,)lJM _ [ I 
T(y,y,)ywdu,v,Q) - L 

mn m 

r ~ ] [Y1, (U)YI, (vll 1m 
n 

( 16) 

The generalization to the tensor harmonics of an arbitrary 
higher order is straightforward. 

Using the properties (6) and (7) of the basis tensor t ~;(,)Yn 
and those of the two-variable spherical harmonics (12) we 
may easily see that 

(i) the tensors T(I,I,)IJM for I + I = II + 1 form a set (r 1r 2 )rfl). I 2 , 

of independent Lorentz covariants, 
(ii) they satisfy the identity 

T(I,t,)lJM(_U _vQ)=(_I)I,+I'T(I,I,)lJM(uvQ) (17) 
lr l "2)"11A , , (r l ".-:-)"11...1. " • 

Now, recalling the definitions of tensor 
p 

V (u v)-( - 1)8"0 4 I)AoV (- U - v) 
~lA , 11..11..' 

and pseudotensor 
p 

A (u v)-( - 1)8,,0+8Ao + IA (- u - v) 
ILA , 11A , 

operators, we can easily see that the tensor harmonics (16) 
transform under the parity operation P-like tensors (pseudo· 
tensors) if the sum II + 12 + r l + r2 is even (odd). 

(iii) T(I,I,)lJM are othonormal on the unit sphere S 2(e) 
(rlr~)rllll. 
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embedded into the space E 3(e) orthogonal to the vector e~: 

fdfl dfl (T(I,I,)lJM)*T(lil,)I'J'M' 
u v (y,y,)w\ (ri y,ir'/1'\ 

(18) 

(iv) the scalar product of T:::~"f in the four-dimensional 
space is 
T(I,I,)lJM .T(l·II;)l'J'M' 

(y,y,)Y/1'\ (riy,)"I"'\ 

= [['ii' tt [, [, 8 .8 .8, ~ [II 
4 I 2 I 2 Y,YI Y,Y, YY £.t 0 

1T stx 
~] I' I 

o o 
m,mtm_, 

x [~s ;J[~ J' ;J m, M' 

r 12 

~}~'(UIY~M' X W(/rxJ';JI') I} I' 2 

( 19) 

where W( .... ; .. ) denotes the Racah coefficient, and 
(v) the number N~) of independent tensor harmonics of 

an arbitrary order s is 
J+r 

N~) = Ln~') L (21 + 1) = Ln~\)(2r + 1)(21 + 1), 
Y I ~ IJ - r, y 

(20) 

where n~) is the statistical weight of the corresponding basis 
tensor. E.g., for the second-order (s = 2) spherical harmon­
ics (19) with t (y,y,)Yn we have n (2) = 2 n (2) = 3 and n (2) = I' ILA. 0' 1 , 2 , 

therefore 

N~) = 16(21 + 1). (21) 

Note that while it seems to be actually impossible to count 
the number of independent Lorentz co variants when work­
ing with the Cartesian forms, in the spherical basis the result 
(20) has been obtained in a very natural and elegant way. 

5. TENSOR HARMONICS IN THE HELICITY BASIS 

The helicity basis state analogous to those of Jacob and 
Wick7 are introduced here in a slightly formal way, and 
therefore, the interpretation in terms of conserved quantities 
may be lost. Nevertheless, the technique has proved to be 
very helpful when a particular direction may be chosen ac­
cording to the nature of the physical problem. We keep call­
ing helicities the projections of the (internal) angular mo­
mentum (vectors e~n of the basic tetrads) on the directions 
iJlC{J1 and iJ2C{J2 connected with the scalar harmonics (8) 

(22) 

and 

(23) 

considered above. The one-variable tensor harmonics in the 
helicity basis have been discussed in substantial detail by 
Akyeampong.2 We shall follow his definitions and notation 
where possible. 

In our case the second order helicity tensor basis may 
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depend on three variables Q .. ,u .. , and v ... [The dependence 
on Q .. comes through If just as in the case of the spherical 
basis (5).] Indeed, we can writeS 

el" = ID ~~(971810)€lk(u), (24) 
k 

el" = ID!t. (972820)€lk,(v), (25) 
k' 

and consider any combination of the tetrads ~k(U) and €;ik(V), 
The particular choice of the tensor helicity basis certainly 
depends on the character of the physical problem to be 
solved. Taking the helicity basis in the form €/'(U)~,k,(V), we 
can define the helicity-basis tensor harmonics 

SI,f,k,JM(U v Q) },f,k",.. " 

m' 2 ~] 

which are in the following way connected with the tensor 
spherical harmonics: 

~: I (ss)oo I ~ [~II t2 ~ ]D ~l (9718 10jD ;l, (9728 20) 
72 

s 
tl t2 

T(/,I,ILJM A A AA [I '2 
(f,f,lfl''' = Il/i'I'1 '2 , 2 

[

I 12 I} 
j,k"1 i2 J 0 kl 

X [/2 '2 i2] . k SliT. ,JM( Q) o k2 k2 j,f,kll''' u,v,. (27) 

The tensor helicity basis can also be chosen to depend on two 
variables, say Q .. and u .. only: €~,k'(u)€;i,k,(U), The corre­
sponding tensor harmonics will have the following form 

jl,JM Q _ Ji2 ~[i 12 J] U (f,f,lrkl''' (u,v, ) - 4 ~ / M 
1T m'm, m m2 

XDj!,d9718 10)D ~;O(972820) I [k'l '2 k'] 
k,k, 1 k2 

X €,/'(u)€1k,(u). (28) 
Now we list some useful properties of Sand U: 
(i) The harmonics (26) and (28) form the sets of in de pen­

dent (see Sec. 3) Lorentz covariants if just 2J + 1 different 
pairsiJ2 (j12) are taken for each combination of 
'lkl'2k2('I'2,k). The reduction formula which allows us to 
fix these restrictions and thus to deal with the independent 
covariants only can be easily obtained in the same manner as 
Eq. (13). It reads 

~ kl,J)t. ~}[' t2 il ][s i2] I [il 
J.h • 

i2 J 0 Po PI 0 P2 /32 m.m2 m. 
(29) 

1 
(ii) The parity operator acts on them according to 

Sj,f,k,JM( _ u _ v Q) = ( _ lY', + j, + r, + r,SI,r, - k,JM(U v Q) 
h T2k lP). , , 12'2 - k2PA. " , 

U{~~:''):kl'''( - U, - v,Q) = (- W+l,+rU{~~:''):_kl' .. (U,V,Q). 

(30) 

(31) 

(iii) The Sand Uharmonics are orthonormal if integrated with dfl i = sin8id8id97i; e.g., 

fdfl dfl (Sj,r,k,JM)'Si,r,k ,J'M' - 1:: 1:: 1:: 1:: 1:: 1:: 1:: £ 
u V j2'2k2l'A. j2T2k2;tA -uJJ,uMM,UjJiUjliiur.Tiur2riuk.k'u k1k;' (32) 

(iv) The scalar product is 

x ][J l' 
mx M M' 

xm. 

The scalar product of the Uharmonics has a similar expres­
sion; we do not display it. 

6. CONCLUSION 

In the present paper an extension of the relativistic ten­
sor harmonics to the case of two variables has been suggest­
ed. They appear to be rather compact and very flexible in 
comparison with the Cartesian forms which were usually 
employed in the applications. To give just one example, con­
sider the reaction of the radiative muon capture on atomic 
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J]~'I 2 ., 

o 11 
1 

~}~, (uIY~,(vl· 

p- +A (JOPi)-W + y(k) + B(JPPf)' 

Introducing the momenta Q .. = (Pf + Pi) .. and 

(33) 

q .. = (Pf - Pi) .. we can fix the general form of the corre­
sponding weak hadronic matrix elements in the elegant form 
which is also easy to manipulate 

TI''' = L ii-I[Ji 
J Jf ] 

l;r/rJM Mi M Mf 

X F(i,I,)IJ(k q Q )T(i,I,)IJM (k q Q) 
(r I T 2 )r " ("'2)rllA.", (34) 
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where F:~',~;I:(k,q,Q) are form factors. The structure of this 
tensor in the Cartesian covariants is considerably more com­
plicated and for different values of J j and JJ must be con­
structed individually. In addition it is not always easy to 
eliminate the dependent covariants in the Cartesian lJasis. 
For example, for the reaction f1. - + P-+v + Y + n Hwang 
and Primakotr write 

Til;' = - u(PJ){F1YIl Y;. + Y/L YykV 
(k;.F2 + q;.F3 + Q;.F4) + ... 
+ Y5[F35Y/LY;' + YIlYvky 

(k;.F36 + q;.F37 + Q;.F3R ) + .. ·Jl u(P;), (35) 

where 68 covariants appear which contain the Dirac matri­
ces Y;., and the momenta k;. q;., and Q;.. F;(k,q,Q) are form 
factors. Comparing with Eq. (21) one realizes that only 64 
independent covariants exist in this case. To eliminate super­
fluous Cartesian covariants in (35) one has to derive the cor­
responding four coupling equations. The present authors 
have obtained them /0 using the symbol manipulating com­
puter program SCHOONSCHIP. The relations are very 
complicated; each of four equations couples 26 individual 
covariants. The further possible applications of the tensor 
harmonics for the description of the radiative muon capture 
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reaction are presently being studied. 
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A 4-vector generalization of the sine-Gordon equation 
D. G. Swanson 
Auburn University, Auburn, Alabama 36849 

(Received 14 April 1981; accepted for publication 10 August 1981) 

Using the differential operators from the Dirac equations, an algebra is developed which leads to 
4-vector functions and the generalization of many scalar functions. Assuming particles to be 
described by the potential solutions of the generalized sine-Gordon equation (a set offour coupled 
nonlinear equations), a single soliton is shown to be localized within a light sphere and have 
intrinsic properties of group velocity, phase velocity, angular momentum, and wave-particle 
duality. 

PACS numbers: 11.30.Na, 12.20.Hx 

In the search for a possible soliton description of the 
particles of physics, the form of the Dirac equations offers a 
tantalizing suggestion that they are part of an inverse scat­
tering scheme, but they offer no firm direction about the 
underlying soliton equation. Examining the form of the basic 
operators of the Dirac equations may guide us, however, in 
the search for the soliton equation which may describe our 
universe. In what follows, the Dirac equations are written in 
a form which bears a superficial resemblance to the AKNS 
equations, I and the operators lead to a set of 4-vector varia­
bles and 4-vector functions which suggest a 4-vector general­
ization of the sine-Gordon equation which appears to have 
enough interesting properties to merit close scrutiny. 

In a fashion similar to what is used with the one-dimen­
sional sine-Gordon equation, the basic variables are sums 
and differences of the r,t variables such that (with c = 1) 
S = !(z + t ), 'T = !(z - t ), J-l = !(x + iy), v = !(x - iy). With 
these variables, the Dirac equations may be written as 

(D + - iA +)tf; = - im¢, 

(D - - iA -)¢ = imt/', 

where D ± are derivative operators given by 

all-) _ = (aT a ,D a 
T v 

and A ± are representations of the normalized 4-vector 
potential 

A + =e: 

(I) 

(2) 

Ax - iAy ) 
-A -A ' (3) 

z 4 

andA4 is the scalar potential. The rest mass is m, and tf; and ¢ 
are column vectors. The form of Eqs. (1) are reminiscent of, 
but not equivalent to, the AKNS equations in that they in­
volve a pair of first-order linear differential equations with 
an eigenvalue term (the mass) and a potential term, but the 
potential and mass terms are interchanged from the familiar 
AKNS equations where the potentials couple the equations. 
It appears a gauge transformation can eliminate the A ± 

terms, and additional coupling potentials can be added on 
the right if they are taken to vanish rapidly enough away 
from a particle, but the eigenvalue coupling is still different. 

The form of the differential operator suggests a new 
algebra, however, which may lead to a modified set of equa­
tions. The basic 4-vector variables associated with the opera­
tors D ± are 

(4) 

and the "scalar product" is 

R +R - =R -R +=R2I, 

where R 2 = S'T + J-lv = x 2 + y2 + Z2 - t 2 and I is the unit 
2 X 2 matrix. The differentiation rules are 

D+R + =D-R - =2F, 

D + R - = D - R + = jj + R - = jj - R + = 0, 

D + R + = D - R - = D + R - = D - R + = I, 
D ±R 2I=R +=. 

(5) 

The transformation laws for 4-vectors of the form (3) and (4) 
are 

(6) 

where for a frame moving in the z direction at speed v = f3c, 

T± =f; f:). 
and f ± = [( 1 ± f3 )/( 1 + f3 W /4 so f2± = r( 1 ± f3 ) and 
f J - = 1. Field vectors or axial 4-vectors such as 

F±=D±A± 

transform as 

F'± = T ± F ± T += • 

(7) 

(8) 

(9) 

In order to construct functions of R ± which will trans­
form properly, it is necessary to require that repeated pro­
ducts of R ± must alternate, since T + T - = I, so that a func­
tion is of the form 

f(R +) =ac/ +alR + +a2R +R - +a3R +R -R + 

+ a4R + R - R + R - + .... 
From the differentiation rules (5) it may be established that 

D ± (R 2n)I = nR 2n - 2 R += , 

D ±(R 2nR ±) = (n + 2)R 2nI. 
(10) 

These relations allow us to define a set of special functions 
which are analogous to one-dimensional functions, but not 
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equivalent. 
(1) EXP(R +) is a solution of 

D +EXP(R +) = EXP(R -), (11) 

I R + R 21 R 2R + 
EXP(R+)= - + - + - +--

all! 0!2! 1!2! 1!3! 
R 2nI R 2nR + 

+ ... + + + .... 
n!(n + I)! n!(n + 2)! 

(12) 

(2) SIN(R +) and COS(R +) are solutions of 

D+D-F(R ±)= -F(R ±), (13) 

( 
1 R2 R4 

SIN(R ±) = R ± - - - + - - ... 
0!2! 1!3! 2!4! 

(-ltR 2n ) 
+ +"', n!(n +2)! 

(14) 

( 
1 R2 R4 

COS(R ±)=I - - - + - - ... + 
all! 1!2! 2!3! 

(-l tR
2n

) 
n!(n + I)! ' 

(15) 

so that 

EXP(iR +) = COS(R +) + i SIN(R +), 

EXP(ER +) = COS(R +) + E SIN(R +), 

where E is the 2 X 2 "imaginary matrix," 

- 1) 
a ' EE= -I, 

also 

D + SIN(R +) = COS(R +), 

D + COS(R +) = - SIN(R -). 

(16) 

(17) 

(18) 

These special functions may be written in terms of Bes­
sel functions, such as 

EXP(iR +) = IJ I(2R)/R + iR + J2(2R)/R 2 (19) 

so they represent a four-dimensional extension of the 
sequence 

cos(x)-Jo(p)-(sin r)/r-JI (2R )/R 

as the dimensionality progresses from 1 through 4. The rela­
tionship (18) is apparently unique to one and four dimen­
sions, however. This fact is the basis for the suggested form 
of a valid 4-vector soliton equation which follows. 

(3)TheSIN(R +)andCOS(R +)functionsaremerelythe 
first two of an infinite set of functions which are solutions of 

D+D-F2n + [1-n(n + 1)/R2]F2n =0, 

D +D -F2n + 1+ [1 - n(n + 2)/R 2]F2n+ I = 0, 
(20) 

which satisfy the recursion formulas 

D +F2n (R +) = (2n + 1)-1 

X [nF2n _ I (R -) - (n + 1 )F2n + dR -)], 
(21) 

D +F2n + I(R +) = [2(n + 1)]-1 

X [In + 2)F2n(R +) - nF2n +2(R +)], 

and the sum rule 

1= ! (n + IfFn(R +)Fn(R -). (22) 
n~O 

The solutions may be written 

F2n(R+)=IR2n! (_I)kR2k =IJ2n +d2R )/R, 
k ~ 0 k !(2n + k + I)! 

F (R +) = R + R 2n ! (- l)kR 2k 
2n+ I k~O k!(2n + k + 2)! 

(23) 

= R + J2n + 2 (2R )/R 2. 

For more general arguments than R ±, we construct 
X ±, where X + is linear in 5, 'T, /-l, v. Then if U + is a general 
4-vector,f(X 2

) is a scalar function of X 2, where 
X+X- =IX2,then 

D +P=/'D +X2I, 

D +[jU+] =jD +U+ +/,(D +X2I)U+, (24) 

D +D -f=/,D +D -X 21 + f"(D +X2I)(D -X2I), 

D + D - (IX +) = /' {D + [(D -X 2I)X + ] 

+ (D +X2I)D -X+} 

+f"(D+X 2 )(D-X 2 )X+. (25) 

A sufficient condition thatD + D - U(X +) "point" in the "di­
rection" of X +, i.e., 

D + D - [f(X2)X +] =g(X2)X + 

is thatX 2 = m 2R 2 with m a constant. Some nontrivial exam­
pIes of X ± are in Table I, where the constant 4-vector P ± 

satisfies 

(26) 

and the X I± in the last relations represent any of the first 
four expressions. Note that X - = EX + E. 

We can then generalize Eqs. (20) such that 

D +D -F+ [m 2 - n(n + 2)/R 2]F= a (27) 

TABLE I. Examples of nontrivial X ± with the property X + X - 0:: IR 2. X ,± represents any of the X ± pairs in the first four rows with a, 13 scalars and 
P+P- = _m 2I. 

P'R + 
P ±R 1 

P + R 1 

P" R l 

aX,+ +f3EX,+ 
aX,+ +f3XtE 
X,' + aEX ,+ +f3X t E + af3X, 

X-

-R±P'" 
-R ±P'" 
-R±P'" 
-R±P+ 

aX, -f3X ,- E 
aX, -f3EX, 
X r - aX ,- E - f3EX, + af3X t 
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m2R2 
m2R2 
m2R 2 
m2R 2 

X~(a2 +13 2
) 

X~(a2 + 13 2) 

X~(1 + a 2 + 13 2 + a 2f32) 
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has the solution 

F=F2n + I(X+), 

Since D + D - = (V2 - a;)I, this is a 4-vector Klein-Gordon 
equation. 

Maxwell's equations appear in an appealing form in this 
algebra. The field vectors are derived simply from the poten­
tials by 

F±=D±A±. (2S) 

and Maxwell's equations are 

D ±F+ +J+ =0 (29) 

with J ± being the 4-vector current (normalized) 

J + = (Js J/1-) = ( Jz +: Jx - iJy ). 

Vv -Jr Vx + iJy -Jz +p 

The D ± operators have the (vector, scalar) properties 

{
iVXA ± VA4 + alA (vector portion) 

D+A ± = 
V·A ± a,A4 (scalar portion). 

In view of the remarkable properties of the algebra, and 
the result (IS), a generalized 4-vector form of the sine-Gor­
don equation 

D+D-U+ = -SIN(U+) (30) 

is proposed as a suitable soliton equation candidate. Among 
the reasons for the choice are (a) the sine-Gordon solu­
tions are relativistically invariant; (b) the sine-Gordon equa­
tion is gauge invariant; (c) the result (18) appears to be a 
sufficient condition that an infinite number of conservation 
laws may be generated by a generalization of the method of 
Lamb,2 using the Lagrangian 

L=!U+U- +I-COSU±. (31) 

By gauge invariance, we mean that if the AKNS equa­
tions are written with diagonal potential terms, 

t/tz - iv+t/t + i;t/t = q¢>, 

¢>z - iv- ¢> - i;¢> = rt/t, 
where v ± = VI ± v2 , then if q = !uz ei8 and r = - q*, then u 
satisfies 

Uz, = sin u (32) 

if a,v+ = 0 and () = 2S'v2dz'. In other words, one may 
solve for u without regard to v ± as long as v ± satisfy certain 
gauge conditions. 

Although no analytic solutions ofEq. (30) are known, a 
series solution of the form 

U + _ R + P - [1 2 (mR )2 6 (mR )4 
- 0!2! - l!3! -2- + 2!4! -2-

_ ~ ( mR)6 2.347 ( mR )8 
3!5! 2 + 4!6! 2 

2·41·563 ( mR )10 + 6.11.23.317 ( mR )12 
3·5!·7! 2 6!S! 2 

2·30488957 ( mR )14 ... J 
3·7!9! 2 + (33) 
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leads to localized solutions in a surprising sense. The func­
tionQ+ = D + U + is exponentially decaying outside the light 
sphere, i.e., r > t 2, whereas Q+ is oscillatory inside the light 
sphere with the wavelength given by the mass if P - is the 4-
vector momentum. Furthermore, the vector portion of U + , 
namely,R + P -, has vector-scalar components given by 

{
irxp+ (pt - P4r) vector 

R + P-= (34) 
p·r - P4t scalar, 

so the real part of the vector portion describes the group 
velocity, the scalar portion describes the phase velocity, and 
the imaginary part of the vector portion describes the angu­
lar momentum (the spin angular momentum is of course im­
bedded in the fabric of the algebra). In this formalism, then, a 
soliton is localized within a light sphere and its effective 
character is described by a center of motion, a phase motion, 
and an angular momentum. This concept of a single-particle 
soliton guarantees causality, but allows a particle to absorb 
radiation from anywhere inside its light sphere or interact 
with any other particle inside its light sphere. In evaluating 
dynamics in this picture, an integral over space will describe 
the particle "center" as moving with the group velocity and 
its size will be defined by its mass since that defines its wave­
length. More complicated structures may be described by 
other forms of X + as in Table I, which is not exhaustive, or 
by other solutions of Eq. (30). 

In conclusion, it has not been proven that Eq. (30) is a 
true soliton equation, but it is an appropriate 4-vector gener­
alization of the sine-Gordon equation, and the remarkable 
property (IS) seems to imply that an infinite number of con­
servation laws are obtainable. These properties, along with 
the properties of the solution (33) which include causality, 
phase and group velocity, angular momentum and effective 
localization due to the oscillation wavelength, seem to de­
mand further investigation. It is also apparent from the 
structure that this generalization of the sine-Gordon equa­
tion is unrelated to other higher dimensional generaliza­
tions3

-
5 since they deal only with scalar functions which lead 

to essentially trivial results.6 This representation is a 4-vec­
tor formulation and not simply three dimensions plus time 
with scalar functions. 
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Linear response theory revisited III: One-body response formulas and 
generalized Boltzmann equations 

M. Charbonneau, a) K. M. van Vliet, and P. Vasilopoulos 
Centre de recherche de mathematiques appliquees. and Department de Physique. Universitr! de Montreal. 
Montreal. Quebec H3C 3J7. Canada 

(Received 27 March 1981; accepted for publication 30July 1981) 

The many-body linear response expressions obtained in previous papers [1. Math. Phys. 19, 1345 
(1978); 20, 2573 (1979)] are applied to systems of weakly interacting particles. General 
expressions for the susceptibility and conductivity in such systems are obtained. The diagonal 
parts depend on the scattering processes, for which we consider interactions with bosons with 
mass and electron-phonon interaction. For elastic collisions simple closed forms result. For 
general two-body collisions, the closed expressions are cumbersome, except when the current is 
due to collisional current through localized states, such as Landau orbits; in that event a 
generalized Adams-Holstein result is obtained. The nondiagonal electrical conductivity is shown 
to be of paramount importance for the quantum mechanical Hall effect. We also derive quantum 
mechanical Boltzmann equations, both for the diagonal occupancy operator (n,), and for the 
nondiagonal operator (c/ c, .. ),. The total Boltzmann equation is shown to be fully equivalent 
with the linear response results. Finally, in the last part we derive the Boltzmann equation for 
the Wigner function of inhomogeneous systems. In the classical limit this yields the usual 
Boltzmann transport equation. This equation has therefore been obtained by first principles 
from the von Neumann equation. 

PACS numbers: 51.10. + y 

1. Introduction 

In a previous paper, ' referred to as LR T I, we discussed 
the Kubo-Green formulas which relate transport coeffi­
cients to certain forms of the correlation function of fluctu­
ations about an equilibrium state. It was argued that in Ku­
bo's theory proper no dissipation occurs; this is reflected by 
the Heisenberg form for the time-dependent operator B (t ) of 
the system, and by zero entropy production. Dissipative be­
havior was introduced by writing the system Hamiltonian as 
H = H ° + A V, where H ° represents the motion proper and 
A Vis the cause of randomizing transitions, such as electron­
phonon interactions in an electron-phonon gas. We consid­
ered the van Hove limit ,1_0, t_ 00, A 2t finite, which led to 
an entirely different form of the time behavior for the re­
duced operators B R (t). In the subdynamics of HO there is 
now clearcut relaxation, as expressed by the reduced 
operators 

K :(t ) = e - AdlK :(0), (1.1) 

where K :(O)=K: = K ~ =Kd is the Schrodinger operator2 

and the subscript "d " denotes the diagonal part in the repre­
sentation of HO; Ad is the master superoperator in Liouville 
space, defined by 

AdK = - Ilr) (rl[Wy.y <r"IKlr") - Wyy. <rlK Ir)]' 
yy" 

(1.2) 

where Ir) are the eigenstates of HO, with energy'&' Y' and 
where Wyy .. is given by the golden rule 

Wyy .. = (21TA 2/1i)I<rlVlr")1 28('&'y - ,&,y .. ) = Wy.y. 
(1.3) 

"Now at CAE Electronics Ltd., 8585 Cote de Liesse, Montreal, Quebec, 
Canada. 

One eigenvalue of Ad is zero, determining the equilibrium 
behavior (see LRT II Sec. 8); the other eigenvalues are posi­
tive definite (see Vigfussen3

), thus governing the approach to 
equilibrium. The superoperator Ad is also written as 

(1.4) 
y 

whereM is the master operator in the space offunctionsF (r): 

MF(r) = - I[WY"yF(r") - Wyy.F(r)] 
y. 

= IWyy .. [F(r) - F(r")]. (1.5) 
y" 

The response formulas in the subdynamics of H O can 
also be obtained without previous knowledge of the Kubo­
Green formulas. To that purpose we applied projection oper­
ator techniques to the von Neumann equation for the full 
density operator; these results were laid down4 in LRT II. 
Applying the van Hove limit, we arrived at an inhomoge­
neous master equation, which is a many-body equation, 
which does not only contain the relaxation terms of the Pauli 
master equation but also the coupling to an external field 
with field Hamiltonian - AF(t), F(t) being an applied 
generalized force and A the conjugate extensive operator. 
The solution of the inhomogeneous master equation gave the 
new response formulas. We also included the nondiagonal 
part of the many-body operators K in this treatment; the 
reduced operators, i.e., after the van Hove limit, were found 
to have the form 

KR (t) = e - {Ar i./ "11K, (1.6) 

where :fa is the interaction Liouville operator, 
:f°K = 1i-'[HO,K]. 

The inhomogeneous master equation referred to above 
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is the many-body counterpart of the Boltzmann equation for 
one-particle distribution functions; like the Boltzmann 
equation it contains streaming terms, which represent the 
effects of an external field, and dissipative terms, which ac­
count for the influence of collisions. The main tenet of the 
new treatment is that the necessary "randomness condi­
tions" are carried out on the many-body level. Thus, no new 
assumptions are to be introduced when we go to the one­
body or two-body level, except closure relations [see LRT II, 
Eq. (8.1 )]. In this respect our treatment differs in essence 
from the various one-body treatments in the literature which 
start from a one-particle von Neumann equation, cf. Kohn 

VON NEUMANN eq. 

I H,. HO+ AV 

inhomog eneou. 

ma.ter eq. 

~ 
N - body re.pon .. 

and Luttinger,5 Adams and Holstein,6 Kahn and Freder- L 
formulas 

RT m t LRTm ikse,7 Argyres,K and Argyres and Roth. 9 The one-particle 
von Neumann equation is not very suitable for a perturba-
tion approach since it is linear, so that it cannot properly 
arrive at the quadratic (or quartic) Boltzmann collision 
terms. The treatment of LRT II, on the contrary, led to a 
quantum mechanical Boltzmann equation with the full colli-
sion terms. We still note in this respect that the van Hove 
limit is equivalent with the first-order Born approximation 
used by others. \0 

In the present article we shall more fully be concerned 
with one-body results, derived from the many-body results 
of the previous articles. To that purpose we consider HO to 
represent the Hamiltonian of a fermion gas and boson gas; 
A Vis the interaction between them, being of a binary nature. 
Thus, 

n N 

HO = I h J(r;) + IH~(Rj)' (1.7) 
i~ I j~ I 

AV= IAv(r i -Rj ). (1.8) 
iJ 

We use the formalism of second quantization. So, let II~) J 

denote the set of quantum states of h J with eigenvalues 1 E, J, 
and let (177) J denote the set of quantum states of H~ with 
eignevalues 1 ET/ J, we then have 

HO = ID,E; + IN"E", 
, 71 

AV= I c~" a~J"(~"77"IAVI~/77/)a",c", 
'''''71''71' 

( 1.9) 

(1.10) 

(1.11) 

here 0, = C!C, are occupation operators and n, is the occu­
pation number; similarly for NT/ = a~aT/ andNT/; the c's and 
a's are the creation and annihilation operators for fermions 
and bosons, respectively, At some points we will indicate the 
changes if both gases are bosons or fermions or if the bosons 
are quasi particles like phonons. 

The present article has a threefold purpose. First we 
derive the one-body linear response results (Part A, Secs. 2-
4). Next we derive a fully quantum mechanical Boltzmann 
equation both in diagonal and non diagonal form; this is an 
extension ofLRT II Sec. 8 (Part B, Secs. 5 and 6). These 
equations are shown to be fully equivalent to the one-body 
linear response results (Part B, Sec. 7). Finally, we consider 
inhomogeneous systems and derive a Boltzmann equation 
for the Wigner function corresponding to the one-particle 
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I-body respon .. 
formulas 

r--'- diagonal I nondiag. 
part part 

I \ 
I diagonal nondiagonal 

Boltzmann eq. Boltzmann eq. 

\ I 
full quantul1l 

Boltzmann eq. 

~ 
~ clallical 

Boltzmann eq. 
LRT III ApplicatIons 

FIG.!. Flow diagram of the various connections. 

distribution function (Part C, Sec. 8). From this equation the 
classical Boltzmann equation is easily recovered. In Fig. 1 
we give a flow diagram of the various connections. 

We still note that a fourth article, containing applica­
tions of the present developments for magnetic and other 
transport phenomena is in preparation. 

A. ONE·BODY LINEAR RESPONSE RESULTS 
2. The diagonal susceptibility and conductivity 

The many-body forms for the diagonal part of the sus­
ceptibility of a variable B and for the diagonal part of the 
conductivity of a variable E were in LR T II given as 

X~A(U =/3 f" dte-"u'Tr[Peq(A R)dB:(t)] (2.1) 

and 

L ~A (iw) = /3 LX'dt e - ;'U'Tr[ Peq(A R )d(E R (t ))d]' (2.2) 

where the superscript R stands for the reduced operator; 
/3 = l/kT. The time dependence for B :(t) was given already 
in (1.1); the time dependence for (E R (t lld is likewise 

(E R (t lld = e - Ad'E:; (2.3) 

however, E: is more than the Schrodinger operator Ed' see 
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LRT II, Eqs.(4.28) and (4.29), 
R • R • 

JB.d=(B )d= -AdBd+(B)d' (2.4) 

Similarly for JA•d ==(A R )d' 

In case we deal with the electrical conductivity, the ex­
ternal field Hamiltonian is - A.F(t) with F(t) = qE, 
A = L; (r; - (r; > eq)' where q is the charge of the carrier (in­
cluding sign), r; are the positions of the carriers, and (r; > eq 

are the equilibrium positions prior to the switching on of the 
field. The electrical current Schrodinger operator is 
J = qL;v;lfl = qA Ifl, whereflisthevolumeofthesample, 
see LRT I, Eq. (2.31). Thus we have, denoting by greek sub­
scripts the vector and tensor components, 

o1.,.(iw) =(3fl 1'>' dte-;«"TrfpeqJ:J:,,(t)]; 

the reduced current is given by 

(2.5) 

J: =!L [ - Ad I (r; - r~q)d + IV;d]' (2.6) 
fl; ; 

the two parts representing collisional current and pondero­
motive current, respectively; the former accounts for the 
many-body effects in the subdynamics of HO. (In the full 
dynamics of H, this term is absent.) 

We will develop the one-body form for (2.1). Since both 
A: and B: are extensive operators of the fermion system we 
have 

B:(1) = e AoI'In~(; Ib I;), (2.7) 
~. 

(2.8) 

with lower case symbols denoting one-body operators. Thus 
(2.1) becomes 

X~A (iw) = (31' dte- ;'U'Tr!pcq f. [ - Adn~, (;' lal; ') 

+D~,(;'ldl;')]Ie A'''D,::,,(;''lbl;'')I· (2.9) 
~" 

We take the operation in the representation 
j Ir> I = I I n~ I) ® I j N" I> and we develop the exponential 

X~A (ilu) = (3 r' dt e ;",' I I !Peq (! n~ j,! N" n<! n,:: II 
Jo I",IIN.,I 

x I [ - AdD" (; 'Ial; ') + 0, (; 'Idl; ')] 
~ .. 

xI! (-.t)"(Ad)"D'''(;''lbl;'')lln~I)}, (2.10) 
,"" 0 k! 

Pcq = (I II, j,1 N"IIPcq I In, 1,!N"j).12 The standard adiaba­
tic assumption is made that the boson average can be made 
separately, i.e., 

I IPcq(!II,I,IN"I)'" = Ipcq(!n,Il("')'" (2.11) 
I",IIN.,I 1",1 

where the latter average is an equilibrium average over the 
boson distribution. 

We need the following two theorems (also stated in 
LRT II but not proven there) which are the main link of the 
many-body and one-body descriptions. 
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Theorem 1: 
(Mn;'>b = .@;,n!;,. (2.12) 

Here M is the linear master operator in function space, re­
presenting the many-body aspects, while gj i; is the nonlin­
ear Boltzmann operator of the one-body description, IJ given 
by 

./1 ;/(;) = l! w;;:/(;)[ 1 - I(f) 1 - w;:d(f)[ 1 - 1(;)] I· 
;: 

(2.13) 

The fermion transition rates are given by 

W,T = IQ(;"1/";;',1/')(N",,(1 +N,!'»eq 
lJ' , ,.. 

;:::: IQ(;"1/";;',1/')(N,(>eq(1 + (N,!')eq); (2.14) 
'1',/" 

the latter equality is based on the truncation rule or closure 
property ofLRT II, Eq. (8.1); it is exact in the grand canoni­
cal ensemble. The Q's are the binary transition rates [see 
LRT II, Eq (8.18)]. Whereas the two-body transition rates Q 
are reciprocal, the one-body rates ware not; from the quili­
brium Bose-Einstein distribution one finds 

w,:: T = I Q (; "1/";; '1/')e - (3E., (1 + (N,( > eq )ilE ., (N,!,) cq 
1(1/" 

= ili'" '" I I Q(;'1/';; "1/")(1 + (N,( )cq)(N,!' )eq' 
1(1(' 

where we used the delta property D(E,(. + C~" - E,/ - c,-o) 
in the definition of the Q's. Thus we have 

(2.15) 

Theorem 2: 

(Adn,')" = II!n,::j)<!n,ll·fj~,n,::,; (2.16) 
I,,", 

this gives the connection between the master equation in the 
Liouville space and the Boltzmann operator. The theorem 
follows from (2.12) by multiplying Mne by the projector 
1111, I, j N"I) (I n~ I, I N" II, summing over all many-body 
states, applying Eq. (1.4), and performing a boson average. 

The proof of (2.12) is straightforward. For Wyy we have 
from (1.3), (1.10), and (1.11), 

Wrr = 21TA. 2 I I <!n~ IIN"II<, a;(a" c~' Ilns liN" I W 
fz ~. '~. "'(1( 

XI(;"1/"lvl;'1/'W8(c," -c,' +E,( -E,/). 
(2.17) 

One easily finds that the only connected state for given Ir) 
and given ;'; "1/'1/" is Iy> Ir.:-", ,,"'!')' with [LRT II, Eqs. 
(8.19), (8.13),and (8.14)1 

Wyr"".,., =Q(;'1/';;"1/")(I-n~,,)n,,(1 +N,()N,/, (2.18) 

where 

n = n(1 - 8 - D,,) + (I - 11.)(D .. , + D .. ,,), 
~ !:- ~~ SS S ~s ss 

(2.19) 

Fi" = N" - D,,,( + 8,1'(' (2.20) 

We now make the standard adiabatic assumption, (2.11); 
then in calculating Mn,'" employing (1.3) and (2.18), we per­
form a boson average; the result is 
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(Mnl;")b = 2,wi:'i:"(I-ni:")ni:,(n~,, -n;o) 
n" 

(~')L', wn" (1 - n~" )n!;, (2nl;" - I)(D;o;, + D?;o!;") 
';:'1; " 

= L',[W;,,;,n;,,(1- n;,)(2n;0 - 1) 
C' 
'+ w!;,!;,,(1 - n,;" )n!;, (2n;" - 1)] 

= ':Ii ;"n;", 

where we still used, noticing n~" = n,;o, 

n;,,(2n,;" - 1) = n,;'" 
(1 - n,:,,)(2n,:" - 1) = - (1 - n!;"j, 

2.1. Linear collision operator 

(2,21) 

(2,22) 

A simple closed expression for X, L, and ()" can only be 
found when the collision operator is linear. This occurs in 
two cases, First we may have elastic or near-elastic colli­
sions, Then w!;'!;" :;:::w?;"!;" The linear Boltzmann operator 
then is 

8?J~/(t) = 2,w,;, [/(t) - I(t 'I]· (2.23) 

" Electron collisions with acoustical phonons is an example of 
near elastic collisions (see Sec, 4). Strictly elastic collisions 
occur when the scattering involves heavy obstacles (one­
body collisions), such as in impurity scattering. Then by 
'(2.14) and (2.15) since N'I < 1, 

w;,;" :;::: 2,Q(t',rl';t",1/")(N'I')b 
'1''1" 

:;::: 2,Q (t ',1/";t" ,1/")2, (N'I') b 
'1" ?/' 

= NQ o(t ',t H), (2.24) 

QO(t ',t") = 21T(A 2 lli)l(t 'Ivlt "WD(E!;, - E;"), (2.25) 

indicating one-body collisions. 
Secondly, the Boltzmann operator is linear when we 

deal with nondegenerate systems such that I(t ) < 1. In that 
case we have from (2.13), for the collision operator, 

8?JU(t) = 2,[ww /(t) - wn/(t')). (2.26) 
;' 

In contrast to the case ofEq. (2.23), now generally 
W;'!;" #w!; T' We shall therefore use the form (2.26) since it 
encompasses both cases. 

I t is now possible to compound the M operator; first, we 
will show that 

(2.27) 

For the boson average of the left-hand side we have terms 
like 

I L (Q(t I/1/I/;t'1/')Q(fl/7l";f'7f)(1 + N'I" )N?/, 
'1''1" 1j'r;" 

X(I + Nr;" )NiJ'··.)eq· (2.28) 

In this series we first pick the terms with Tj' #1/' and Tjl/ #1/1/. 
We can then use the truncation rule for the boson average, 

«(1 + N?/" )N?/, (1 + Nr;" )Ni]' )eq 
:;:::«(1 +N'I")N'I')eq«(1 +N:'i")Nr;')eq' (2.29) 
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Thus, this part of (2.28) yields w~Twf"f,.The remaining 
part of (2,28) is a triple sum I.'1''1"11' or I.'1''1"11" . It vanishes 
with respect to the first part in the thermodynamic limit 
N = I.N?/-+oo. This proves (2,27). The compounding of the 
fermion parts is simple. Since 8?J~n?; is a linear combination 
ofn/s, Theorem 1 can be applied repeatedly, We thus obtain 

Theorem 3: 

(Mkn!;')b =(8?J~)kn;,. (2.30) 

For the repeated Ad operator we have 

... LPln}I8?J~,n!;'> (2.31) 
HI 

where PI n~1 are the projectors I ( n~ 1 ) ( { n~ 11· Since the pro­
jectors commute with the 8?JI operators and since Pi~ 
= P~Dij = P,D jj , we obtain 

Theorem 4: 

«(Ad)kO;')b = 2,1{n;l)({n;ll(8?J~fn;" (2.32) 
In,! 

Using this result and (2.16) we find upon reconstituting 
the exponential in (2.16), 

X~A (iw) = {3 "YO dt e - 'wt 2,Peq ({ n; }) 
Jo In,1 

where 

(2.34) 

for anyone-body operator such as a and b. The result can 
also be written io terms of the resolvent 14 

X~A(iw) ={32, ([ - (8?J~,n")a,, + n!;,Q:,' ]b," ,'," 
1 ) X n!;". 

iw + 8?J~" eq 
(2.35) 

In the result for L ~A a few changes occur, For (B R (t ))d 

we have 

(B R (t lld = e - AdtI[ - Ado,(tlb It) + 0;(tI6 It)). , 
(2.36) 

When the exponential is expanded we now also encounter 
terms with [( - t )k I k !] (A d )k + 1, The procedure is clearly 
the same. We find 

L ~A (fw) = {3 (00 dt e- iwt 2, ([ - (8?J~,n" lab' + n"Q:,' 1 Jo ;';" 
Xe- u< [- (8?J~"n!;" )b!;" + n;"b;" Deg; (2.37) 

or in terms of the resolvent 

L~A(iw)={3L/[ -(8?J~,n,,)a;, +n;,Q:;,] , 1 I 

n"\ IW+8?J," 

X[-(8?J~"n!;")b;" +n"b;"l) . (2.38) 
eq 
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For the electrical conductivity likewise, 

if"v(iUJ) = f3
n
q2 fro dt e - ;"" I ([ - (8?J~,n~,)(; 'Irv - ~ql; ') 

Jo n' 
+ n~,(;'lv"I;')] 

Xe - 15<9~. [ - (8?J~. n~.)(;" Irll - ~ql; ") + n~. (;" Ivlll; ")])eq 

or in terms of the resolvent (2.39) 

if" v (iUJ) 

={3q2I([-(8?J~,n~,)(rv-~q)~,+n~,vv~']' I I 

n n" IUJ + 8?J~" 
X [ - (8?J ~. n~. )(r" - ~q)~. + n~" VIl~' ]) eq' (2.40) 

Note that in (2.37)-(2.40) the exponential exp ( - t8?J 1
) or 

resolvent operator only operates on the particle densities to 
their right. 

a. No collisional current. For the linear case the aver­
ages can be carried out in a grand canonical ensemble. For 
simplicity we first consider (2.39) in the absence of collisional 
current, i.e., when (; Irll - ~ql;) = O. Thus, with 

Peq(ln;l) = (l/Z)ean-fn:,n~;, (2.41) 

whereal{3is the chemical potential andZ = IT~(1 + ea 
-P<;) 

is the partition sum, we must evaluate 

1 " " an" 'II - pn~, - 1.:11 ~. (2 42) - L.J L.Je L.J e ·Vv~,vll~·n~,e . n~,,; . 
Z ~'~. n In,1 ~ 

here ~' denotes the restricted sum subject to ~~n~ = n. 
Combining however, ~n and ~'I nd to an unrestricted sum, 
we can interchange the IT and this sum, obtaining 

(2.43) 

For k = 0 the sum is triviaL For k = 1 we obtain (omitting 
~~,vv~' for the time being) 

1 " II" (a - p<;ln, (_ __) - L.J!!Il~· L.J e n~, w~,,~n~. - w~~.n~ . 
Z~·~ ~ In,=O,11 

. (2.44) 

We split this into two sums and we interchange the summa­
tion indices;" and fin the second sum. We then find 

(2.44) 1 "II " (a - P<dn, ...J ) =-£...., L.J e . ·n~,n~.w~,,~\vll~· -vilf 
Z ~. ~ ~ In, = 0, II 

=~III···n~,n~.(8?J~'VIl~")' (2.45) 
Z~· ~ 

where the operator 8?J 0 acting on the matrix element v Il~" is 
to be understood in the sense of(2.23) even though w may not 
be reversible as in (2.26); we signified this by the superscript 
zero on the Boltzmann operator. For the sum over (n~ l we 
first consider; " = ; '. This gives 

(2.46) 

Next we consider all;" =/=; '. The result is likewise found to 
be 
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I (n~, >eq (n~" >eq 8?J~" VIl~" 
~'#~' 

= (n~'>eqI(n~">eq8?J~"vll~" - (np;q8?J~"vll~" 
~" 

The first term to the right is zero: 

(2.47) 

I_ (n~" >eqW;,,;rlVIl~" - V"f) = 0 (2.48) 
~"~ 

as is found from interchange of the indices; ",f and detailed 
balance. Thus, combining (2.46) and (2.47), we obtain 

(2.44) = (n~, >eq(1 - (n~, >eq 8?J~,vl'~' 

= - (l/{3)(J (n;, >eqIJ€~, )8?J~'VIl'" (2.49) 

If we now take the term for k = 2 of (2.43), we have, 
denoting by 

1/1-II I eta - P<,)n" 

• In, = 0,11 

the following result 

Z
I IVIl;" I/In., 8?J~" (8?J~" n;,,) 

;" 

= ~ Ivll;" I/In;, I(w;"f8?J~"n;" - wf;" 8?J~nf) 
Z ;" " 

* 1 I ' = - I I/In;, (8?J ;" n;" ) Iw; ";rlvll;,, - Vild 
Z ;" ;; 

= ZI Il/In;,(8?J~"n~")8?J~,,vl'~" 
;" 

= ~~l/In;,(8?J~"vll~" )I(w;"[n;,, - w[;"n[) 
, -

; 

** 1 
= Z II/In;,n;" IW;"[(.%'~" vll;" - 8?J~VIl[) 

;" -
; 

= ~ II/In;,n;" 8?J~"(8?J~,,vll~")' (2.50) 
Z ;" 

where in * we interchange; " and fin one term and in ** we 
interchanged; " and; in one term. Likewise, we find that the 
term of order k in (2.43) produces the result involving 
(8?J~" )kVIl ;". The final result, valid for any linear Boltzmann 
collision operator, is therefore 

-1i . (q2)" J(n;>eq 1 Ullv(IUJ) = - - L.J vll; . 0 vll;· (2.51) 
n; J€; IUJ + 8?J ; 

We still note that a similar, but not identical result, follows 
from the Boltzmann equation (5.10) of Sec. 5. We then find 
aVIl rather than allv (which are equal, however, due to the 
Onsager relations) and the resolvent operation of 8?J o ap­
pears in front of(J (n; > eqIJ€; )vll;. The equivalence of these 
results is only trivial if the collisions are elastic; then 
J (n;>eqIJ€; is a collisional invariant. 

At this point we also note that (2.51) shows a close cor­
respondence with Verboven's result 15 for the original Kubo 
theory: 

uVerboven 
IlV 

Charbonneau, van Vliet, and Vasilopoulos 

(2.52) 

322 



                                                                                                                                    

where/is the Fermi function, tr the one-particle trace,j the 
one-particle current ( = qvln) and I the one-particle Liou­
ville operator; clearly, the van Hove limit has brought about 
the change il- - !!lJ 0

, causing convergence of the Fourier­
Laplace integral and yielding and explicit result for the 
conductivity. 

The result (2.51) can be further simplified by introduc­
ing a relaxation time l' ~. Let us put 

!!lJ~vp; = LW~~'(vp; - vp,') = ~vp" (2.53) 
" 1', 

where l' is a c number. In addition we require (!!lJ~)kVp~ 
= h·) - k Vp, for any k, This is strictly only satisfied if 1/1' is 

an eigenvalue of !!lJ 0
, being independent of { Now in all 

usual cases l' depends on; only via €~. Thus l' is an eigenval­
ue for elastic collisions, for then !!lJ 0 decomposes into contri­
butions !!lJO(€;) for separate energy sheets. Indeed, we have 
in that case 

and so on for k = 3, 4 .... For nonelastic collisions we can 
only maintain the result (2.54) as an approximation in that 
we write r(€,):::::r(€;-,), However, this approximation is not 
tantamount to the usual "relaxation time approximation" in 
which one sets!!lJ Hn;-) t = [(n;-) t - (n,) eq ]l1'(€~); this an­
satz requires that (n;-) eq ::::: (n~, ) eq in order to arrive at the 
form (2.53) and (2.56 (see below) for the relaxation time, cf., 
e.g., Nag. 15a Since (n;-)eq depends exponentially on €;-, 

while 1'(€,) depends on €~ via a low power of €" the present 
approximation is considerably better. We therefore have for 
any linear Boltzmann process 

.-Ji • q2 " a(n~)eq vv,vp~ 
u .. v(uu)::::: - - ~ 

p n ~ a€;- iw + 1/1'(€,) 
(2.55) 

Let J-l refer to the direction of a polar axis [this direction 
refers to the current response, but it is easier to switch the 
indices v and J-l (Onsager) so that J-l refers to the direction of 
the applied field] and let v;- = (v~,X;-,¢'~) and v~,· 
= (v" ,X,, ,¢'d be the polar representations. Then 

(vp, -vp;-,)lvp, = l-cosX~./cosX;-' 

Thus the relaxation time is determined by 

~= LW;;,(I- COS
X;-'). 

1';-;-' cos X, 

(2.56) 

(2.57) 

The standard applications involve impurity scattering 
and lattice scattering. For Bloch states we have 

I.-I. = -_~fffk'2dk' difyd(cos 0). 
;' k' 811 

For impurity scattering, 
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1- cosXk,/cosXk =(I-cosO)-tanxsinOsinify. 

where 0 is the scattering angle between Vk' and Vk and where 
ify is the azimuthal angle for the direction ofvk , around Vk • 

This yields the well-known result 

1 A. 21TN II 
- = --Z(€k) d(cos O)I(k'lvlkW(1- cos 0) 
1'(€k) fz -I 

= 21T(N In )Vk f~ Id (cos 0) oi0 )(1 - cos 0); (2.58) 

here Z (€) is the density of states and 0-( 0 ) is the cross section. 
The application of (2.55) and (2.57) to lattice scattering will 
be discussed elsewhere. For randomizing collisions, we have 

f~ Id(cos 0) (1 - cos 0) = 2 

so that, 

_1_ = ~IWkk,dk" 
1'(€k) 2~ 

In this case, also, Eq. (2.55) is exact. 

(2.59) 

b. Collisional current, We consider the case that the cur­
rent is due to collisional current only, such as is the case in 
problems involving transverse magnetic fields, Ih We must 
now evaluate 

I . _ f3q2 (~ _ ;,,,, " . I 
cT,,,,:nlduu ) - nJo dt e ;:~,R,.;:,RI';:" «(.%' ;:,n;:,) 

- t //1 ,"/ I) (2 60) X e •. 77;:" n;:" <4' • 

where R = ,- ,"4, Using the grand canonical ensemble, we 
must evaluate 

(2.61) 

Consider the k = 0 term first. Writing out the .qj operators 
we easily obtain 

= I. (n;:,) eq (jJ~,R,,;, ).UJJ~,R";:,, 
~. , 

For;' =1=; ", we find 

(2.62) } _ '" ( ) ( ) .'i. 0 c/. ° ;'=1=;" - /(- n,' cq n;:" eq(,;jJ;,R";:,)!!lJ;:"R,,;:,, 

- I (nn eq (2tJ~ ,R,d.%'~ ,R,I;" 
;:' 
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The terms for k = 1,2··· are treated similarly. We can easily 
obtain the final result 

a1.'''OIl (iw) 

_ q2 " l'" dt e - iwtJ(n~) eq (.%'o R )e - 'J/~.%'O R 
n £... Jc; v~ (; /1; 
J~ I:.spm ° "; 

_q2"J(n;)eq(W~R) 1 MOR" (2.64) 
n £.. J " ,,( . ,!; I'" 
J~ I:.spin €; .. lW + .W; . 

In this result, we can define a new scalar 

~ = 21TA WIX(;,;')D(€!.', _ €;)R/1!: - R/1!;', (2.65) 
7; fz;' R/1!; 

where X (;,; /) = 1(; Ivl; /W. Then in (2.64) we can set 

. ~~-I/7r 
. Equation (2.64) is a generalization for all frequencies of 

the result by Adams and Holstein° for the transverse magne­
toconductivity, in which case I;) are the Landau states 
INkyk z ). To see this we note for for w = 0, 

J J(n) 
q- I ; cq (M~X;)X,:: 
f1 ;,spin J€~. 

~XCOII(O) = 

q2 " J(n;) eq 
- £.. w;;,(X~. -X~.,)X; 
f1 ;;:',spin J€; 

q2"J(n;:)eq 2 
- £.. Wi;C(X' - Xc) , 
f1;~, J€;: " . . 

(2,66) 

In the final result we interchanged the summation indices, 
took half the sum, and we multiplied by a factor 2 due to spin 
summation (noting that we need the spin factor in only one 
sum, since in the collision spin is generally conserved), We 
thus obtain the same expression as given by Adams and 
Holstein. 

2.2. General two-body collision operator 

We return to the general case for which ,W is the nonlin­
ear Boltzmann collision operator, For collisions between un­
like particles the operator is quadratic in (n;),. For colli­
sions between like particles (e.g., electron-electron 
interaction) the operator is quartic in (ni;),. Though we did 
not consider the latter case, it can be carried out in a similar 
way as the fermion-boson interactions considered here. 

The repeated Ad operation can formally be carried out, 
but leads in practice to formidable expressions. For example, 
for A ~ n, we find 

(A~n;:")h = Illn;:!><!n;:II,1'Jf),n~", (2.67) 

where 
. ;l11,2,I,n " = 

~ !-

I//J 

x {~[wn",n;:"(1 - n~",) - w;"',:"n;",(1 - n;:,,)] 

- ~[w;.";.",n~"(l-n:;:"')-W;,,,;,,n:;:"'(I-ni;")]}; 
, (2.68) 
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here nc" and nc are given by (2.19). Carrying out the sum­
mations over the Kronecker deltas results after much alge­
bra in 

·;I}f),n;:" = .~ ,::"n;" I [w;";,, (1 - n;,,) + w,,,;,,n(:,, ] 
;" 

x [w;.,,;,,(1 - n;,,) + w(:";,,n;,,] 

+ I [W':'-";" w;";,,n;,,(1 - n;,,) + w~";"n!:,, (1 - n,::")] 
;" 

- I [w;";"w~,,;,,n;,,(1 - n!:,,) + wh"n;,,(l - n;,,)]. 
~- .. 

(2.69\ 

Generally we will set 

(A ~n;:')h = I Iln~ I) <! n; I I ,;I}t· ln ;. , (2.70) 
I//J 

with .;1/ 111 = .;1}. Equation (2.10) then yields 17 

K~A(iw)=(i r"dte··i""I ! (-,t)" 
Jo ;"';''' " _ ok! 

X ([ - (.;I};.. n;: )a;:, + n;:G;. ] (,;I} t.1 n;" )b,,, )"4 

or (2.71) 

Here, 

Jim[~]" 4 1= :;/'( ~ I)' j 1_( _ il'm51"I(w)/k! 
" .() /(u + 8 lW 

(2.71') 

One easily notices that for linear .:Ii [with .;Ij (, 1_(::1J')" and 
fOf{ull(·1'I') - III < I] this reduces to (2.35) of the previous sub­
section. For practical purposes this result is not useful; how­
ever, we will need this formal result in Sec. 7. 

We also give the results of Land u: 

L %A (i£u) = (i r"dt e ;," I ! l=...:t 
Jo n:" ,. 0 k! 

X ([ - (.1'j ,.n; )a;: + n;..G;:. ] 

X [ - (j/~"" + line )b~" + (.;1<".1 ni:" )6" ... J> C4' 
. .. ... (2.72) 

~:,,(i(u) = (iq'2 r/dt e ;",' I ! (- t )' 
f1 Jo ;:-'::"" 0 k ! 

X ([ - (.:11 (.n c Hr,. - <4t· + nev,.;:,] 

X [ - (,;lI~'.1 lin;" H~I' - ,-;',4);:" + (,;lj~)n,,, )vl,;:,,]> . 
(2.73) 

Collisional current only; extended Adams-Holstein re­
sults. When there is collisional current only a very useful 
result can be obtained forw = O. Going back to (2.5) and (2.6) 
we have for the many-body form 

(2.74) 
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Employing Theorem 2, we find 

(3q2 
~v(O) = - L «(~ ,.n,. )n," )eqRv,·RJt,". (2.76) 

f) n" 
The average to be found is 

L«(~ "n,' )n," )eqRv,' 

" = L L'peq [w,'fn,,(1 - n,) - wf,·n~1 - n,,)]n,"Rv;" 
In,! '" 

(2.77) 

where Peq is the grand canonical~istribution. In one part of 
this sum we interchange; , and; to obtain 

(2.77) = L lleq n,"n,,(1- nf)w,.~Rv" -Rvf)' (2.78) 
In,! '" 

For [=;" the result is zero since n," (1 - n,.) = O. For 
;' = [the result is zero since wn' = 0 (we assumed that v 
has no diagonal part). 

For;' = ; " the result is 

LPeqLn," (1 - nf)w,"~Rv'" - Rvd 
In,1 ; 

= L (n," )eq(1 - (nf)eq)w,"~Rv," - Rvf)' (2.79) 
; 

For;' =1=;" =1= [the remaining contribution is found likewise 

L (n," )eq (n" )eq(1 - (nf)eq)w,,~Rv" - Rvf) 
"f ""<,"""f 

= 2:.(n,- )eq (n" )eq(1 - (n,)eq)w,,~Rv" - Rvf) 

'" 
- L(n~" )~(1 - (nf)eq)w,-~Rv'" - RVf) 

~ 

- L(n," )eq (n,. )eq(1 - (n," )eq)wn -(Rv~' - Rv")' 
;' 

(2.80) 

The double sum of(2.80) is zero, as is found by interchanging 
;,[in the term with - Rvf and applying detailed balance 

(n")eq(l- (nf)eq)w,'f= (nf)eq(l- (n;')eq)wW' 
(2.81) 

The third sum of (2.80) is written as 

L(n~" )eq (nf)eq(1 - (n,- )eq)w"" (R vf - R v,- ).(2.82) 
;-

Applying detailed balance, (2.82) cancels the second sum of 
(2.80). We are thus left with (2.79). Substituting into (2.76) we 
obtain (with [_;, ; "-;') 

(3q2 
~v(O) = - L (n;, )eq(1 - (n')eq)w~.;(Rv" - Rv;lRJt" 

f) n" . 
.. • spm (2.83) 

For /..t = v this can be simplified. We interchange the indices 
;,;' apply the detailed balance, and add the results. We then 
find, 

_ (3q2 2 
ifxx(O) - -L(n,)eq(l- (n")eq)w",(X;, -Xd, (2.84) 

f) '" 
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where we include a spin factor oftwo. Equation (2.84) is the 
extended Adams-Holstein result for processes involving in­
elastic binary collisions. It is also valid for collisions with 
quasiparticles such as phonons (see Sec. 4). For these pro­
cesses this formula was first given by Argyres and Roth.9

,18 

3. The nondiagonal susceptibility and conductivity 
3.1. Formulas for X nd, Lnd , and and 

For the nondiagonal part ofthe susceptibility and con­
ductivity we found in LR T II, Sec. 7, 

X~~ (iUJ) = i"" dt e - iwt 

X f:d{3' Tr[Peq(A R( - ili{3'llndB~d(t)], (3.1) 

L ~~ (iUJ) = i""dt e - iw' 

X f: d{3 , tr [peq (A R ( - ili{3 'llnd (liR (t ))nd]; (3.2) 

for the electrical conductivity specifically, 

a;:~(iUJ) = f} 1"" dt e - iwt f d{3' Tr[peqJ~v( - ili{3')J~dJt (t)]. 

Here (3.3) 

(3.4) 

with2 B~d = Bnd , B~d==Bnd' J~d=='l:q vnd/f}, there being 
no collisional current for the nondiagonal part; also 

(A R ( - ili{3 llnd = ePH "A nd e - pH". (3.5) 

We proceed with (3.1). We take the trace in the repre­
sentation [ Ir) J, giving 

X ~~ (iUJ) = r""dt e - iW'iPd{3 'L[Peq(r)~(>!'y- Wyl(rlAnd Irl) 
Jo ° Yi' 
xei,('f,y- >ly)I!'i(rIBnd Ir) J, (3.6) 

where we used HOlr) = If y Ir). Carrying out the d{3' inte­
gration, this yields 

nd(' )-i""dt -i""~n ()~I>I,,·->I'yI-l i'(Wy-Wy)/1i X BA lUJ - e LJ'eq r e 
° yi' Ify-Wy 

X (rAnd Ir) (rlBnd Ir)· (3.7) 

Now, in second quantization form, 

And = L 4,c;"(; 'land I;") = L 'C!,C;" (; 'Ial; H), (3.8) 
,r n-

where 'l:' denotes;' =1=; "; note that by this convention the 
subscript "nd" on a can be deleted. Consider first fixed Ir) 
and a fixed pair; " ; " out of the sum (3.8). Since 

t -c;,c,-Ir) 
=c!,c~_1 In; j,{N" J) = (- 1)1:(1··' -1)( - W(lr -I) 

- 1/2 - 1/2 --X(l-n,,) (n;-) 1 ... ,l-nf" ... ,l-n,", ... ,{N"J), 
(3.9) 

we find that the matrix element (rlAnd Ir) is nonzero only if 
Ir) is the connected state, for which 

n" = 1 ~np n," = I-n~", 
all other n~ = all other n,. 
all NTf = all N,,; 
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this connected state is denoted as 117,::''::" >. For all other terms 
of the series (3.8) the matrix element between Ir> and 1171;'1;" > 
yields zero. Hence we arrive at .. 

(rlAnd IYes" > = ( - q:~:(I" - II( _ 1)1 1,;" - II(n;,) 1/2 

X(I-n".,,)1/2(S-'l a lS-") (S-'#S-"). 
(3.11) 

Likewise we need (Yn" IBOld Ir>. Let again 

(3.12) 

With Ir> given, and for fixed S- 11/, S-"", the state Ir> mustbeso 
chosen that Ir> is connected to 117> by 

n. '" = 1 - n c "', n."" = 1 - fl."" , s _ s _ s 
allotherne = allotherne, (3.13) 
all N" = all iii,! . . 

Now (3.13) is incompatible with (3.10) unless either S- 11/ = S-' 
andS-"" = S-", ors- 11/ = S-" ands- "" = S-'. Forthesetwocases 
the matrix element is, respectively, 

(Yn:" ler e!.' " Ir> = ( - 1)l:(I,!." - II( - WII,!.''' - 11 

X(n," )1/2(1 - n,' )1/2, (3.14a) 

(Yn:" 14"e" Ir> = (- I)};II,,::' - II( - I)};II,!:" - II 

X(n;, )1/2(1 - n!.'" )1/2. (3.14b) 

All other terms of the series (3.12) give zero matrix elements. 
Moreover, when we mUltiply (3.11) with (3.14a) we obtain 
zero since 

( )1/2(1 )Jl2( )1/2(1 )1/2 - ° n/;, - ni;" nt;" - n," -
. .' forn,::",n,::' =0,1. 

Hence, only (3.14b) contributes to (17n:" IBnd Ir>, the rel­
evant matrix element being 

(17n" IBnd Ir> = ( - 1)l:II,!:, - II( - 1)l:(1,,::" - II(n;-) I 12 

X(1-n".,,)1/2(S-"lbls-'). (3.15) 

We substitute (3.11) and (3.15) into (3.7). This gives 

X~~ (iUJ) = 1"" dte - h"r I~I I~I !:t,,'Pcq ([ n; l, [N1) II 
BIt, ).-I,yl I 

X_e ____ -_-eeirl"'y- '" ,.lllinc' (1 - nC') 
~y - ~y " 

X(S-'Ials-")(S-"Ib Is-'). (3.16) 

Since I r> differs from 117> by the lowering of n;" and the 
raising of n!.'" we have with c again denoting the fermion 
energies 

~y- ~y =c," -c," (3.17) 

So, (3.16) gives, carrying out the equilibrium averaging, 

x~~ (iUJ) = f" dt e - i,"r!:~,,' (ns-') eq(1 - (n;" > eq) 

X I - e - (31<, - <,I eir«, .<,)/Ii(S- 'Ials- ")(S- "Ib IS- '). 

c'::" -c,' 
(3.18) 

Finally, with 

1'" dt e iar = 2mL(a) = igo(~) + m5(a), (3.19) 

where go denotes the principal part, we find 
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We still note that for UJ = ° (direct-current result), the delta 
function does not usually contribute, unless S- ' and (; " refer to 
different eigenstates with the same energy. 

For LBA the result is analogous, with Ii replacing b. For 
the electrical conductivity we have in particular 

a;:~,(iUJ) = fUi ,,4,,' (n;, > eq (I - (n;:" > eq)(S-' I i" 1(; ")(s- "I ilL 1(;') 
~ ~ 

1- e- (liE" --E, I 

X 
c;:" -c!:' 

X [i,:;; I + m5(c!:" - c," -W)], (3.21) 
Cr" - c.' -w 
~ ~ 

wherei = quiD is the one-particle current density, 

3.2. The quantum mechanical Hall effect 

For the Hall effect in strong magnetic fields, [ IS-) l are 
Landau states. It has long been realized that the diagonal 
matrix elements of the current yield zero, so no Hall effect 
results. This problem has been circumvented by some au­
thors (see Ref. 7) by including the external electric field in the 
unperturbed Hamiltonian RO. To obtain results an expan­
sion of the one-particle von Neumann equation in powers A. V 
is employed up to orders (A. V)2; in the 8 + function that is 
found to occur, the delta part is retained and the principal 
part is, unjustifiably, neglected, In our opinion it is fortu­
itous that the right Hall conductivity is found in this way. 
For that reason, we will indicate here that the quantum me­
chanical Hall effect stems solely from the non diagonal part 
of the conductivity response formula. Since the nondiagonal 
part has not been considered in the past, the cause for the 
problems with the absence of Hall effect in earlier theories is 
evident. I~ 

We consider the Hamiltonian 

h () = (p + eAf 12m, A = (O,Bx,O), (3.22) 

where we employed the Landau gauge, the magnetic field 
being in the z direction. The one-particle eigenstates (in wave 
mechanical form) and eigenvalues are 

(3.23) 

~ Nk,k, = (N + 1/2)wo + fh ;12m, N = 0,1,2, .. " 
(3.24) 

whereUJo = IqlB 1m is the cyclotron frequency and where<pN 
represents harmonic oscillator wavefunctions. We also write 
1(;) = INkykz ) and we setxo = fzkylmUJo' The relevant ma­
trix elements are7 for a solid dimensions 
LxLyLz (A = LyLz)' 

((; Ixl(;') = X08NN,8kk' + (fz/2mUJo)1/2[(N + 1) 1/28N'N+ I 

+ (N) 1/28N',N_I ]8kk ., (3.25) 

((; IYI(;') = (Ly /2)8 NN·8kk · =yeq8NN·8kk·' (3.26) 
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(S- Ivx IS- ') = i(muo/2m)I/2[ - (N + 1)1/2 8N',N+ I 

+ (N)1/28N',N_l ]8 kk " 

(S- IVylS-') = (muo/2m)I/2[(N + 1)1/28N',N+ I 

+ (N)I/28N'.N_1 ]8kk" 

(3.27) 

(3.28) 

with Ow = Ok,k,.Ok,.k,. From the latter two equations we 
note that there is no diagonal ponderomotive current, nei­
ther in the x nor in the y direction. The matrix element of 
(3.25) indicates that in the absence of an external electric 
field there are stable orbits with fixed center xo, where Xo 

equals what previously we termedxeq [see Eq. (2.6)]. Were we 
concerned with the conductivity a xx' as for transverse mag­
netoresistance, then there is a collisional contribution since 
by (3.25) (S- Ix - xeqls- ') is nonzero both in its diagonal and 
non diagonal matrix elements. For the Hall effect, however, 
we need ayx ; here the collisional contribution [see (2.83)] is 
zero, since (S- Iy - yeq IS- ) = O. Consequently, for the Hall ef­
fect we have only a non diagonal ponderomotive contribu­
tion as we stated above. 

We consider the charge carriers to be electrons. Then 
j = - evlfl. We obtain from (3.27) and (3.28), 

(S- 'Ijx IS- ")(S-" I jy IS- ') = (ie2muo12mfl2)[ - (N' + 1)1/2(N ")1/20N ",N' + 1 

(a) (b) (3.29) 

We also have for the allowed transitions 

c!;" -c!;' =muo [term (a)], 
(3.30) 

C!;" - c!;' = - muo [term (b)]. 

From (3.21) we thus find 

a;;~(0) = _e_I I {(N + 1)(nN) eq (1 - (nN + I )eq)(1 - e -(31;",,,) - N (nN) eq (1 - (nN _ I )eq)(1 - ef3Ii'U,,)}. (3.31) 
2Bfl k N~O.I.2, .. · 

(In this expression we suppressed the index k, thus n N =n Nk' etc.). In the second term we change N--+N + 1. We then obtain 
the general exact result 

The same result has been derived from the quantum mechanical Boltzmann equation (Sec. 6). 
In the paper on applications20 we will investigate (3.32) in detail, and derive a result for the oscillatory Hall effect. Here we 

consider only the steady Hall effect in nondegenerate semiconductors. We split (3.32) as follows (dropping the super nd since 
this is the total contribution): 

ayx(O) = _e_I I(N + 1)[ (n N)eq)(1 - (nN+ 1 )eq) + (nN+ 1 )eq(1 - (n N)eq)ef3li<u"l 
2Bfl k N 

- _e_I I(N + 1)[ (nN)eq(1 - (nN+ 1 )eq)e-(3liw" + (nN+ I )eq)(1 - (nN)eq)j· 
2Bfl k N 

(3.33) 

From Boltzmann statistics we have 
(Ck = fl2k ;12m,(n)eq <1): 

( ) 
_ - (3 [IN + 1!2)Ii<u" + E, - E,.] 

nN eq - e , (3.34) 

( ) .BIi<u" _ -(3[IN+312)Ii<u"+E,-E,.+(3liw,,j_ ( ) nN+ 1 eq/:.'- -e - nN eq' 
(3.35) 

The two parts within each [ l of(3.33) are found to be equal; 
we thus obtain 

e 
ayx(O) = -2: I(N + 1)(nN )eq 

Bfl k N 
e - -I I(N + 1)(nN+ 1 )eq' (3.36) 
B k N 

In the last term we change N + 1--+N. We then finally find 

a (0) = _e_", "'(n ) =.!.... (ntotal) = eno (3.37) 
yx Bfl7- ft N eq B fl B ' 

where no is the equilibrium electron density. For high fields 
this gives Pyx ~ - l/ayx = - B leno, the well-known 
result. 

Note. The nondiagonal Hall effect is the only effect of 
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I 
this kind, as far as we presently see. If we repeat the above 
derivation for the nondiagonal magnetoconductance, we ob­
tain no contribution. For, analogous to (3.32) we obtain the 
exact result 

a';~ (0) 
ei 

= -I I(N + 1)[ (nN)eq(1 - (nN+ I )eq)(l- e-(3li<u,,) 
2Bfl k N 
+ (nN+ I )eq(1 - (nN)eq)(1 - ef31i<u,,), (3.38) 

which differs from (3.32) by the sign of the two contributions 
and by the factor i. 
Again this is split as follows: 

a';~(0) = ~I I(N + III (nN)eq(1 - (nN+ I )eq) 
2Bfl k N 
- (nN+ I )eq(1 - (nN)eq)ef3liw" 

- ~I I(N + 1)[ (nN)eq(1 - (nN+ I )eq)e-(3Ii<u" 
2Bfl k N 

- (nN+ I )eq(1 - (nN)eq)j. (3.39) 

Since the two terms within each [ l are found to cancel each 
other for nondegenerate statistics we find ~~ = O. For de-
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generate statistics there may be a finite imaginary result; this 
could contribute to the dielectric constant in metals .. 

4. The diagonal part for electron-phonon interaction 
4.1. The general form of the transition probabilities 

For electron-phonon interaction we have generally in­
stead ofEq. (1.10), 

AV= i I IF(q') [4· c"aq,(; "Ieiq'.rl;') 
,',' q' 

- C! ."a!, (;" Ie - iq'.rl;')], (4.1) 

where the symbols have their usual meaning; I;) is a general 
form of one particle fermion state. In case I;) = e,k.r, Eq. 
(4.1) condenses to LRT II, Eq. (8.52). The purpose of this 
section is to show that Theorems 1 and 2 of Sec. 2 remain 
valid, with the nonlinear Boltzmann operator still given by 
(2.13), though Ww is differently defined. 

The transition rates Wry are calculated as in Sec. 2. De­
noting the two parts of (4.1) by the superscripts "abs" and 
"em" (for absorption and emission of a phonon), we easily 
find that for given I r) and fixed; " ; ", q' of the series (4.1), 
the only connected states in the matrix element (riA VabSlr) 
are the states Irn'q') such that 

ii, = n, for; ¥=;' and; ¥=; "-
ii" = 1 - n," ii,' = 1 - n,'" (4.2) 

Nq = Nq - Oqq" 

Likewise, the only connected states in the matrix element 
(rIAVemlr) are the states Irn'q') such that 

fI, = n, for; ¥=;' and; ¥=;", 
11,' = I-n", 11,,, = I-n," (4.3) 

Nq = Nq + Oqq" 

With these data we find 
W~~, .• =Q(;.',q'_;")(I-n,.)n"Nq" (4.4) 

W~~>." •. =Q(;'-;",q')(I-n")n,,,(1 + Nq,), (4.5) 
where 

Q(;',q'-;") 

= (21T11l)1F(Cl11 2 1(;" leiq',rl; 'WO(E,' - E,' + Eq,), (4.6) 

Q(;'-;",q') 

= (21T11l)IF(Cl11 2 1(;"le- iq'.rl;'WO(E" -E,' -Eq,). 
(4.7) 

For the operator result (Mn,)b we find from (1.3) ky by per­
forming the boson average (we further drop the prime on q), 

(Mn,")b = I IQ(;',q-; ")(1 - n,' In"~ (Nq )eq ,','q 
+ !Q(;'_;",q)(l-n,.)n,,(1 + (Nq)eq)J 

X (n," - 11,,,), (4.8) 

Introducing 

W,r = I{Q(;',q_;")(Nq)eq) 
q 

+ Q(;'-; ",q)(1 + (Nq )eq} (4.9) 

we find that (4.9) takes exactly theform of(2.21). This proves 
the validity of Theorems I and 2. Also, with the definition 
(4.9), the property (2.15) remains intact. 
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4.2. Magnetic transport phenomena 

For the special case of Landau states, Eq. (3.23) the 
matrix elements occurring in (4.6) and (4.7) are 

(;" leiq.rl;') = f d 3re - ik;Ye - ik';Z¢'N' (x + :~)eiq.r 

X/k;Yeik;Z¢'N' (x + Ilk;) _1_ 
mliJo LyLz 

= Ok ;.k; + qy Ok,;,k; + q/N',N' (qx,k ;,k ;), 
(4.10) 

where, following Argyres21 we defined 

f"" (Ilk") . IN',N"(qx,k;,k;) = dX¢'N' x+--y e,qx" 
- "" mwo 

X¢'N'(X+ Ilk;). (4.11) 
mliJo 

Likewise 

(;" Ie - iq.rl;') = Ok ;.k; _ qy Ok ;',k; _ q/ N'N" ( - qx,k ;,k ;). 
(4.12) 

Substituting (4,10) and (4.12) into (4.6) and (4.7), we obtain 
for (4,9), 

W,'," 
= (21TIIl)IIF(qWIJN',N" (qx,k ;,k ;WOk·,k' + q (Nq )eq 

q 

XO(E,' - E,' + Eq) + IJN',N'( - qx,k ;,k;W 
XOk',k'_q(1 + (Nq)eq) 

XO(E,' -E,' -EqJ; (4.13) 

here Ok ',k' + q stands for Ok ~,k; + qy Ok ;',k; + q, and it is to be 
remembered that; represents N, ky, kz' 

Argyres 21 indicated that J N',N" depends only on 
q; + (k; - k ;)2, i,e., on q; + q; = q~, Enck et al. 22 have 
calculated J N ',N" The result is 

N"l ( A 2q2)( A 2q2 )N' -N" IJN'N"(q~)12= ~xp ___ 1 ____ 1 

, N'! 2 2 

X [2'Z> N'( A :q~ ) r. N" "N', 

(4,14) 

where 2''; is an associated Laguerre polynomial and where 
A 2 = III mliJo. Also, 

N'l ( A2q2)(A2q2)N'-N' 
I (JN'N"(q~)12= --.:.exp ___ 1 __ 1 

. N"! 2 2 

X[2'Z:-N{A:q~)]. N'"N". 

(4.15) 

Since IJ N',N" 12 is the same for ± qx' Eq. (4.13) simplifies to 

w,'," = 2:~IF(qWIJN"N"1210k".k,+q(Nq)eq 
XO(E" -E,' +Eq )+8k",k'_q(1 + (Nq)eq) 
X8(E" -E," -Eq)J. (4.16) 

This is the transition rate that is to be used in the generalized 
Adams-Holstein result ofEq, (2.84). Various applications 
will be discussed in a forthcoming article.20 
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B. QUANTUM MECHANICAL BOLTZMANN EQUATION 
5. The diagonal Boltzmann equation 

In this section we derive the quantum mechanical 
Boltzmann equation of LRT II Sec. 8 by a faster method 
than before. This method is well adapted in order to find an 
extension that includes the nondiagonal part, to be set forth 
in Sec. 6. The inhomogeneous Markovian master equation 
reads [see LRT II, Eqs. (4.30)] 

(5.1) 

The first moment equation of this is the Boltzmann equa­
tion. Thus, with (n~), = Tr[n~p(t)], 

a(n~), R J -- + Tr{ n~AdPd(t) 
at 

= f3F(t )Tr{Peqnd - AdAd + (A)d] J, (5.2) 

where we noticed that n~ andpeq commute. We now apply 
Lemma 1 ofLRT II [Eq. (el)]; for any two operators C and 
Dwehave 

Tr (CAdD) = Tr(DAdC), 

Thus we obtain 

a(n~), 0 R J -- + Tr{pd(t )Adn~ 
at 

= f3F(t )Tr{Peq n~( - ~dAd)J 
+ f3F(t )Tr{Peqn~(A )d J. 

(5.3) 

(5.4) 

Using Theorem 2, Eq. (2.16), the second term to the left 
becomes 

(5.5) 

For (A)d we writel:~,nd; 'Idl; '). The second term to the 
right then involves the average 

= I (n~)eq(n~')eq(;lldl;')+ (n~)eq(;ldl;) 
~'#~ 

= (nt)eqI(nt')eq(;lldl;')+ [(np - (n~)2](;ldl;); 
)-0 

• (5,6) 

the first sum is zero since (Ad)eq = 0 [see LRT II, Eq. 
(6.22')]. We thus have for (5.4) 

2nd term rhs =f3F(t)(n,)eq(l- (n~)eq)(;ldl;). (5.7) 

For the first term on the right we write Ad = In;,(; 'Ial; '); 
;' 

this term involves the average 

= - I(n,&8;on;')eq(;llal;'); (5.8) 

" this was computed in LRT II Eqs. (8.43) if. The result is 

1st term rhs 

= -f3F(t)(n~)eq(l - (n,)eq)I{ [(; lal;) - (;'Ial;')] 
t' 

x[w;,:-,(l- (n;')eq)+wn(n':-')eq]J. (5.9) 
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Thus from (5.5), (5.7), and (5.9) we find the quantum Boltz­
mann equation 

a(n,), () () . ---at' -f3F(t) n; eq(l- n; eq)(;lal;) 

-f3F (t)(n;)eq(l- (n':-)eq) 

xI{[(;llal;')-(;lal;)](ww(1- (n':-')eq) 

" + wn' (n;, )eq] J 

= I[wn(n~, ),)(1 - (n;),) - Ww (n;),)(l - (n;, ),)]. 
t' 

(5.10) 

On the nature of the two streaming terms we commented in 
LRT II. 
6. The full quantum Boltzmann equation 

We now start from the inhomogeneous complete evolu­
tion equation, LRT II, Eq. (4.41), 

apR (t) + (Ad + i2'0loR (t) 
at 

= F(t loeq [df3'eM'Y" [ - AdAd + (..4 )d + (A )nd ]. 

(6.1) 

We seek an equation for a (4, C,,) .lat. Thus, we multiply 
(6.1) by 4, C,' and take the trace; next we use the lemma 

Tr [ClAd + i2'°)D] = Tr[D(Ad - i2'°)C] (6.2) 

(see LRT II, Appendix C). Then we obtain 

a(ct C ) 
,,;,' +Tr[pR(t)(A -i2'°)ct c ] 
at d" {;, 
= f3F (t )Tr [Peq ( - AdAd )4, C;, + Peq (A )d4, C;, ] 

p -

+ F(t)L df3' TrfPeq (eM' Y"(A lnd 4, c{;,J, (6.3) 

where we notice· that 2'0 (diagonal operator) = O. 
For the second term to the left we note that A d destroys 

a nondiagonal operator. Thus 

AdC~, c~, = Adn~, 0;,;,; 

the result for this part is by (5.5), 

Tr[pR(t)AdC!,C;,] = (&8{;,n;),o{;,;,. (6.4) 

For the other part of this term we have 

- iy04,c;, = (illl) [4,c;"HO], (6.5) 

so that we obtain 

Tr[pR (t)( - i2'°c!, c,:-J] 

= ~ l,;! (rlpR (t)0 (Yk~, C,:-, Ir) g" r 
rr 

- (rlpR(t)ly)g"y(yI4,c;,lr)J 
i - -

= ~ l,;(rlpR(t )r) (rlc!,c;, Ir)(g" r - g"y). (6.6) 
rr 

Now if we take Ir) = I in; j, IN,! j), then Iy) can only be 
such that 

n" = 1 - n~, ' nt, = 1 - n~" 
all other ~ = nt, 

allN,! =N'!. 
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Since n;, is lowered and n;, is raised we have 

1&':y = 1&' y + E" - E". (6.8) 

Thus we find 

Tr[pR(t)( - i2"°ct c,J] 
= (i/II)(E~, - E,,)L <rIPR 

(t )4, C,' Ir> 
y 

= (i/II)(E" - E" )(C}, C~) ,. (6.9) 
This is an off-diagonal contribution. There is no diagonal 
part since E" - E;, = 0 for tl = t2' 

For the first term on the right of (6.3) we note that 

Tr [Peq ( - AdAd + (A )d lct C" ] 

= Tr[peq ( - AdAd + (A )d In"~ ]8"". (6.10) 

Thus this term yields [(5.7) + (5.9)] times 8;,;,. 
Finally, the last term of(6.3) is obtained in the following 

manner: we substitute 

(6.11) 

Then, 

Tr [Peq (ef!/3' Y"(A )nd )ct c;, ] 

= L(t3Ialt4)Trlpeqef3'H"cJ,c;,e-P'H"cJ,cb' )(1-8;,~J 
;,1;, 

= L(t3Ialt4)Deq(r)~'(~)- ~Y<rlcJ,c" 117> 
1;,1;, yy 

X (rI4,c,;, Ir>· (6.12) 

Nowiflr> = lIn; j, (NrJ j), 117> must satisfy the rule (6.7) to 
make the matrix element (YlcJ, c"lr> nonzero. However, in 
order that (rI4,c,;, 117> is nonzero, we must have t3 = t2 and 
t4 = tl by a similar argument as in Sec. 3. Thus 

t - - t <rlc;,c;, lr)<rlc;,c~-,lr) = (1 - n;, )n;, 8;,;, 8;,;; . (6.13) 

For 1&':y - 1&' y we have again (6.8). 

Thus (6.12) gives 

[P f!/3' y,,,' t ] Tr eq(e ' (A )ndC;,C;, 

=(t2IaltdI[Peq(r)~'(€"-".l(I-n;,)n;,](1-8;,;,) 
y 

= (t2Ialtd~'(€" - €"I(1 - (n;.>eq )(n;)eq(1 - 8;,;,\. 
(6.14) 

Integration over d{J' yields for the streaming term 

F(t) d{J'(above)=F(t) -e '" (1-(n;'>eq 1
{3 1 -(3\<I;-fl;'\ 

o EI;, - E;, 

X (n,)eq(t2Ial~d(1 - 8;,;')' (6.15) 

We can a posteriori combine this term with the result due to 

(..4 )d' for we have 

{JF(t)(n;, )eq(1 - (n;, )eq)(tllal~d 
1 e - (J(€I;, - ';,1 

=F(t) - (n,)eq(l- <n;,>eq)(t2Ial~d8;,;,. 
E -E; 

;, 2 (6.16) 

The total effect of the streaming due to tA )d + (A )nd is thus 
the result (6.15) with the factor (1 - 0;,;,) omitted. 

Collecting all terms, the full quantum Boltzmann equa­
tion becomes 
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a(cJ,c;), l_e-{J(€I;,-€,J 
at -E(t) E -E (n;)eq(l- (n~)eq) 

" " x(t2Iciltt!- {JF(t )(n;, )eq(l - (n" >eq) 

X ~I [(t 'Ial~ ') - (tllal~d] , 
X[w;,,:;,(I- (n':;')eq) + Wn , (n!;')eq]}8,:;", 

= L[Wq ', (n!;, ),(1 - (n;.>,) - W",' (n;,),(1 - (n,' ),)] 
!;' 

X8;,;, -(i/II)(E;, -E;,)(CJ,c!.),. (6.17) 

7. Equivalence with the linear response results 

We will show complete equivalence of the Boltzmann 
procedure with the linear response procedure, by demon­
strating that the response formulas also lead to the Boltz­
mann equation (6.17). 

According to the general linear response idea, we have 
that 

(7.1) 

where ¢ is the response function [see LRT I, Eq. (3.9)]. Thus 
from (2.72) we have for the diagonal part of ¢. 

d '" (- t)k , 
¢sA(t)={JI I. --([-(.%';,n;,)a;, +n;,a;,] 

;';" k=O k! 
X [- (.%'t,,+ lin;" )b;" + (.%'tJn;" )b;" Deq. (7.2) 

Thus for the current J B,d caused by the force F (t ) we find [see 
LRT I, Eq. (2.20)], 

f' 00 (-t+1l 
(,:jJB.d ), ={J J/7F (7);;2(" k~O k! 

X ([ - (.%' ;,n,' )a;, + n;; ,ci{; , ] 

X [- (.%'t,,+ lin;;" )b~" + (.%'tJn;" )b;"l>eq' 
(7.3) 

But also generally, cf. (2.36), for any current average, 

(,:jJB,d), = I[ - (.%' ;"n;" ),b;" + <n~" >,b~,,]. (7.4) 
~" 

Comparing (7.3) with (7.4) we find the following identities: 

(n;), ={J ('d7 E(7)I ! {- t + 7)k 
Jo ~' k=O k! 

X < [ - (.%' ;' n;, lab' + n;,a~, ](.%' ~k In;l) eq' 
(7.5) 

(' 00 (- t + 7t 
(.%';;n;;), ={J J/7F (7)'f. k~Q k! 

X([ -(.%';,n,,)a;, +n;;,ci;,](.%'t+11n;)eq' 
(7.6) 

We now differentiate (7.5); in differentiating the integral only 
the term with k = 0 survives, and in differentiating the inte­
grand we replace k-+k + 1. Thus we obtain 

a(n;), , 
-- ={JF(t)I([ -(.%';,n;,)a;, +n;,a;,]n~>eq 

at " 
-{J ('d7F(7)L ! (_t+7)k 

Jo ~' k=O k! 
X ([ - (.%' {;,n;-\a;, + n;,ci;;, ](.%'t+ Iln;)eq· 

(7.7) 
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The last part is just - (flJ (;,n{;), by (7.6), We thus have 

a(nr;), () ] -- -PF(t)I[(nr;nr;,)eqa;, - n;flJ{;,nr;' eqa{;, 
at {;' 

= -(flJ;n;>, (7.8) 

which one easily recognizes as the diagonal Boltzmann 
equation. 

The proofhas the drawback that one cannot obtain (7,5) 
and (7.6) if either one of the sets of matrix elements I b{; 1 or 
I br; 1 is zero, as if often the case. For the linear Boltzmann 
operator one can, however, easily deduce (7.5) from (7.6) and 
vice versa. 

For the nondiagonal part we proceed similarly. From 
(7.1) and the result for LBA analogous to (3.18) we have the 
response function 

¢l~(t) 

= ~ /( ,) (1- ( ") ) l_e-{3I
E
,.-E.-! itIE,.-E,.)/fi 

L nr; eq n{; eq e 
r;'r;" Cr;" -cr;' 

X(;/lal;")(;"lb 1;/). (7.9) 

This gives for the contribution to current due to the nondia­
gonal part of p (l:/ means; / #; "): 

(J:jJB,nd)' = f'dr F(r) I /(nr;' )eq(1 - (nr;" )eq) Jo r;'r;" 
1 - {3IE". - E,.) - e· jl' _ T)IE". - E,·)lfi X e· • 

cr;" -cr;' 

X(;/lal;")(;"lb 1;/). (7.10) 

But generally we have also 

(J:jJB,nd)' = I /(cJ"Cr;' ),(; "Ib 1;/)· (7.11) 
;'r;" 

Comparing (7.10) and (7.11) we conclude that 

(cJ"cr;' ), 

i' 1 - e -{3IE,. - E;-.) 

= dr F(r)(n;, )eq(1 - (nr;" )eq)I-----
o Cr;" -cr;' 

X eil ' - 1')(E,- - E,.)/fi(; 'Ial; "). (7.12) 
Differentiating we find 

a (cJ"cr;' ), 

at 
1 - {3IE,- - E,.) 

=F(t)(nr;')eq(l- (nr;")eq) -e (;/101;") 
Cr;" -cr;' 

-(illJ)(c;, -C{;")(4.c{;,)" (7.13) 

which corresponds to the nondiagonal part (; " #; /) oft 6.17). 
We still note that one can also write the streaming term dif­
ferently; from equilibrium statistics one has 

(nr;' )eq(1 - (nr;' )eq)(1 - e -{31£,· -E''')I(cr;" - fr;') 

= (nr;. ) eq (1 - (nr;') eq)( 1 - e - {3I
E,- - E;-')I(cr;' - Cr;" ). 

(7.14) 

c. INHOMOGENEOUS SYSTEMS 

8. Boltzmann equation for the one particle Wigner 
function 

It is in the nature of the quantum mechanical results 
that the streaming term associated with the spatial gradient 
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is absent. This is due to the fact that we deal with C operators 
or occupancies of states of the set II;) 1 (which may for cer­
tain systems represent momentum states or Bloch func­
tions), the specification of which is incompatible with spatial 
localization. A classical analog can be obtained, however, by 
appealing to the Wigner function, see, e.g., de Groot?3 We 
will show that, curiously, the nondiagonal parts ofthefull 
quantum Boltzmann equation, lead to the recovery of the spa­
tial gradient term, necessary for inhomogeneous systems. 

The many particle Wigner function is defined as 
(h - 3N) times the Weyl transform of the density operator 
p(t); thus we have 23 

p(p,q,t) = (lIh 3N)Trlp(t).1 (p,q)j, (8.1) 

where 

f 
(j/fi)LP,v, N 

J:j (p,q) = d 3NV e i jg Iqj + !vj ) (qj - !vj I; (8.2) 

the subscript i stands for the coordinates of particle i. The 
antisymmetrical second quantization form is obtained by 
writing 

(8.3) 

where :II: denotes a normal ordered product. For one factor 
of the product (8.3) we find 

f d 3q¢t(q)lq + ~v) (q - !vl¢(q) 

= fd3q¢t(q)e-lilfi)v'Plq - !v)(q - !vl¢(q) 

= f d 3q¢t(q)e - (ilfi)v'PI8 (Q - q + !v)¢(q) 

= ¢t(Q + !v)e - (ilfi)v,P¢(Q + ~v). (8.4) 

Here capitals refer to the quantum operators. Noting that 
Q = q and P = (flli)V, we obtain with 

e - v,vf(q) = f(q - v) (8.5) 

the following form (compare Balescu24
): 

p(p,q,t) = -1-fd 3NV eli1fi)pv 
h 3NN! 

where we wrote 
N 

pv = IPi'Vi' 
;= 1 

j 

(8.7) 

To change to the occupation number form used in the 
rest of this article we write 

¢t(q) = n1'I2Ie-ik'·q¢:,(q)ct" 
k' 

(8.8) 

where ¢k is a periodic function on the lattice for Bloch elec­
trons and ¢k = 1 for free particles; as usuall:k 
_(n 18ffl)fd 3k. Substitution of (S.8) into (S.6) results in 
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XIT¢:',(qj + !Vj)¢k(qj - !vj)Tr{p(t):ITct,ck:j, 

We make the transformation 
j (8.9) 

k i - k; = ui } 

ki + k; = 2ki 
or k l,' = Ki + !Ui} 

ki =Ki -!ui 
(8.10) 

with the Jacobian being unity. We also develoP¢k in a Four­
ier series on the reciprocal lattice 

¢dq + !v) = 2:A ~ (g)eiQ'KeiV.g/2, 
II 

(8.11) 

¢:" (q - !v) = 2:A :" (g')e - iQ'
l e iV·II·/2. 

II' 

We now find that the integration over d 3NV and subsequently 
over d 3NK can be carried out. The result is found to be with 
p=~ 

p(p,q,t) = (8::h 3 r ;!fd3Nu~eiq(U+g-g,) 
X ITA ~ _ (112)u) - (1/2)(1) + II;) (g')Ak, + (112)u) - (112)(1) + 11;1 (g) 

j 

X Tr{p(t ):ITct, _ (1/2Iu, _ (1I2)(1I) + K;ICk) + (1I2)u, - (1/2)(1i, + 11;1: j. 
j 

(8.12) 

We make the further change of variables u + g - g' -u. The 
subscripts on A and C now become k - g + !u and those on 
A • and ct become k - g' - !u. Since k can be shifted by a 
reciprocal lattice vector in the extended zone scheme we can 

I 

replace k - g + ~u-k + ~u and k - g' - ~u-k - !u. The 
integrand now becomes 

eiQu2:ITA ~ _ (1I2Iu)gJ)Akj + (1/2Iu)gj) 
l1li' j 

= eiQUIT¢ ~ _ (112)u)O)¢kj + (1I2)uJO), 
j 

(8.13) 

where we used (8.11). Substituting into (8.12) we obtain the 
second quantization form sought for 

p(p,q,t) 

= (8Jh 3 r :J d 3NU e
iQU1}¢ ~_(1/2)u)0)¢k)+ (1I2)uj(0) 

X Tr{p(t ):IJctr (1I2)u/k,+ (112)u): j. 
j 

(8.14) 

For free particles wehave¢ ·(0) = ¢ (0) = 1, so we obtain the 
result given by Balescu.24 

In the present section we need the one-particle Wigner 
function, in phase-space f.u space), denoted as PI (p,q,t ). We 
have in the case of Bloch electrons 

PI(p,q,t) = 8Jh 3 J d 3uei
Q
'U¢:' - (1/2)u (O)tPk + (1/2)u (0) 

X (ct _ (1/2)u Ck + (1I2)U)' 

and in the case of plane waves 

( t ) - n fd 3 iq·u < t ) PI p,q, - 8~h3 ue Ck-(1I2)u Ck+(II2)u ,. 

(8.15) 

(8.16) 

8.1. Wigner function transport equation for free particles 

We start from the full quantum mechanical Boltzmann 
equation (6.17) with;1 = k - !U';2 = k + !u. We multiply 
this equation by (n 18~h 3)eiq

.
U and integrate over u; we thus 

obtain 

d'P (p q t) n f' 1 - e - {J( •• - (1/21. - e. t 11/21.) 

I " + ---3 d 3ue,q
·
u

{ -F(t)·----------"-
at 8~h €k _ (1I2)u - €k + (1I21u 
X (nk + (l/2)u) eq (1 - (nk _ (lll)u ) eq )(k + !ulvlk - !u) + (illi)(€k + (112)u - €k _ (l12)u)(4 - {JI2)u Ck + (1/2)U)' 1 

= !! 3 fd 3U eiq
'
U2:{ Wk'l< (nk, ),(1 - (nk),) - Wkk, (nk) ,(I - (nl<' ),) jbu,o, 

87T h k' 

(8.17) 

where we noticed that (klr - reqlk)==O for plane wave states. Further for plane waves, 

€k-(ll2lu - €k+(1/2)u) = (l/2m)[(p - !liuf - (p + ~1iu)2] 
= - (lilm)p·u (8.18) 

and 

(k + !ulvlk - !u) = (liklm)ou,o' (8.19) 

We also note the Fourier inversion of (8.16) 

< 
t ) h 3 fd 3 - iq·u ( t ) Ck_(ll2lu Ck+(I/2Iu ,= n qe PI p,q, , 

3d term lhs = _1_' fd 3U e - iq.up'ufd 3ij e - iij.up I (p,ij,t ). 
8~ m 

and a fortiori 

< 
t ) h 3 fd 3 - iq·u ( ) 

Ck _(ll2lu Ck+(1/2Iu eq=n qe Pleqp,q. 

We will now compute the various terms of (8.17). 

(8.20) 

(8.21) 

For the third term on the lhs we substitute (8.18) and 
(8.21), to yield 
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Changing the order of integration we first evaluate 

f d 3U ei(q - iil·up.u. 

Now since 

f d 3ue i(q - iil·u = 8~o(q - ij), 
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differentiation to q gives (i.e., operate with V q on both sides): 

- if d 3u uei(q-ij).u = St?Vqc5(q - iiI; (S.24) 

hence 

(S.25) 

Carrying out the remaining integration over d 3q, noticing 

f d3q [Vijc5(q - ii) ]PI(p,ii,t) = - V qPI(p,q,t.), (S.26) 

we obtain 

3rd term lhs = (p/m)·V qPI(P,q,t), (S.27) 

which is the standard inhomogeneous streaming term of the 
Boltzmann equation. It is quite peculiar that this term comes 
from the nondiagonal part of the full quantum mechanical 
transport equation! 

For the second term on the lhs of(S.17) we obtain, notic­
ing (S.19) 

2nd term lhs 

= s::hJfd3ueiq.U[ -/3F(t)]·(nk )eq 

( 1 ( ) ) ~ 15 - [J fd 3 iq·u 
X - nk eq m u,o - st?h 3 u e 

F(t) a (nk ) eq v 15 [J 
XT a€k • k€k u,o = St?h 3 

fd
3 iquF(t) V ( t ) ~ 

X u e . T' k Ck - (1I2)u Ck + 11/2)u eqUu.o 

= ~.V fd 3q- p (p q-)fd 3U eiu·lq - ij)c5 . (S.2S) St?1i k leq , u.o 

We must now elaborate on the meaning of the Kronecker 
delta c5u.o. In LR T II, Sec. IIA, we indicated that diagonal 
parts of many-body operators are never sharp, but are 
"fuzzy." We must therefore give a certain extension 1..1 u 13 to 
the volume integration in u space. We may do this by consid­
ering a wave packet rather than a plane wave, which reflects 
the fact that k (and so u) is not a sharp quantum number 
when the system is subject to chemical or other gradients. 
Thus we write 

f
d 3ueiu·lq - ij)c5u,o:::: r d 3U eiu·lq - ij) 

J I.:1UI' 

= II sin[.J~x(qx - qx)12] , 
xyz (qx-qx)/2 

(S.29) 

where we integrated over ( - ..1 Ux 12,.Jux 12) and similarly 
for the other directions. The rhs has its maximum of.J u x for 
qx = q x; the x-direction width is 

-l-f'" sin[.Jux(qx -qx)/2]dqx = 21T. (S.30) 
.Jux - '" (qx - qx)/2 .Jux 

We may thus replace the rhs of(8.29) by a function in ii space 
which has a magnitude l.Jul3=:llxyz.Jux for ii within the 
rectangular box of volume 8t? Il.Ju 13 centered on q, and 
which is zero elsewhere. Thus, carrying out the ij integration 
next, we have 
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f d 3qPleq (p,ii) f d 3U eiu.(q - ij)c5u,o 

::::I.JuI 3
( d 3qPleq(p,ii). 

J87T'/I.:1ul' 
(S.31) 

According to the uncertainty principle, the volume of a mi­
crocell in phase space is l.Jp 13 1.Jq 13=fi3I.J u 13 w(q) = h 3; thus 
w(q) = 8t? II.Jul 3 is the minimum accessible volume in posi­
tion space centered on q. From (8.18) and (8.31) we thus 
obtain 

2nd term lhs = F(t) ,Vk _1_ r d 3qPleq(P,ii). (8.32) 
Ii w(q) Jw(q) 

We can treat the collision term in a similar way. The part 
linear in (nk ), goes as before. For the quadratic part we need 

8::h 3 f d 3 ue
iq

.u ~ Wk'k (nk,), (nk ), c5u,O' (S.32') 

For (nk ,) t and (nk ), we write 

() h 3 f d 3' - iq'·u (' , t) nk , ,= fl q e PIP ,q , (for u-o). 

h
3 f 3 .• (nk ), = fl d q" e- 1q .• PI(p,q",t) (for v-o). 

Hence 

(8.32')= 8::h 3 (~r f d3q'e-iq"UPI(p',q',t) 

xf d 3 q" e- iq'" PI (p,q",t) 

X f d 3U eiq.u c5u,oc5.,o . (8.32") 

Now we multiply (8.32") by (n 181T"') S d3v eiv
·
qc5v,o:::: 1. Thus 

we obtain 

(8.32") = h\ (8~ r (h 3)2 f d V PI(p,q',t) f eIU.(q - q')d 3U c5u,o 

X f d 3q" PI(P, q", t) f eiV.(q - q') d 3vc5 •. o 

~_1_ (_1_)2 (h 3fl.Jul3 
h 3 8t? 

X r dV PI(p,q', t )IAvI 3 r d 3q" PI(p,q", t) 
JS17"'/I.:1ul' J817"'1 1.:1 vi ' 

1 h
3 i d 3 , (' , ) =-h3 -(-I q PI p,q, t 

w q wlq) 

h 3 f. X-- d 3q" PI(p,q", t). 
w(q) (oJ(q) 

Thus one finds 

1 { h
3 f. coll term = -3 L Wk'k-- d 3iipl(~',ii,t) 

h k' w(q) wlq) 

X [1 _ h(3) r d3ijPI(~,ij,t)] 
wq L ,q) 

h 3 i d 3- (ZI_' --Wkk'-(-) ·qplnK.,q,t) 
W q w(q) 

X [1 - :(~)Lq,d3ijPI(~',ij,t)]J. 
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Both (8.32) and (8.33) can be written in simpler form by intro­
ducing coarse-grained Wigner functions (setting PI p): 

p(p,q,t) = _(1_) ( d 'q p(p,ij,t), qEUJ(q), (8.34) 
UJ q J,,'lql 

Peq (p,q) = _(1 ) ( d 'q Peq (p,ij), qEUJ(q). (8.35) 
UJ q J,'>lql 

Since the integration involves a volume in phase-space (h 3) 
which is larger than the minimum support of the Wigner 
function,2, we expect j5 to be positive definite. 25 

Collecting terms, we find the transport equation 

ap(~q,t) + ~.V qp(p,q,t ) + F(t ). V pPeq (p,q) 
t m 

= I {Wk'kP(fik' ,q,t) [1 - h 'p(fik,q,t)] 
k' 

- wkk'P(fik,q,t)[ 1 - h 'p(fik',q,t)]}. (8.36) 

This result is near exact. 26 If the gradient V qP is slowly va!y­
ing over the cell volumes UJ(q), we can also replacep andp in 
the first two terms on the lhs of(8.36). We have then a trans­
port equation for p(p,q,t ) alone. 

The classical distributionf(p,q,t ) is related to the classi­
cal limit of the Wigner function, if this limit exists (cf. M. J. 
Groenewold27 ). We have 

n(p,q,t) = limh 'j5(p,q,t ), (8.37) 
" .0 

where n has the dimension of a number. To obtain a density 
in phase-space, we must divide by the volume of a microcell 
h 3. Thus 

f(p,q,t) = limP(p,q,t). (8.38) 
,,~ .0 

From (8.36) we obtain 

af(~q,t) + ~.V J(p,q,t) + F(t )·V Joq (p,q) 
t m 

= ~fd 3k '[ Wk'k f(p' ,q,t ) - Wkkf(p,q,t)]. (8.39) 
81T 

The effects of the exclusion principle in the collision term 
have disappeared; the only quantum mechanical attribute 
remaining is Wk'k given by the "golden rule." It is a smaIl 
matter to rewrite the collision term in terms of the classical 
cross section. 

We assume elastic scattering with No heavy obstacles. 
Then Wkk' = Wk'k and [cf. (2.25)] 

Wkk' = (21TNrlc 2/fi)l(klvlk'W8(tk - tk')' (8.40) 

For the cross section we have by definition, denoting by fl ' 
the solid angle of the scattered vector k' taking the sample 
volume 1 cm', 

Since, 

(where S is an energy surface) we easily obtain 

cr(fl ') = (m 2A, 2/fi44rJI(klvlk'W. 
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(8.41) 

(8.42) 

(8.43) 

Now substituting (8.40), (8.42), and (8.43) in the collision 
term we obtain 

coIl term = Nof dfl '~ cr(fl ') [f(p' ,q,t) - f(p,q,t)]. 

(8.44) 

For two-body collisions we can likewise recover the stan­
dard collision term. 

8.2. Wigner function transport equations for Bloch electrons 

The quantum mechanical Boltzmann equation is multi­
plied by 

(fl /81T'h 3)eiq.U <p t, (O)<p!:, (0), 
bl = k - ~u, b2 = k + !u (8.45) 

and integrated over d 'u. The result is the same as (8.17), 
providing that all terms except apI/at are multiplied by 

<P: _ 11/21u (O)<Pk + 11/21u (0). We now need the Fourier inversion 
of(8.15) which reads 

(c~ -11/2IuCk"" 11/21u >t<P: - 1i/2Iu(0)<Pk + 11/2IU(0) 

= ~3 f d 'q eiqup(p,q,t). (8.46) 

In the terms with 8u,Q we use 28 

(8.47) 

The procedure is similar as in the previous subsection. 
The field term with F(t) = - eE(t) survives only for u = 0, 
SInce 

(8.48) 

as we show in the Appendix. Noticing (8.47), we find that the 
term becomes the same as (8.32). The coIlision term also 
remains unchanged, i.e., we find (8.33). Some new aspects 
occur in the other streaming term: we have upon substituting 
(8.46), 

fl fd ' iq·u i ( ) 81T'h' u e -,; tk + 11/21u - tk - 11/21u 

X <P :- 11!2lu (O)<Pk + 11/21u (0) (c: - 11/21u ck + I 1!2lu > t • 

i fd' iq.u( ) = --,- u e tk + 11/21u - tk -- 11!2lu 
81T fi 

X f d 3ij e - iq'Up(p,ij,t). (8.49) 

We write 

( 
11/2)u·V, - 11/2Iu,V,) 

tk + 11/2)u - tk ~_ 11!2)u = e - e tk' (8.50) 

For the integration over d 'u we now have 

fd 
3 [iU'lq - q - li!2)V,1 iu·lq - q + li/2)V,I] -u e - e tk 

= 81T' [8 (ij - q + (i/2)V k) - 8 (ij - q(i/2)V k) ]tk 

= 161T' I 1 [(V)2n+18(ij-q)]*[((i/2)Vk)2n+l€k]' 
n ~ 0 (2n + I)! q 

(8.51) 

where * means a contraction over all tensor components to a 
scalar. Carrying out the subsequent d 'q integration we ob­
tain 
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streaming term = - 2i f 1, (V q )2n + 'p(p,q,t )* 
fz n~O (2n + 1). 

x( ~ Vk yn+ ' tk . (8.52) 

We note that this term is real, despite the occurrence of i in 
its factors. 

Collecting terms we obtain the following transport 
equation for the coarse-grained Wigner function p: 
ap(fzk,q,t) _ eE. V - (fzk ) _ 2i 

at fz kPeq ,q fz 

00 1 - ( i )2n + I 
X I (V q )2n + 'p(fzk,q,t)* -v k tk 

n~O (2n + I)! 2 

= I I WkkP(fzk,q,t )[ 1 - h 3p (fzk , ,q,t ) 1 
k' 

- Wkk'P(fzk,q,t)[ 1 - h 3p(fzk',q,t)]J. (8,53) 

To obtain the classical limit, we must now state more 
precisely what is meant by this, Ifit means a p,q description, 
with no reference to the quantum mechanical energies tk of 
the Bloch states, then we must write p = fzk everywhere and 

(
fz' )2n+1 

((i/2)Vk)2n+ltk---+ --fVp tp' (8,54) 

For the limit of the streaming term (8.48) we then have 

2i 00 1 -
lim - - '" (V )2n + lp(p,q,t )*((fzi/2)V )2n + 't 
" .0 fz n~O (2n + I)! q p p 

= Vqp(p,q,t ).Vptp, (8.55) 

the higher-order terms giving zero. Likewise 

lim - (eE/fz)VkPeq(p,q,) = - eEVpPeq(p,q). (8.56) 
,,--00 

The collision term is treated the same as in the previous sub­
section; we thus recover the standard classical Boltzmann 
equation as given in (8,39). 

However, it is customary in solid state physics to use a 
semiclassical k,q description with the Hamiltonian given by 
Wannier's theorem29: 

hWannier(k,q) = t(k) + J'/(q) = t( - iVq) + r(q), (8,57) 

The classical limit is now taken as 

(8.58) 

Here F is the number of electrons "occupying k at time t in 
the neighborhood of q" (formulation of Ziman, op. cit, Sec, 
7.3); more specifically, Fis the number of electrons occupy­
ing k within ILlk 1

3 in the coarse graining celllU(q) centered on 
q at time t. The normalization is 

f d3k 
2 I F (k,q,t ) = 2 --3F (k,q,t ) 
cellsl~k I' ILlk I' 

lU(q)f 3 = 4~ d kF (k,q,t ) = N (q,t), (8.59a) 

Note that the density of states in k space, excluding spin, is 
now z(k) = lU(q)l8~ [where all the volumes lU(q) might be 
chosen to be of equal size lU]; N (q,t ) is the number of electrons 
in lU(q) at time t. The further normalization is 
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I N(q,t)=f d
3q

N (q,t)= ~ffd3kd3qF(k,q,t) 
cell"uiqi lU( q) 411 

= N (t). (8.59b) 

Multiplying both sides of (8.53) by h 3 we obtain with (8.58), 

aF(k,q,t) _ eE.V F (k ) _ 2i 
at fz k eq ,q fz 

00 1 ( i )2n + 1 
X I (vsn-+ 'F(k,q,t)* -Vk tk 

n~O (2n + I)! 2 

= f d 3 k z(k)( Wk'k F (k' ,q,t )[ 1 - F (k,q,t ) 1 

- Wkk·F(k,q,t)[ 1 - F(k',q,t ill. (8,60) 

In the collision term the effects due to the exclusion principle 
are now retained. Equation (8.60) differs from the usual re­
sult in the occurrence of higher-order spatial derivatives of 
F. Only in the effective mass approximation 
tk = !fz2kk:M -I these higher-order derivatives drop out. 
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APPENDIX: MATRIX ELEMENTS OF BLOCH 
FUNCTIONS 

The matrix element (klvlk') for Bloch states is comput­
ed similarly as the diagonal matrix element by Reitz,30 We 
start from the Schrodinger equation with (rlk)-'1,bk (r): 

V;1,bk (r) = (2m/fz2) [r(r) - tk ]1,bk (r), (AI) 

Taking the k-gradient of both sides we find 

V;(Vk1,bk(r)) + (2m/fz2)[(Vktk)1,bk(r) + (tk - ,7/(r))Vk 1,bk (r)] 
=0. (A2) 

Now, wk (r) = e'K-rtPk (r) so that 

Vkwdr) = ir1,bk(r) + eik.rVktPk(r), (A3) 

V;(Vk 1,bk (r)) = 2iVr 1,bk (r) - (i2m/fz2)(tk - r(r))r1,bdr) 
+ V;(e,K.rv k tPk (r)), (A4) 

where we used (AI) for the second term, Substituting (A4) 
into (A2) and using (A3) we obtain 

2iV r 1,bdr) + (2m/fz2)(V k tk )1,bk (r) 
+ [V; + (2m/fz2)(tk - r(r))]e,K.rVktPdr) = 0, (AS) 

Multiplying by - !1,bt, (r) and integrating over all space we 
get 

(k'i - iVr Ik) 

-J 1,bt·(r)Vr 1,bk(r) d 3r = (m//i2)Vktk f 1,bt·(r)1,bk(r) d 3r 

+!J 1,bt,(r)V;(e'K''VktPk(r)) d 3r 

+ (m/fz2) f 1,bt.. (r)(tk - r(r))e ik
.
r V k tPk (r) d 3r , (A6) 
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Since'" is normalized the first term gives (mI1i2)V k Ek 8kk, , 

For the second term we use Green's theorem; the bilinear 
concomitant vanishes since the integrand is periodic. We 
thus have for this term 

!felk.rVktPk(r)V;"'~,(r) d 3r 

= !felk.rVktPdr)~~ [r(r) - Ek ]"'~,(r) d 3r, (A7) 

where we used the Schrodinger equation (A 1). It thus cancels 
the third term of (A6). The result therefore is 

(k/lvlk) = (lilm)(k/i - iVr Ik) = (1I1i)VkEk8kk, (AS) 

also 

(k + !ulvlk - ~u) = (1I1i)VkEk8u,o 

which is the result of (S.4S). 
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A new method is presented to determine the irreducible representations of the space group of a 
crystal contained in the representation whose basis functions are the components of a tensor field 
defined on the atoms of a crystal. This reducible representation is the direct product of a tensor 
representation, dependent only on the tensor, and a permutation representation dependent only 
on how the atoms permute under elements of the space group. The permutation representation is 
first separately reduced prior to the reduction of the direct product. The permutation 
representation is shown to be an induced representation and its reduction is facilitated using the 
theory of induced representations. Examples and tables of results of applying this method are 
given in the case of a polar vector tensor field, applicable to lattice vibrational problems, and 
crystals, as the diamond structure, of space group symmetry Or. 
PACS numbers: 61.50.Em, 02.20. + b 

I. INTRODUCTION 

In many problems in solid-state physics it is often neces­
sary to determine the irreducible representations of the space 
group of a crystal contained in a tensor field representation, 
a reducible representation of the space group whose basis 
functions are components of a tensor defined on the atoms of 
the crystal. In lattice vibrational problems l

•
2 the basis func­

tions of the tensor field representation are components of a 
three component tensor defined on each atom, the displace­
ments of each atom. In classifying magnetic ordering in crys­
tals by irreducible representations of a nonmagnetic space 
group,3-5 one reduces a tensor field representation whose ba­
sis functions are the components of the atomic spins. Also, in 
applying the tensor-field criterion6 in the Landau theory of 
continuous phase transitions, one reduces a tensor field re­
presentation, as in the case of magnetostructural phase tran­
sitions where the basis functions are components of a six­
component tensor7 defined on each atom. 

The tensor field representation is the direct product of a 
permutation representation of the atoms of the crystal, re­
presenting how the atoms of the crystal permute under the 
space group elements of the crystal, and a tensor representa­
tion associated with the transformation of the tensor compo­
nents defined on the atoms. In the case oflattice vibrational 
problems, the tensor representation is the polar vector repre­
sentation, in the case of classification of magnetic ordering, it 
is the axial vector representation, and in the case of magne­
tostructural phase transitions, it is the direct product of the 
polar and axial vector representations. 

To determine the irreducible representations contained 
in the tensor field representation one could use the standard 
group theoretical projection operator methodS as has been 
done, for example, in the case of lattice vibrational prob­
lems. I Such a method, while of course giving the correct 
irreducible representations, does not take into account the 
common property of all tensor field representations defined 
on a specific crystal: The permutation representation com­
ponent of the tensor field representation is the same for all 
tensor field representations defined on the crystal. This com-

monality has led to an alternate method to determine the 
irreducible representations contained in the tensor field re­
presentation: First determine the irreducible representations 
contained in the permutation representation, and then those 
contained in the tensor field representation. 

Lulek9 has considered the lattice vibrational problem of 
molecules using such a method. The irreducible representa­
tion of the point group of the molecule contained in the per­
mutational representation, there called the positional repre­
sentation, are determined using the theory of representations 
of permutation groups. Kuzma, Kupolowski, and Lulek 10 

have applied this method to the cases of the lattice vibrations 
of a regular tetrahedron and cube. Birman, Kotzev, and Lit­
vin' II in the context of the tensor-field criterion of the Lan­
dau theory of continuous phase transitions, have also used 
such a method. They have derived using the theory of color 
groups the k = 0 irreducible representations of a space 
group contained in the permutation representation for all 
possible crystals. Berenson, Kotzev, and Litvin 12 have then 
tabulated the k = 0 irreducible representations of a space 
group in the tensor field representation, for all possible crys­
tals in the cases where the tensor representation is taken to be 
the polar vector representation, the axial vector representa­
tion, the product of the polar and axial vector representa­
tions, and the symmetrized square of the polar vector 
representation. 

In this paper we shall consider the problem of determin­
ing all irreducible representations of the space group of a 
crystal contained in a tensor field representation defined on a 
crystal. In Sec. II we show that the tensor field representa­
tion defined on an arbitrary crystal is the direct sum of the 
tensor field representations defined on the arbitrary crystal's 
constituent simple crystals. The structure of the permuta­
tion representation of a simple crystal is derived in Sec. III. 
In Sec. IV, using the theory of induced representations, a 
general method is derived to determine all irreducible repre­
sentations of the space group of a crystal contained in the 
permutation representation of a simple crystal. As an exam­
ple, all irreducible representations contained in the permuta-
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tion representations of all simple crystals of a crystal of space 
group symmetry O~ are derived and tabulated. Finally, in 
Sec. V, we discuss determining alI irreducible representa­
tions of the space group of a crystal contained in a tensor 
field representation defined on a simple crystal. As an exam­
ple we consider the polar vector tensor-field representation 
of the diamond structure in conjunction with the lattice vi­
brational problem in this structure. 

II. TENSOR FIELD REPRESENTATION 

Consider a crystal of space group symmetry G and let 
ri, i = 1,2···, denote the atomic position vectors of the atoms 
of the crystal. To each atom of the crystal we associate a q­
component tensor Y with components Y s ' s = I,2, ... ,q. 
The q-component function Y(rj)s' s = 1 ,2, ... ,q defined on 
the atomic positions ri, i = 1,2,. .. , is called a q-component 
tensor field on the crystal. The corresponding tensor field 
representaion D ~F(Crys) of the space group G is that repre­
sentation of G whose basis functions are the components 
Y(ri)s's = 1,2, ... ,q, i = 1,2,.··, of the tensor field. 

The tensor field representation D ~F(Crys) can be writ­
ten as 

D ~F(Crys) = D ~ERM(Crys) XD ~, (1 ) 

where D ~ERM(Crys) is the permutation representation of the 
atoms of the crystal, representing how the atoms of the crys­
tal permute under elements of the space group of the crystal, 
andD ~ is the representation ofG called the tensor represen­
tation whose basis functions are the q components of the 
tensor Y. It is the purpose of this paper to derive a method to 
determine the irreducible representations ofG contained in a 
tensor field representation D ~F(Crys) defined by Eq. (1). 

A crystal of space group symmetry G can be partitioned 
into "simple crystals." 13 Each simple crystal consists of all 
atoms whose atomic position vectors can be obtained by ap­
plying all elements of the space group G to anyone atomic 
position vector r, and is said to be generated by G from r. A 
crystal can be considered as consisting of a certain number of 
simple crystals, no two simple crystals have atoms in com­
mon, and the elements of G permute the atoms of each sim­
ple crystal among themselves. 

Let the tensor field be defined on a crystal consisting of 
m simple crystals generated by G from rj,j = 1,2, ... ,m. Be­
cause the elements of G permute the atoms of each simple 
crystal among themselves, 

D ~ERM(Crys) = D ~ERM(rl) 

+ D~ERM(r2) + ... + D~ERM(rm)' (2) 

that is, the permutation representation of the atoms of the 
crystal is the direct sum of the permutation representations 
D ~ERM(rj ),j = 1,2, ... ,m, of each of the simple crystals. Sub­
stituting Eq. (2) into Eq. (1), the tensor field representation is 
written 

D~F(Crys) = [D~ERM(r.) +D~ERM(r2) 

+ ... + D~ERM(rm)]XD~, (3) 

and subsequently as 

D~F(Crys) = D~F(rtl + D~F(r2) + ... + D~F(rm)' (4) 
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where D ~F(rj)' the tensor field representation ofthejth sim­
ple crystal, is defined by 

D~F(rj) =D~ERM(rj)XD~. (5) 

The tensor field representation of the crystal is, by Eq (4), the 
direct sum of the tensor field representations associated with 
each simple crystal. To determine the irreducible representa­
tion ofG contained in D ~F(Crys) is then equivalent to deter­
mining the irreducible representations of G contained in 
each of the tensor field representations D ~F(rj ),j = 1,2, ... ,m, 
of each simple crystal. Consequently, in what follows, we 
shall restrict ourselves to the case of a crystal consisting of a 
single simple crystal. We shall consider a single simple crys­
tal generated by G from the atomic position vector r, and the 
tensor field representation D ~F(r) defined on this simple 
crystal: 

(6) 

Common to all tensor field representations D ~F(r) defined 
on a specific simple crystal generated by G from r, is the 
permutation representation D ~ERM(r) of the atoms of the 
simple crystal. 

III. PERMUTATION REPRESENTATION ~ERM(r) 

Let D ~ERM(r) be the permutation representation of the 
atoms of a simple crystal generated by a space group G from 
the atom position vector r. The position vector r can be char­
acterized by its site space group G(r), the subgroup of ele­
ments G of G such that 

Gr = r + t, (7) 

where t is a primitive translation of the space group G. The 
point group R(r) ofG(r) is called the "site point group" ofr. 
One can expand the space group G into a coset decomposi­
tion with respect to G(r), 

G = G(r) + G2G(r) + '" + GnG(r), (8) 

and define the set of atom positions Gir, i = 1,2, ... ,n, where 
Gi is a coset representative in Eq. (8). The coordinates of this 
set of atom positions, for one or two of each class of space 
groups G, each r, and a specific choice of coset representa­
tives, are given in the International Tables/or X-Ray Crystal­
lography. 14 They are called there the "coordinates of equiv­
alent positions" and the site point group R(r) is called the 
"point symmetry" of each of the equivalent positions. 

In addition, we characterize the position vector r from 
which a simple crystal is generated by G by the "site sub­
group" H(r), the subgroup of elements of the space group G 
such that 

Gr=r. (9) 

Elements of the site subgroup H(r) are, in general, of the 
form (R Iv(R ) + tR ) where R is an element of the site point 
group R(r), vIR ) the nonprimitive translation associated with 
R, and tR a specific primitive translation. The site subgroup 
H(r) is isomorphic to the site point group R(r). However, if 
the choice of the origin of the space group G is taken to be 
that given in the International Tables/or X-Ray Crystallog­
raphy,14 then the site point group R(r) is not necessarily a 
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subgroup of the space group G. As we shall show below, it is 
the site subgroup H(r) of the position vector r from which the 
simple crystal is generated by G which plays a central role in 
determining the irreducible representations of G contained 
in the permutation representation D ~ERM(r). 

To determine the structure of the permutation repre­
sentation D ~ERM(r) we expand the space group G into a coset 
decomposition with respect to the site subgroup H(r): 

(10) 

Since all elements H(r) leave r invariant, the atomic position 
vectors of the simple crystal generated by G from r are in a 
one-to-one correspondence with the cosets ofEq. (10). That 
is, the atomic position vectors r;, i = 1,2,3,.··, of the simple 
crystal are such that r; = G;r, i = 1,2,3,.··, where G; is a co­
set representative of Eq. (10). Since the permutation repre­
sentation D ~ERM(r) is the representation of G whose basis 
functions are the atomic position vectors r; = G;r, 
i = 1,2,3,.··, the (i,j)th component of the matrix D ~ERM(r) is 
one if Grj = r; or zero if Grj =1= r;. Consequently, the matrices 
of the permutation representation D ~ERM(r) are defined by 

PERM {I ifG;~IGGjEH(r), 
DG (r)[G h· =. (11) o otherwise, 

where i,j = 1,2,3,.··, and G; and Gj are coset representatives 
of Eq. (10). It follows from Eq. (11) that the permutation 
representation D ~ERM(r) is the representation of the space 
group G "induced" by the identity representation D ~(r) of 
the site subgroup H(r).15 We shall write 

D PERM(r) - D I rG 
G - H(r) (12) 

to denote the permutation representation as the representa­
tion of G induced by the identity representation of the site 
subgroup H(r). 

IV. REDUCTION OF PERMUTATION REPRESENTATION 

A. General reduction 

We determine the irreducible representations of a space 
group G contained in the permutation representation 
D ~ERM(r): Let D ~*.V) denote the (k*, v)th irreducible repre­
sentation of the space group G, and D :;(k) the vth irreducible 
representation of the group G(k) of the wave vector k. 16 We 
have 

D(k*.v)_ DV rG 
G - G(k) , ( 13) 

that is, the irreducible representation D ~*.v) of G is induced 
by the irreducible representation D :;(k) of G(k). We decom­
pose the permutation representation 

D~ERM(r) = I d(k*,v)D~*'V), (14) 
(k*,v) 

where d (k* ,v) is the number of times the irreducible repre­
sentation D ~*.V) of the space group G is contained in the 
permutation representation D ~ERM(r). We shall determine 
the coefficien ts d (k * , v) ofEq, (14) using the theory of ind uced 
representations, 17,18 

The number of times the irreducible representation 
D ~*.V) is contained in D ~ERM(r) is called the "intertwining 

339 J, Math, Phys" Vol. 23, No, 2, February 1982 

number of D ~*,v) with D ~ERM(r)" and is denoted by the sym­
bol I [D ~*.v),D ~ERM(r)]. From Eq, (14) we have then that 

d(k*,v) = I[D~*,v),D~ERM(r)]. (15) 

Using Eqs, (12) and (l3) we can rewrite this as 

d (k*,v) = I [D :;(k) rG, D ~(r) rG]. (16) 

To evaluate the intertwining number on the right-hand 
side ofEq, (16) using the Intertwining Number Theorem 18 
requires the introduction ofa double coset decomposition of 
G: We expand the space group G into a double coset decom­
position 17 with respect to the site subgroup H(r) and the 
group G(k) of the wavevector k, 

G = IH(r)G;G(k), (17) 

where the G; are double coset representatives, For each dou­
ble coset representative in Eq, (17) we define the group L;, 

L; = H(r)nG;G(k)G;~ I, (18) 

and the representation D ~ of the group G;G(k)G;~ I: 

D ~(G; G (k)G ;~ I )_D :;(kd G (k)). (19) 

Using the Intertwining Number Theorem, 18 Eq, (16) 
can be rewritten as 

(20) 

where the summation is over all"i" corresponding to double 
coset representatives G; of Eq, (17), with L; and D ~ defined, 
respectively, by Eqs, (18) and (19). A symbol D ~ tB denotes 
the representation of the subgroup B of A subduced onto B 
from the representation D ~ of A, 15 the representation of B 
found by restricting the representation D ~ (A ) to elements 
AEB. Equation (20) can be rewritten as 

d(k*,v) = II[DL,(D~tL;)X(D~(r)tL;)], (21) 

where D ~ is the identity representation of L;, Finally, since 
by Eq. (18), L; is a subgroup ofH(r), D ~(r) tL; = D L, and 

(22) 

Consequently, the number d (k*,v) of times the irreducible 
representation D ~*.V) of the space group G is contained in the 
permutation representation D ~ERM(r) is equal to the sum, 
over the index i, of the number of times the identity represen­
tation of L; is contained in the subduced representation 
D~tL;. 

Equation (22) can be reformulated in terms of the irre­
ducible representations D :;(k) of the group G(k) of the wave­
vector k: an intertwining number on the right-hand side of 
Eq. (22) is defined by 

I[DL,D~tL;]= I~;I tX~(L;), (23) 

where IL; I is the order of the group L; and X7(L;) is the 
character of D nL;) defined by Eq. (19), 
D ~(L;) = D ~(GiG (k)G;~ I)==D :;(k) (G (k)) for the elements 
G (k) = G i~ IL;G;~ I ofG(k). Since 
D~(L;)=D:;(k)(Gi~ILiGi)' ILil = IG;~IL;G;I,and 
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G;- lL;G; is a subgroup ofG(k), we may rewrite Eq. (23) as 

I[Di,D~!L;]= 1 IX~(k)(G;-ILjGj),(24) 
, IG .-IL.G·1 L 

I I I I 

and subsequently, 

I [D i"D ~ !Lj ] = I [D ~,. iL G,D ~(k) !G j- lL j Gj ]. (25) 

Substituting Eq. (25) into Eq. (22), the coefficients d (k*,v) of 
Eq. (14) are given in terms of the irreducible representation 

D~(k) by 

Consequently, the number d (k*, v) of times the irreducible 
representation D ~ •. v) of the space group G is contained in the 
permutation representation D ~ERM(r) is equal to the sum, 
over the index i, of the number of times the identity represen­
tation ofG j-1LjGj, a subgroup ofG(k), is contained in the 

representation D ~(k)' Equation (25) provides a three-step 
method to determine the number d (k*, v) of times in an irre­
ducible representation D ~ •. v) is contained in the permuta­
tion representation D ~ERM(r): 

(1) Determine the double coset representatives Gj ofEq. 
(17). 

(2) Determine for each i the subgroup G j- lLjGj ofG(k) 
using Eq.(18). 

(3) Determine for each subgroup G j- ILjGj the number 
of times the identity representation is contained in 
D ~(k) !G j- ILjGj using Eq. (24). The coefficient d (k* ,v) of 
Eq. (14), is given by Eq. (26) as the sum of the numbers deter­
mined in the above third step. 

The calculation of the number of times the identity re­
presentation is contained in D ~lk)!G j- ILjGj , Eq. (24), can 
be simplified by taking into account the structure of the irre­
ducible representations D ~(k) of the group G(k) of the wave 
vector k. 

B. k inside the Brillouin zone 

Let (R Iv(R) + t) denote an element of the group L j de­
fined by Eq. (18), R(L j ) the point group of L j, and (R j Iv(R j)) 
the double coset representatives G j of Eq. (17). Since 
(R Iv(R) + t) is contained in H(r), 

vIR ) + t = r - Rr, (27) 

and since (R Iv(R) + t) is also contained in G j- IG(k)Gj , 

R j- IRR;k = k + K, (28) 

where K is a reciprocal lattice vector. If k is inside the Bril­
louin Zone K = 0 and the matrix of the irreducible represen­
tation D ~lk)(G j- IL;Gj ) can be written as l9 

D~lk)(G ;-ILiGj) = exp{ik.R ;-I[v(R) + t - v(R j) 

+ Rv(R;)]}D ilk) (R ;- IRR j ), (29) 

where D ilk) is the vth irreducible representation of the point 
group R(k) ofG(k). Using Eqs. (27) and (28) one finds that the 
exponential term equals one, and 

D~lk)(G;- ILjG;) = Dilk)(R ;-IRRJ (30) 

Consequently, for wavevectors k within the Brillouin Zone, 
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Eq. (26) becomes 

d(k*,v) = II[D~, iRIL,)R,'Dilk)!R j-IR(L;)R j ], (31) 
j 

where R(L;) is the point group ofLj, R j the rotational part of 
a double coset representative, R(k) the point group of the 
wavevector k, and R ;- IR(Lj )R j a subgroup of R(k). 

To determine d (k*, v) is then a point group problem en­
tailing three steps analogous to the three steps given in the 
preceding subsection: 

(1) Determine the double coset representatives R; in 

R = IR(r)RjR(k), (32) 

where R is the point group of the space group G, R(k) ofG(k), 
and R(r) is the site point group, the point group of H(r). 

(2) Determine for each double coset representative R j 

the subgroup R j- IR(L; )R; of R(k) from 

R;- IR(Lj)R; = R j- IR(r)RjnR(k). (33) 

(3)Determine for each subgroup R j- IR(Lj )R; the num­
ber of times the identity representation is contained in D ~Ik) 
subduced onto R;- IR(Lj)R;. The coefficient d (k*,v), Eq. 
(31), is the sum of the numbers calculated in step three above. 

For the special case ofk = 0, R(k) = R, there is only one 
double coset representative in Eq. (32), R I = E, and 
R 1- IR(LI)RI = R(r). From Eq. (31) we have 

d(O,v) = I[Dkirl'Di!R(r)], (34) 

and the number d (0, v) of times D ~.V) is contained in the per­
mutation representation D ~ERM(r) is equal to the number of 

times the identity representation is contained in D ~ sub­
duced onto the site point group R(r). Tables of d (O,v) for all 
space groups G and site point groups R(r) are given by Kot­
zev, Litvin, and Birman. I I 

As an example we consider the space group G = O~ and 
the simple crystal generated by O~ from r = (h, A, A), Wyckoff 
(c) position in the notation of Ref. 14. The site point group is 
R(r) = D ~xr. We shall determine the number of times an 
irreducible representation D ~ •. V) of the space group G, with 
k = (kx,kx,kx) A, is contained in the permutation repre­
sentation D ~ERM(r). 

The point group R(k) = C ~x:Z), and there are two double 
coset representatives, in this case, in Eq. (32), R I = E and 
R2 = C2y ' The corresponding subgroups, Eq. (33), are 
R;- IR(Lj)R 1 = C~x:Z) and R 2- IR(L2)R2 = C~Z). For this 
wavevector k = A, the only nonzero intertwining numbers 
in Eq. (31) are 

I [D ~",D ~" tC3v ] = 1, 

I[D ~""D ~"tCrn] = 1, 

I[D~m,D~" tCrn ] = 1, 

(35) 

where for the index v of the irreducible representation D ilk) 
we have used the conventions of Zak, Casher, Gluck, and 
Gur.I'} From Eqs. (32) and (35), we have that the only nonze­
ro coefficients d (k*, v) with k = A are 

d(A*,I) = 2, 

d(A*,3) = 1. (36) 
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TABLE I. Irreducible representations G ~ ',vi contained in the permutation representation D ~ERM(r) of a simple crystal generated by G = Or from a point r: 

The points r are denoted in the Wyckoff position notation of Ref. 14: (a) = (0,0,0), (b) = (f,H), (c) (i,i,i), (d) = (i,i,i) , 
,(e) = (x,x,x), (f) = (x,O,O), (g) = (x,x,z), (h) = (i,x,! - x), and (i) = (x,y,z). The number d (k ., v) oftimesD ~ ',vi is contained in D ~ERM(rlis found atthe 

intersection of the vth row of the k th subtable, and the column under the Wycokoff notation for the point r. The notation for k and indexation of v is that of 
Ref. 20. 

r 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
4 
5 

2 
3 
4 

Ii 

1 
2 
3 

2 

(-) 

I 
2 

1 
2 
3 
4 

w 

2 

(a) (b) 

2 2 

2 2 

(e) 

2 

2 
2 

2 
2 

(d) 

2 

2 
2 

2 
2 

(e) 

2 

2 
2 

3 
1 
1 
3 

4 

2 

4 
4 

6 
2 

2 

2 
2 

(f) 

3 
I 
1 
3 
2 

4 
2 
2 
4 

4 

4 

6 

6 

8 
4 

2 
2 

3 
3 

(g) 

I 
2 

1 
2 

4 
2 
3 
3 
6 

7 
5 
5 
7 

3 
8 

12 
12 

14 
10 

4 
2 
3 
3 

6 
6 

(h) 

I 
2 
I 
1 

2 
1 

3 
3 
3 
3 
6 

7 
5 
7 

4 
4 
8 

12 
12 

12 
12 

3 
3 
4 
2 

6 
6 

(i) 

1 
I 
2 
2 
3 
1 
1 
2 
3 
3 

6 
6 
6 
6 

12 

12 
12 
12 
12 

8 
8 

16 

24 
24 

24 
24 

6 
6 
6 
6 

12 
12 

Consequently, the permutation representation D ~ERM(r) for 
G = O~ and r = (A, A, A), contains the irreducible representa­
tion D~·,l) twice and D~··3) once, and no other irreducible 
representations of the space group G = O~ with the wavevec­
tor k = A. This information can be found in Table I at the 
intersection of the "c" column and the first and third rows of 
sub table A. 

C, k on the Brillouin Zone 

For wavevectors k on the Brillouin Zone, in place ofEq. 
(29), one writes l9 
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r 

K 

2 
3 
4 

L 

1 
2 
3 
4 
5 
6 

u 
1 
2 
3 
4 

z 

Q 

2 

s 
1 
2 
3 
4 

A 

1 
2 

B 

1 
2 

M 

1 
2 

N 

1 
2 

(a) (bl 

2 2 

Ic) 

2 

1 
2 
1 

2 

2 
2 

1 
2 
1 

2 
2 

2 
2 

3 

2 
2 

(d) 

2 

1 
2 
1 

2 

2 
2 

2 
1 

2 
2 

2 
2 

3 

2 
2 

Ie) 

3 
1 
3 

2 

3 
3 
1 
1 

4 

4 
4 

3 
3 

4 
4 

4 
4 

6 
2 

4 
4 

If) 

4 
2 
4 
2 

2 

2 
2 

2 

4 
4 
2 
2 

6 

6 
6 

4 
4 
2 
2 

6 

6 

6 

6 

8 
4 

6 
6 

(g) 

7 
5 
7 
5 

3 
1 
4 
3 
1 
4 

7 
7 
5 
5 

12 

12 
12 

7 
7 
5 
5 

12 
12 

12 
12 

14 
10 

12 
12 

(h) 

7 
5 
5 
7 

2 
2 
4 
2 
2 
4 

5 
7 
7 
5 

12 

12 
12 

5 
7 
7 

12 
12 

12 
12 

12 
12 

12 
12 

(i) 

12 
12 
12 
12 

4 
4 
8 
4 
4 
8 

12 
12 
12 
12 

24 

24 
24 

12 
12 
12 
12 

24 
24 

24 
24 

24 
24 

24 
24 

D~(k)(G i-ILiGi) = e,k-t(R, IRIL,)R').i5i.
1
k)(R i- JR (Li)R i ), 

(37) 

where the primitive translation t(R i- JR (Li)R;) is deter­
mined by 

Gi-ILiGi 

= (R i-1R (Li)Ri Iv(R i-1R (Li)Ri) + t(R i- JR (Li)Ri)) 
(38) 
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and 15 ~ikl is the vth irreducible ray representation 19 of the 
point group R(k) of the wavevector k. 

Using Eq. (37), Eq. (26) can be rewritten forwavevectors 
k on the Brillouin Zone, as 

d(k*,v) = II[D~, 'RiL,IR"e;k.t15~lkl LR ;--IR(L;)R;], 

(39) 

where15~ikl is the vth irreducible ray representation ofR(k), 
and t = t(R;- IR (L;)R;) is defined by Eq. (38). 

The coefficients d (k*,v) are determined again by a 
three-step procedure: 

(1) The double coset representatives G; are determined 
from Eq. (17). 

(2) The subgroups R;- IR(L; )R; ofR(k) are determined 
from Eq. (33), and the translations t(R,- IR(L;)R;) from Eq. 
(38). 

(3) Determine for each subgroup R; R(L; )R; the number 
of times the identity representation is contained in e;k.t15~lkl 
subduced onto R ;- IR(L; )R;. The coefficient d (k* ,v), Eq. 
(39), is the sum of the numbers calculated in step three above. 

As an example we again consider the space group 
G = O~ and the simple crystal generated by O~ from the (c) 
position r = (A, A, A)· We shall determine the number of times 
irreducible representations D ~""I with k = (31T/2a, 
31T12a,0)=K are contained in the permutation representa­
tion D ~ERM(r). The site subgroup 

"(f) = (C~:zIIO,O,O) + (II!,!, !)(C~:zIIO,O,O) and G(k) con­
sists of the elements (E 10,0,0),(miZII!,!, i), (miXYIIO,O,O), 
(C~YIIO,O,O) and all primitive translations ofG = 0h. There 
are two double coset representatives, Eq. (17), G 1 = (E 10,0,0) 
and G2 = (C~ 10,0,0). The corresponding subgroups of 
R(k) = C~;·xy.zl are R 1- IR(LI)R1 = C~Y with 

tIE) = t(m XY
) = 0, and R 2- IR(L2)R2 = C? with tIE) = 0 

and tIC?) = (0, -!, - i). Using Eq. (39) and the numbering 
of Ref. 19 for the index v of irreducible ray representations, 
the nonzero coefficients d (k*, v) for k = K, are in this 
example: 

d (K*,I) = 2, 

d(K*,3) = 1, 

d (K*,4) = 1. 

(40) 

Consequently, the permutation representation D ~ERM(r) for 

G = O~ and r = (A, A, A) contains the irreducible representa­
tion D ~'.II twice, the irreducible representations D ~'.31 and 
D ~·.41 each once, and no other irreducible representations 
with the wavevector k = K. This information is found in 
Table I at the intersection of the (c) column and rows of 
subtable K. 

In Table I we have tabulated all irreducible representa­
tions of the space group G = O~ contained in the permuta­
tion representations D ~ERM(r) for all simple crystals generat­

ed by G = 0;'. 

TABLE II. The irreducible representations D ~ 1< I contained in the direct product D ~ « I X (D 2; IR (k )) for G = Oh and the polar vector tensor representation 
D ~ = D ~: The irreducible representations D ~ Ik I contained in the direct product are listed to the right of the irreducible representation D ~ (k ,. Irreducible 
representations D ~ ,< I are denoted by k,. in the notation and indexation of Ref. 20. 

r, rIO 8, 28, +82 Z, 3Z, 
r, r" 8, 8, + 282 
r, r" + rIO Q, Q, +2Q, 
r. r, + r K + r" + rIO Q, 2Q, +Q2 
r, r" + r K + r" + r,1I 
r" r, x, x, +X,+X4 S, S, +S2+S, 
r, r. X, X2 +X, +X4 S2 S, +S2 +S4 
r K r 4 + r, X, X, +x,+X. S, S, +S, +S. 

r" r, + r, + r. + r, X. X, +X,+X, S. S2 +S, +S4 
r,1I r, + r, + r. + r, 

A, 2A, +A2 
W, W, + 2W, A, A, + 2A, 

.1, .1,+.1, W, 2W,+ W, 

.1, .1, +.1, B, 2B, + B2 

.1., .1, +.1, B, B, +2B, 

.1. .1.+.1, K, K, +K2 +K, 

.1, .1, +.12 + .1, + .1 4 + .1, K, K, +K, +K4 M, M, + 2M2 
K, K,+K,+K. M, 2M,+M, 
K4 K,+K,+K. 

~, ~,+~, + ~4 N, 2N,+N, 
~, ~,+~, +~, N, N,+2N, 
~, ~2 + ~., + ~4 L, L, + L6 
~. ~,+~, + ~4 L, L4 +L" 

L, L4 + L, + 2L6 
L4 L2+L, 

A, A,+I1, L, L, +L, 
A, A,+A 3 L" L, +L2 + 2L, 
A, A,+A 2+2A 3 

u, U, + U2 + U, 
"', 2':, +':2 U, U, + U2 + U4 
"'2 .:, + 2':2 U3 U, + U,+ U • 

U4 U2 + U, + U. 
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v. REDUCTION OF TENSOR FIELD REPRESENTATION 

The tensor field representation D ~F(r) of a simple crys­
tal is defined by Eq. (6) 

(6) 

where D ~ERM(r) is the permutation representation of the 
atomic positions of the simple crystal, and D [; is the tensor 
representation. In the preceding section we have derived a 
method to reduce the permutation representation and here 
shall assume that the coefficients d(k*,v) ofEq. (13) are 
known. Substituting Eq. (13) into Eq. (6) we have 

D~F(r) = Id (k*,v}[D ~"')XD [;]. (41) 
k· ,11 

To determine the irreducible representations in D ~F(r) one 
must reduce the direct product of irreducible representa­
tions D ~"V) and the tensor representation Db. If 

D~··v'XD[; = LC(k*,v;k*,V)D~"V]' (42) 
k- V 

then the reduced form of the tensor field representation is 

D ~F{r} = I b (k*, v)D~' .vl, 
k·,v 

where 

b(k*,v) = Ld(k*,V)C(k*;v;k*,v). 
~.;-

(43) 

(44) 

We shall consider here tensor representations D [; 
which are independent of the translational components of 
the elements ofG, that is, which are k = 0 representations of 
G. Consequently, in Eq. (42), k* = k*. Abbreviating 
C(k*,v;k*,V) by C(k*,v,V), we can write Eqs. (42) and (44), 
respectively, as 

D~'Y)XD[; = LC(k*,v,V)D~"V] (45) 
v 

and 

b (k*,v) = Ld (k*,V)C(k*,v,v), (46) 
v 

where the coefficients C (k* ,v,v) are defined as the intertwin­
ing numbers 

C(k*,v,v) = I [D ~'.v',D ~·.VlXD b]' (47) 

Using Eq. (3), this can be rewritten as 

C(k*,v,v) = I [D ~(ki'D ~Ik) X(D b ~G(k))] (48) 

and since D b is a k = 0 representation of G, 

C(k*,v,v) = I[D ~lk),D k(k) X(Db tR(k))], (49) 

where, if k is a wavevector inside the Brillouin Zone, D Rlk) 
and D klk) are irreducible representations of the point group 
R(k), and if k is on the Brillouin Zone, D Rlk) and D k(k) are 
replaced by D Rlk) and Dklk)' irreducible ray representations 
of R(k). For the space group G = Oh and Db = D ~, the 
polar vector representation, the irreducible representations 
D ~Ik) contained in D k(k) X (D [; tR(k)) have been calculated 
and are tabulated in Table II. From this table the coefficients 
C(k*,v,v) can be found for the case G = Oh and D ~ = D ~. 
For example, for k = A from Table II one finds the nonzero 
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coefficients C(A*,v,v): 

C(A*,l,l) = C(A*,1,3) = 1, 

C(A*,2,2} = C(A*,2,3} = 1, 
(50) 

C(A*,3,1) = C(A*,3,2} = 1, 

C(A*,3,3) = 2. 

The number b (k*,v), Eq. (43), of times an irreducible 
representation D ~~·.V) is contained in a tensor field represen­
tation D bF(r) is determined from Eq. (46), with the coeffi­
cients d (k*,V) calculated from Eq. (3 I) and C (k* ,v,v) from 
Eq. (49). For k = A, the nonzero coefficients d (A *,V) are giv­
en in Eq. (36) and the nonzero coefficients C(A*,v,v) in Eq. 
(50). Using Eq. (45) we have 

b(A*,I) = 3, 

b (A*,2) = 1, 

b (A*,3) = 4. 

(5 I) 

Consequently, the tensor field representation D IF(r) for 

G - 07 r - (1 1 1) D G
T = D G~' and k = A, contains the ir-

- h' - R' H' R' 

reducible representationD ~'.II three times, D ~·.21 once, and 
D ~'.31 four times. 

For this case, where D b = D ~, is the polar vector re­
presentation, the irreducible representations contained in 
the tensor field representation D ~F(r), Eq. (6), are the lattice 
vibration irreducible representations of the simple crystal 
generated by G from r. For the diamond structure, G = O~, 
r = (0,0,0), the (a) position according to Ref. 14, we find for 
k = A, from Eq. (46) and Tables I and II, the nonzero coeffi­
cients are b (A*,I) = b (A*,3) = 2. That is, the lattice vibra­
tion decomposition for the diamond structure at k = A is 
2D~"'1 + 2D~··J), in agreement with Ref. 20. 
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Erratum: Jet bundles and path structures [J. Math. Phys. 21, 1340 (1980)] 
R. A. Coleman 
Department of Mathematics and Statistics. University of Regina. Regina. Saskatchewan S4S OA2. Canada 

H. Korte 
Department of Philosophy. University of Regina. Saskatchewan S4S OA2. Canada 

(Received 22 October 1981; accepted for publication 30 October 1981) 

PACS numbers: 04.20. - q, 99.10. + g 

1. In the 6th line from the bottom of the right column 
of p. 1340, replace 

"the space of one-directions D! (M)" by "the set of bases 
ofD!(M)." 

2. In the first paragraph of Sec. 3, replace "}t(s dls2" by 
"JL(s d = S2." 

3. In the last line ofEq. (3.6), delete the superfluous left 
bracket. 

4. The last line of Eq. (4.20) should be 
"+ 2.fn f;-p + xn )" np !:> \ nn • 

5. In Eq. (5.16), replace "f;k" by "F;k'" 

345 J. Math. Phys. 23(2). February 1982 

6. In the second line ofEq. (5.18), "Bfa" should be 
":: fa " 

- 2' 

7. In the numerator of the third line ofEq. (5.19), 
"21'a f;- p" should be "2ja f;- p " 1 n!:> \ np!:> \. 

8. In the statement of Theorem 7 on p. 1347 and on 
lines 1 and 5 of the left column of p. 1348, insert "the set of 
bases or' prior to "D!(M)." 

9. On line 6 of the left column ofp. 1348 change 
"points" to "bases." 

10. Following Eq. (6.26), the three occurrences of "V a" 

should be "Va." 
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